U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 3, 2011 ISSN 1454-234x

HYBRID SYLLABIFICATION AND LETTER-TO-PHONE
CONVERSION FOR TTS SYNTHESIS

Catilin UNGUREAN', Dragos BURILEANU?, Vladimir POPESCU?, Aurelian
DERVIS*

Intr-un sistem de sintezd a vorbirii pornind de la text (TTS), prezenta etajului
de prelucrare a limbajului natural este esentiald daca se doreste obtinerea unei
vorbiri sintetizate cdt mai naturald, pornind de la un text oarecare de intrare. In
lucrarea de fata abordam doud probleme importante pentru un sistem TTS in limba
romand, din punct de vedere al prelucrarii limbajului: despdrtirea automatad in
silabe a cuvintelor, etapd obligatorie pentru pozitionarea corectd a accentelor
lexicale si in final generarea unei prozodii corespunzdtoare, i transcrierea fonetica
a textului de intrare. Primul algoritm este construit intr-o manierd hibridd, pe baza
unui set minimal de reguli generale, urmat de o abordare statistica, iar cel de-al
doilea este construit in esentd pe baza unui set de reguli de conversie grafeme —
alofone, pe baza formei despdrtite in silabe a cuvintelor. In plus, vom ardta cd
predictia accentului lexical poate fi folosita pentru a imbundtdati rezolutia
transcrierii fonetice, prin eliminarea unor ambiguitdti de conversie.

The presence of the natural language processing (NLP) stage in a text-to-
speech (TTS) synthesis system is an essential condition for obtaining a good
naturalness of the synthesized speech in a given language, starting from unrestricted
input text. In this paper we address two important NLP issues for a Romanian TTS
system: automatic syllabification, necessary for lexical stress assignment and
prosody generation, and letter-to-phone (L2P) conversion of the input text. The first
algorithm is built on a hybrid strategