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SYSTEMS OF DIFFERENTIAL EQUATIONS, ASSOCIATED
PARABOLAS AND GENERALIZATIONS

Octav OLTEANU', Ioan SEBESAN?

Se propune o metoda de explicitare a solutiei aproximative a unui sistem
diferential neomogen,neliniar. Apoi se considera sisteme mai generale de ecuati,
rezolvabile pe baza unor contractii pe intervale mici. Se studiaza pe scurt unele
aspecte privind norma operatorului de derivare si sisteme ortogonale cu proprietati
speciale adecvate acestei problematici. Se propune o forma explicita a solutiei unei
probleme legate de miscarea unui fluid perfect. In fine, fiind dat un operator liniar
marginit, se construieste un subspatiu asociat, pe care operatorul de derivare
coincide cu cel dat.

A method of finding explicit approximate solution for a nonlinear differential
system is proposed. Then one considers similar more general systems, which can be
solved by using contractions on small intervals. Some aspects concerning the
continuity and the norm of the derivation operator, as well as related orthogonal
systems are briefly discussed.

An explicit form of the solution related to the movement of a perfect fluid is
proposed. Finally, to any linear bounded operator, one associates a subspace on
which the derivation operator equals the given operator.

Keywords: stick-slip solutions, local contractions, derivation operators,
analyticity.

1 Introduction

There are several methods of solving “exactly” or approximating the
solutions of linear and nonlinear systems of differential, partial differential
equations and integral equations: [1]-[3], [5], [7], [10], [11],[13], [16], [18], [19],
[21]. Some of these systems are motivated by movement equations, vibrations or
other phenomena, having applications in several fields: [1], [3], [7], [8], [10],
[11], [13], [18], [19], [21]. In most of the cases, it is difficult to find expressions
of exact solutions. That is the reason of the development of general approximating
and variation-calculus methods: [1], [8], [10], [11], [13], [18], [19], [21]. The
approximation is local or “global”. In both of these cases, the successive
approximation and similar iterative methods remains one of the most important
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tools. Methods based on integral transforms, distribution theory and functional
analysis are developed and frequently used: [1], [4], [S], [7], [8], [11], [13], [19],
[21]. In studding stability at equilibrium points, even in the case of affine systems
of first order equations, difficulties may occur because of the non-constant “free
term”. That is why special methods could be useful in both problems. Complex
functions, probabilistic, algebraic, and nonstandard methods for similar problems
are used: [2], [7], [8], [16]. There are functional equations, discrete-type problems
and constructive problems, optimization problems, which can be reduced to
differential or integral equations, or which can be used in solving similar
problems: [1], [5], [6], [9], [12], [14], [15], [19], [20]. In the first part of this work,
we study some aspects of the following nonlinear system of equations describing
the motion during the stick-slip phenomenon [18]:
1§ +C(p—9)=-My(@);

1'%, —¢, (¢ — @) +cu(ug, —(pr):—Mtz((/)z); 0)
1L, + ¢, (0, ~ug,) =M, (%)
L=l =1, I'=l+Lu

Here I =1,,j=12 is the inertia moment of each wheel.

It is easy to see that even in the case of linear moments (see the first case (2)), a

direct computation of the explicit solution seems to be difficult. Therefore, special
methods can be useful. This is the aim of the first part of this work. For the first
part, the meaning of the notations, details and numerical values used are those
from [18]. The inertia friction-moments of the wheels, respectively the traction
motor moment are:

Vv

M, )= 20, Y er,or
p

r

. Vv .
¢j _F 3(/7;;,

. a 1 . v
Mtj((pj)z[F-W+bJ-Qr-sgn((p J-—V/I‘) for (pj_F >(pp (2)
Mm((pr): MO + Km(¢r —-vu/ r)

The inertia moments 1,1',1, are constants. Some other symbols appearing in (1)

and (2) have the meaning of constant quantities. Some of them are movement

parameters. For sufficiently large values of velocities, the friction forces and
moments of the wheels are decreasing, and the stick-slip does not occur any more.
An important remark is that the moments Mtj(y j), y; =¢; —Vv/r, are continuous

everywhere and piecewise analytic as functions of y,,j=12, being non-
differentiable at y, =+¢,. Around any point t,, local solutions do exist, and they
are C" functions. If at a point, we have

|yt )] # @,
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then there exist analytic local solutions, which are defined on a maximal
subinterval. We have the following relation on the movement parameters, which
show that the moments I\ﬁ”.(yj ):: Mt;(¢j —v/ r), j=12 are continuous at y, =+¢, :
ur=alg,+bre g, =a/r(u-b) (3)
Observe that M, are even functions of vy, j=12; slightly modifying M”(yj)
around y; =¢, with the aid of a parabola, one obtains a C function on the
whole interval, preserving the property of attaining the maximum at ¢,. The
advantage of using smooth curves is that of possible applying results of
differential calculus. The velocity ¢, corresponds to the adherence limit, which is

(almost) constant on the stick-slip interval of time.
The rest of the paper contains the following results. In Section 2, one gives
explicit approximate solutions of system (1). Section 3 contains “local solutions as

fixed points for local contractions”. Some remarks on the norm of derivation-
operator, as well as related orthogonal systems are contained in Section 4. As an
application of Hermite’s functions, an explicit solution for a particular case
concerning the movement of a perfect fluid is proposed. Then one applies these
results in solving the general case. Section 5 is devoted to subspaces associated to
a bounded linear operator, on which the derivation operator equals the given
operator. The end of the paper contains some conclusions.

2 Explicit solutions for constrained stick-slip and stability results

In the following theorems, we will call solution of the system (1), functions
9,.9,, j {2} verifying the system. The initial conditions will be homogeneous.
For this problem, an equilibrium point is a point t, at which we have:
$;(t.)=¢.(t.)=0.M, (9 )t )= M, (9, It. ),
5,00 =0 0,) 12120, 5, Xe)= M, o), =12 “
At such point, the adherence is optimal, and it is an local extremum point for
;. =12,¢,. Thus, if we have a maximum point for ¢, on a subinterval [t,.t, +J]

the signature of ¢ ,¢,, j=12 will be constant, for ¢, being negative. To the left of

t,, the signature of ¢, will be positive. In all cases, at an equilibrium point, on an

interval situated on one side of this point, the signature of each of the second
derivatives is constant. The first condition (3) is the usual equilibrium point

definition. The rest of conditions (3) concern the stick-slip. A useful remark is that
the continuous functions M (y j) can be approximated in various ways around the
non-smooth point y=¢, and on the stick-slip interval [0,B] of variation of
y; =¢;-v/r,j=12. Next, we give a method of approximation. This method
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preserves the form of the graph of l\ﬁ”(y j), j=12 outside a small interval. It

avoids rapidly decreasing moments of the wheels, realizing a smooth and almost
flat behavior around ¢,. This behavior avoids the loss of adherence, and allows

the increasing of accelerations ¢;, j=1,2.
Lemma 1 Let ¢>0 sufficiently small. There is &(¢)>0 and a two-degree
algebraic polynomial p, =p,(y)=a,y’ +a,y+a, in y=¢-v/r, a, <0, defined on
lp, — .9, +5(e)} such that:
ty)=p.(y) yelp, -2.¢, +5()}
f(y)=M,(y)yeR, \[(j)p -6, +6(s)l f(-y)=f(y).y<o,
isa ¢! function, approximating uniformly the non-derivable function M, (y, )
Proof. The derivative of M| (y j) with respect to y; is constanton |-¢_.,¢, | being
equal to xQr/¢, on this interval. Outside this interval, its value is
—aQ/yyel-6,.0,]
We will modify this derivative around vy, =¢,, making it linear on
lp, — .9, +5]=1,,. The derivative must vanish at ¢, and be continuous on [0, .

Pasting the graphs of the affine functions, and integrating, one obtains its
primitive on the positive semi- axis. It will be a second-degree algebraic
polynomial on the interval I, ;, and a C" function on the positive semi-axis, with

maximum point ¢,. Then one extends the obtained function to the whole R, such

that to obtain an even C" function. Finally, one considers the restriction of this

function to the interval of the values of y;, which is bounded for each je {1,2}.
The equation of the straight line defined by the points:
(¢p —&uQ r/gbp)’g/}p’o)

and its intersection with the graph of the right-side derivative f'(y)=—(aQ)/y? are:
n=10)=Llly 1, - 11 y")=-(@Q)r y* =

ury” ((/'Jp —y*):ga(/)p =3y =¢,+5,6>0
Whence, there is a unique y =g¢,+5,6=35(e)—>0,& >0, verifying the last
condition. This follows from qualities of the graph of the three degree polynomial
function involved in the last equation in y*. Integration on [gbp —¢&,y+6(e)| yields:
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ﬂ(y_(gbp—g){l—é%}:max pz(y): pz(gbp):%g (5)
p p

ye [(/'Jp -&,9, +5(5)]
To obtain our function at any point y of [0,[, one integrates the continuous
function

r . , . .

f’(y):=‘;i, velo.p, -2l 1(y)=100)k yelp, 2.0, +6]
P

f’(y):=—3—?, y>@,+9,

on the interval [0,y] We obtain the following formula for the modified moments
of the wheels:

fj(yj):$yj, i€ [Odbp -z}

p

fly,)=P, y>:=*‘Qr( o) paly, )y, elp, -2, +0(e)] (6)
[— —+b] elp, +5().B]

In (6) p, is from (5), and B is an upper bound for the values of y,j=12. By its

construction, f' is continuous, so that f is a C" function verifying the
conditions of the lemma. Extension of f’ to an odd function on the real axes
preserves the continuity, since f' is linear around the origin. Thus, f has an even
extension to R, with the properties mentioned in the statement. o

Denote by (1') the system obtained from (1) by replacing the moments of the
wheels with the similar C functions f = f; in variables y, =¢, -v/r, j=12. The
measured data show that K <0, K2 —4c 1, <0.

Corollary 1 The function from Lemma 1 has the following properties:

max f; = fjlg(gbp):,uQr[l—2

‘? JTuQr:maXM”,
@

P

Mtj(y)zsul’gw fjs(y)’ yeR, j=12.
Proof. The first assertion is obvious. For the second one, we observe that f,, is a
concave two-degree polynomial. Its graph is tangent to that of M, ;. There are two
tangency points, situated on different sides with respect to ¢,. because to the left
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we have a linear behavior of M,;, while on the right we have a convex one, the

conclusion follows. Moreover, for the right hand size, there is a common tangent
for the two graphs, at the corresponding point.
Denote by (1') the system obtained from (1) by replacing the moments of the

wheels with the corresponding C"  functions f=f; in variables
yj=@;-v/r,j=12, given by lemma 1. The measured data show  that
K, <0,K;—4c. 1, <0. The aim of the following result is to establish explicit
approximate solutions of (1)
Theorem 1 The general form of the approximate solution of (I') in a
neighborhood of an equilibrium point t, is:

¢, +1'p, +ul,.@, =0

o (t)- o, (t.) = ale’p’(t’te) cos(m, (t —t, )+ aze’pf'("te) sin(eo, (t - t,)),

o K2l 0 = fac,1, 1+ (w1, )(11)-k2]"”

21,
[(p Tgla/tle-t) 4 +(oy/a )(e“*“ () _ ) + (7)
ﬂo +ﬂle P cos(e, (t -1, )+ B.e P sin(y(t -1, )
[(D—Ieal/l i) Z/QI)(e(al/l')(l-le) _1) ! +

/10 + ﬂle P cos(a, (t—t, )+ A,e > sin(o, (t —t,))
Proof. Addition of the three equations of (1) , the last one being multiplied by u,
leads to:
16, +1'G, +ul .5 ZIMU((p])wLuM () (8)
]
Because the free terms are C" functions of @;, 1 =12, ¢,, the solutions will be of
class C?®, obtained by local integration of composition of C functions of t.
Relations (4) and derivation in each equation (I') show that the second order
derivatives at t, vanish too, as the first ones do. Due to Lagrange’s Theorem, in a
neighborhood of t, the first of relations (7) holds; these remarks yield:
1, =~ 1'p, =~ 1,ug, = @, ~(1,u/1")p, +b,(t—t,)+b, ()
Inserting this in the third equation (1) or (') lead to the following equation in ¢, :
I.é, +K, o, +¢ [1+(u I /1 )]{pr =d,(t-t,)+d,.
The explicit form of the solution ¢, follows. Using (9) once more, lemma 1,
addition of the last two equations of (1), the third one multiplied by u, yield:
21,ug, _UMm((br)_cl((ol _(02):
- Mt2(¢2): M(yz)z —pQr =
C1(¢71 _(172)z 21ugp, —UMm(¢r)+,qu’



Systems of differential equations, associated parabolas and generalizations 111

Inserting this expression in the first equation (1') and using (9) once more, lead to:
Iy, + ey, +a,y; :_Cl(¢1 _(Pz)z
—21,u@, +uM (@, )- 1Qr =
=y, + 46 P cos(w, (t—t, )+ 7,6 P sin(w, (t t,))
Solving firstly the homogeneous Bernoulli equation, the general form of the
solution of non-homogeneous equation in y, =¢, —v/r follows. The solution ¢,

follows in the same way. Relations (4) show that in the explicit form of the
functions ¢, the free terms and the coefficient of the functions involving "cos" are
the same. .

3 Local solutions as fixed points

This section is devoted to generalizations of the results of the previous section.
We consider functions as elements of L*(0,T), where (0,T) is the interval of time
on which the phenomenon is studied. Thus, we have another method for the proof
of the local existence and uniqueness of the solutions, with more general free
terms. Because of slowly decreasing behavior of ¢, on this relatively small

interval, this function is “almost” constant. In computations, it is used as a
constant. Let us consider an interval on which both moments M,;(¢, ) are linear as
functions of ¢;. The other notations and hypothesis are the same as those of
Theorem 1.

Theorem 2 On small intervals defined by strict inequalities (2), the solution

S =(¢1 —%,(pz —%,gbr —%J of the system (1) can be determined by the successive

approximation method.
Proof. Let consider an interval on which both moments M,,(¢;) are linear. Our

system appears below in the integral form, as well as in its “given” form:
s'=(ac] +Bo [ Js*)+(0.0.M, 1, ) [ =w(s¥)

2 zll[_/lQr((/.ﬁ _V/r)_cl((/71 _¢2)];

(10)

? :%[_ﬂQr((bz _V/r)+cl(¢1 _(02)_Cru (U(Pz _(Dr)];

o :
B =My + K, 6, /), (ug, )}

In the above first matrix relation, S":=(p —v/r,¢,-v/r,¢, —vu/r)", A is the
negative definite diagonal matrix having as entries the coefficients of
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O, —V/I,@,=V/1r,0. —vu/r,
while B is the linear operator defined by the matrix applied to (p,,¢,,9,) The
other two linear operators are the first, respectively the second order integration
operators, defined on the subspace of functions with compact support contained in
our open interval. Consider the space H=H(J,) , the closure of the space of all
test functions on J, in the Hilbert space H®(J,). One approximates any function
from this space by functions with the support contained in J,, which coincide
with the old ones on intervals (t, —¢,,t, +¢,) &, Ts. Due to Poincaré’s inequality
[11], for the linear part W, e B(ﬁ3) of the affine operator W defined in (10), we
have:

Wl <|A[-2"2&+|B|-2¢ <1, if >0 is sufficiently small.
Here S", as well as the other vectors from (10), is considered as an element of H*.
For sufficiently small £>0, W is a contraction on H®. This assertion remains true
for any bounded linear operators A,B. It follows that for any sequence defined by:
St =W(S.,),neN,(S¢ eH,  arbitrary chosen), we have: lim,, S}, =S,
Moreover, the well known basic evaluation of absolute error for contractions
holds. .
Remark 1 In the preceding proof, the presence of a “locally” constant matrix, and
also the linearization on small intervals seem not to be essential. To illustrate this
remark, we give the statement and the sketch of the proof for a more general
result. However, the linearization can lead to finding explicit solutions on small
intervals.
Theorem 3 Let the system of nonlinear equations on a closed small
interval J, =[t, —&.t, +¢]:

_ﬂ'j(ﬁj :uj(t=¢1=¢2’¢3’¢1’¢25¢3)5 4, €R, ¢, EC(Z)(JS)

sup(goj )c Jeyje {1,2,3},
,and u; are c® of the set of variables. Then for ¢>o0 sufficiently small, there

exists a solution, which can be determinate by successive approximation method.
Proof. We write the system (11) in a more convenient way, in a small interval on

which the smoothness holds:

= 2360)= [u; (%0, (X0, (O >

(11)

. 1 - .
¢, () = —Tjiuj (x,£¢] ()0S + 9, (t )svvrs 25 (X)X =

Y@M, ted,t,), jeil23ie ¥=Y(¥)
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In the above notation ¥ := (gz')J-)3J,:l , while Y is the “double integration” applied to
appear only ¢, in the right hand size. The nonlinear operator Y applies
X =("(J,))’ into itself. The norm is ||h||,)w:||h||w+||h|| . Because the functions

u;, j =123 are smooth, with bounded first order derivatives on J,(t,), we infer that
Y is a contraction for a sufficiently small length of the interval J,, I (\Tg): 2¢. From
the conditions:
4
& +e<B =min,_ ,; —-, where
M
ou;

o9,

ou;
|09,

M= maxj’k_l’t{ }, wheret e J_S, J,k,1 € {1,2,3},

one deduces:
1
||Y(‘P1)—Y(‘P2 ]Lo,] <— maxj,k’,{
min |/1j|

2
E+¢e
I ||\Ill_‘{12||oc,l:q||lP1_\Pz||oo,l’O<q<1'
For such a small length of the interval, the successive approximation method

works for Y. An important case is that of u; having piecewise continuous,

ou,
o,

au;
opy

s

© ©

}(mz)wa v, -

uniformly bounded partial derivatives with respect to ¢,,¢, on the whole
interval[0,T]. In this case, M,B from above do not depend on ¢. In all cases, one
obtains an approximating sequence of functions (¥,) from X, which converges

to the solution ¥ € X in the norm of this space. .

Remark 2 There are different variants for a proof of Theorem 3. If we leave the
system as in the statement, approximating the right hand size member by its affine
part, then the solution follows as in the proof of Theorem 2.

Remark 3 In theorems no. 2 and respectively 3, we have obtained solutions on
non-overlapping intervals, the join of these subintervals being the whole interval.
We extend each such local solution by taking zero value outside its small interval
of definition. Thus one obtains an orthogonal system in L*((0,T)), (respectively

inL*([0,T])) of local solutions, with non-overlapping supports. A problem, which

arises naturally, is to prove the completeness or the non-completeness of this
system. In general, such a system is not complete.

4 On the continuity of derivation operation. Solving a partial
differential equation

In the proof of Theorem 2 we have used Poincaré’s inequality, the idea being to
point up the fact that on small intervals, integration operation is a contraction. As
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it is well known, for several norms, usually the real differential operators are not
continuous. In case of continuity, it should be difficult to determine their norms.
The following result points up a class of orthogonal systems, which generates real,
and complex Hilbert spaces of smooth functions, such that the derivation-operator
has norm at most one, or a norm which can be determined. Some examples are
also given.

Proposition 1. Let J <R be an open interval, or respectively AcC an open
subset. Assume that there exists an orthogonal system e, |, < L*(3), (respectively in

L*(A)) of smooth (respectively complex analytic) functions such that the system
formed by the derivatives {e; }, is also orthogonal, and |e;| <[e,| vne N . Then the

derivation operator D from H:=cl(Spfe,} ) into H,=cl(Spfe;}. ) is continuous.

Moreover, we have: |Dm

<1,meN.
Proof. Let {e,} _, be the orthogonal system from the statement of the present
Proposition. Then for any f  Sp{e, }. , derivation term by term in a finite sum, leads

to:

f=>(fepe;, f'= > (fe)e],

jeS(f) jeS(f)
where the sum is over a finite subset S(f) = N. These expansions yield:

[P =16 = X ctiepfes] = 2ctoefes]
jes(f) jes(f)
= _Z<f’ei>2(||ei||z‘||83||2)2°’
jeS(f)

, because of : |ej|<|e;|. The conclusion is: |f/<|f| on the dense subspace
sp(fe,},) of H, which leads to the same inequality on the whole space H. Thus

we reach the conclusion |D|<1. .

Example 1. An example of an orthogonal system in a real Hilbert space
H, such that u; =a,u,,|a,|<1Vn is the following one:

u,(0=ar, {a,}, =QN[l/ee]U{l/ee},

P q min{p.q}
<Zanunszﬂjuj>:: Zamﬂms
n=0 j=0 m=0
H being the completion of the Euclidean space (Sp{u,}..( )). Obviously, we have
u? =ur(lna, )’ <uy,neN,(u,,u,)=5,,,
Juel” = (na, ) <1=|u,|".

In this example, a stronger condition is accomplished:
juil<fual = Juill, <Juafl, vpetoo].
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This is a consequence of the monotony of the norms of the L(J) spaces, J c R
being a bounded interval. Application of the Proposition 1 leads to |D|<1, and
because of D(exp)=exp, we actually have D] =1.
Since a, e[e”',e], Vne N, we have:

f.(x)=u2(x)-u*(x)= a“( 1-(loga, )2)> 0,
, and equality holds only for a, e{ e } Consider the function f(t):=1-(nt)*,
which is vanishing at the ends of the interval and has as unique maximum point
t, =1=e"'-e. Moreover, the ratio in which this maximum point divide the interval
equals e™'. Obviously, the complex analogue can be discussed.
The next example refers to a not complete orthogonal system in a real Hilbert
space, obtained by the aid of disjoint supports.

Example 2 Let X =CPR)NL*(R), &,(x) = [(x=n)Xn+1=x)] - 2,000y (¥), N € Z.

Obviously, the system f{e, |, is orthogonal in

n

1
U R fenl = 15z & < CRINURMer| =

system. By the proof of Proposition 1, the derlvatlon—operator

~Vnez, {er}. is also an orthogonal

n

D:cl(Sp(fe, }, )= cl(sp(fe, })) = L*(R) is continuous and we have D] = " " =243,

is a complete

Remark 4 Let n=2; (for arbitrary n, the proof is similar). If {e, }

orthogonal system in L (J), then {e, ®e,}
inL,*(32).
As an application of Remark 4, we propose a solution for a particular case
of the modified equation describing the movement of a perfect fluid:
o +div(p-V)= f(X,1) (12)
Here vV =V(x,t) is the velocity vector field, p = p(%.t) its density, f(X,t) being the

y» 1s an orthogonal complete system

(n.m)e

intensity of the sources. The unknown function is V.
One considers the particular case of a rotation-free field
V,V =¥y, %] > 0, 0<5 < p(X) VX €R?, p, =0.

The preceding conditions assume that v, is given. Because the intensity of the
sources converges to zero when the norm of the position vector converges to
infinity, the natural condition is ¥, =0. One also assumes that p,f are analytic
functions and belong respectively to L* (R3 ) L? (R4 ) Because of the assumptions on
f, it is possible to find a solution ue L’ (R“) of the following Poisson problem,
related to the above one, for p=const.>0:

p-Au=1, ufel’(RY) (13)
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The classical problem requires (by physical reasons) solving the problem in the
case of vanishing source f, when ||| — o, namely:

Au(X,t)=0 VX ¢ Q, a—ﬁ oo =0, limy,  (Vu)%,t)=V, = constector

Here Q <R’ is a simply connected large bounded domain. If Q is a parallelepiped
centered at the origin, with faces parallel to the coordinate planes, any affine
function in (x,y,z):
u(x, y,z,t)= ot Jax+by +cz+d]

is a trivial solution for the latter problem. Next we sketch a possible way of
solving (13),, by using Remark 4 and the continuity of the inverse of the Laplace-
operator. This computational method allows finding explicit solutions and related
consequences. The condition of a square-integrable solution implies a vanishing at
infinity-solution, which stands for the homogeneous boundary condition.
Theorem 4 If the source-function f < sph, ®h, ®h, @h, | c1*(R*), then the

problem (13) has a unique solution, which belongs tos. In particular, it is an
analytic function. The solution is:

u=A"(f/p)
Its coefficients with respect to the Hilbert basis associated to Hermite’s functions
are given by (15), written for the coefficients of f/p.
Proof. The idea is to reduce the computations related to the Laplace operator to
the corresponding operations related to the operator D from below. For this
operator, the proper numbers and “eigenvectors” are given in [13]. The sums from
below are finite.

= z/l(m,n,p,q)[— 2m+1)-(2n+1)-(2p+1)h, ®h, ® h, ®h, =
(m.n,p,q)eF (14)
=V=" D Anapg(v, ®h, ®h, @h =

(m.n.p.g)eF

&mn,p.a)
> kA h ®h ®h,®h,
(e 2(m+n+p)+3
The last relation shows that D' is continuous on the dense subspace of LZ(R“)
generated by the elements of its Hilbert basis, so it has a continuous extension
given by (14), for infinite sums which define elements of L*. Going back to the

u=D"(v)=-

explicit solution of (13), we can proceed in the same way, by determining the
coefficients of u:
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Au- D(u)+(ixf]u:

=

3
=y {— 2(m+n+p)-3 +[z xf]}(m’n,p’q)hm ®h,®h, ®h, =
(m.n.p.q) j=1

03
:{ Zﬂ(mﬁn,mq)(f)hm ®hn ®hp ®hq]:>

(m.n,p,q)
ﬂ(m,n,p,q)(f )
—2(m+n+p)-3+¢

/I(mA,n,pA,q) =
m,n,p,q)

In the above expression, the sums are finite. We have denoted by 3, ,(f) the
Fourier coefficients of f/p with respect to the complete orthogonal system

related to Hermite’s functions, and by «,, ,,, the numbers given by:

m.n,p.q
3 2

o[ o ensan i m )

It is easy to observe that:

#0< (m,n, p)e{olf

There are a finite number of such numbers, which does not change the asymptotic
behavior of 4,,,, given by (15). It follows that f/pel?® (R4 ) and that it is
analytic. We conclude that u=A"(f/p)el’ (R“) and the inverse of the Laplace

operator is continuous. Its norm can be determined from the preceding
computations. Because AuU is analytic by hypothesis, and the series defining U is
absolute convergent in any point (due to Schwarz inequality), the theorem of
term-by-term derivation holds. Hence ueC™ (R*) and it is analytic in R* (by

& (mn.n.p.q)

m,n,p.q

using once more Schwarz inequality, this time for the remainder). .

The next result gives another method, which seems to work for the general
equation (12)

Theorem 5 Under the hypothesis of Theorem 5, there is a unique solution of the
equation (12) in the class s, and it can be determined by:

V= Ldivi(f-p)=—(vea')t-p)
P p

The operator div"' has a continuous extension to the space L>(R*), and all the
components v; j=1,2,3 of the solution vV are analytic functions on R*.

Proof. As in the proof of Theorem 4, we will work with finite linear combinations
of the base related to Hermite’s functions. On the vector subspace S generated in
this way, both operators A,V are injective, the Laplace operator being also onto,

by the proof of Theorem 4. If Vs=0,seS, then S must be a constant. This
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constant is zero, because of vanishing at infinity of all functions in S. Due to the
maximum modulus principle for harmonic functions, the Laplace operator is also
injective. These remarks lead to:
A=diveV=div=AoV' onR(V)=3div'=VoA' onS.

Due to the behavior on Hermite’s functions, we have:
h, ®h, ®h, ®h,

2(m+n+p)+3
for all (m,n,p,q), except a finite subset (see the proof of Theorem 4). For each

A'(h, ®h, ®h, ®h, )=-

component v, j=1,2,3 of the field v, we have:
(hy g =—vh = vn = @) 2 by k=2
These relations yield:

2(m+n+p)+3)"*
2(m+n+p)+3

[7ea")(h, ®h, @h, ®h, ]|< |h, ®h, ®h, ®h,|=

1
2m+n+p)+3)"°
It follows that our operator multiplies the corresponding Fourier coefficients
respectively by the numbers (1/(2(m+n+ p)+3))?, hence their absolute values are

||hm ®h, ®hp ®hq||, m,n, p,q=2.

diminished. Obviously, it has an extension to the space Lz(R“l preserving the

norm. From the proof of Theorem 4, we infer that A" applies analytic functions
from S into analytic functions from the same class. Since the power series-
functions can be derived term by term, we infer that each of the components
o/ox;, j=123 of v, applies S intoS. It follows that on the subspace S, the

following conclusion holds:
seS=3div(s) = (V oA'IXS)e S.
In particular, div’'(s) is analytic. Going back to the equation (12), since f —p, €8,

we have pV=div'(f -p, )e S3and\7=idiv’1(f —p)es?.
P

Now the conclusion follows. .

5 *“Continuity subspaces for complex differentiation” associated to a
linear bounded operator

In this Section, we mention that the derivation operator can be continuous on
some special subspaces of a Hilbert space, associated to an arbitrary linear
bounded operator. Some of the following results are valid for continuous
operators on different spaces, which contain the space of all entire functions on
the complex plane (for examples of such spaces, see [17]). We work in the Hilbert
space
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H=L(0) T, ={g=1},
, endowed with the scalar product defined by:

I B AT
(f,g)—g'([f(e )g(e )dé).
For any two elements f,ge H?> < H ([17]), we obviously have:

(f,g) :ic,ﬂn, f(z):icnz”,g(z):idnz“, zeC,
n=0 n=0 n=0

Theorem 6 Let

TeB(H?)S=5,(T)=Sp{(exp((z— )T)(h, ) A eChhy(z)=1VzeC.
For all sesS,we haveD(s)=T(s). In particular, derivation-operator D, is
continuous from s into T(S). Consequently, it has a unique linear continuous
extension DeB(S,H?) preserving the norm.

Proof. Let se S,

s(z)=>_c, exp((z—4,)T )h,)

neF

T(s)z)=2 e, fexpl(z — 2,7 Yy )l= 2o fexp((z = 2, )T XT ()]

neF neF

Comparing with the behavior of the derivation operator on S, yields:

D,(s)z)=">"c,T [exp((z— 4,)T Xh,)]=T(s)z). zC.

nekF

Consequently, if T is continuous on S, so is the derivation operator
D, : D, =|T[. Hence the assertions of the statement follow. o
Proposition 2 Let the system (1) be such that the moments M, (¢, ) j=12 are
analytic functions of ¢,. Assume that there exists an analytic solution and an
equilibrium point such that (3) hold. Then the components ¢, (t), j =12, ¢, are
constant functions.
Proof. If the functions in the right size of the equations (1) are analytic, then the
solutions ¢;, j=12,¢, might be also analytic functions of t. We have already
observed that the solution verify the relation:

|¢1 +|'¢2 +u'r¢r :_Zz;Mtj(gbj)"'Mm((/}r)'

=

Assume that there exist analytic solutions and an equilibrium-point t,, with the
qualities (4) Then derivation of the last relation from above, of the equations (1),
and application of relations (3) yield:
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(|¢1 +1'g, +ul réjir)(te):o;

[”/51 +Cl(¢1 _¢2)](te): Iéb.l(te):(): ¢1(te):0;

(1.6 +c, (o, -up, t.) =15 (t.)=0= 5, (t.)=

?, (te ) =0
Successive derivation and application of (4) lead to the conclusion that all the
derivatives of all orders greater or equal to two at t,, of the functions
¢;,j=12, ¢, are zero. Now the conclusion follows. o
Remark 5 Let H be a Hilbert space and T = A+iBeB(H), A,B selfadjoint
operators. The solution of the problem:

Y'=TY,Y(0)=u,,Y:C > H
can be written as:

Y(z)= H[(e;““z P, +(1-P, ))] iHl(e”ﬁzQﬂ + (l —Qy ))kuo)

aechA peB

where (P,),, (Qﬁ ) ), are projectors associated to the decomposition of unity of the

operator A, respectively B.
As an application of the continuity of the function defining the moments:
Mti(yi): M”-(gbj —v/rl j=12,
we prove the following consequence. The aim is to make another connection to

different fields.

Proposition 3 Let g =g(y) be the function:
g(y)= ’fr A EL g(y):=§+er,|yl > ¢,

P
Assume that ¢, satisfies (3) There is a unique nonincreasing solution

f:1=(bg,/u0)— 1, of the equation g=go f,

with the following properties:
fof=id,, f(gbp):(bp, f is continuous,

analytic on J \{(pp}; fl(y)zm, y < @y,
p
fr(y):ﬂ(i—i_br} y2¢Pa ye‘]s fl{bﬂJ:w’ fr(oo_):bﬂ'
MY H

See [14], [15] for related results.

6 Conclusions

The first part of this work gives a method of finding “local” approximate explicit
solutions for a two order nonlinear system of differential equations, motivated by
a practical phenomenon. We prove some generalizations, by using local linear
approximation, local contractions and Poincaré’s inequality. Sufficient conditions
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for the possibility of determining the norm of the derivation-operator are
established. Related examples are given. One uses orthogonal basis of analytic
functions in solving the movement equation of a perfect fluid. Concerning related
aspects in complex differential equations and linear bounded operators, for an
arbitrary bounded operator acting on L ({|z| = 1}) one gives a constructive method

for finding an associated infinite dimensional subspace, on which the derivation
operator equals the given operator. A last statement concerns the “virtual” analytic
trivial solution around an equilibrium point.

Some of the methods used in this work should be applicable in solving problems
of related fields: functional equations, elements of operator theory, of complex
analysis, optimization.
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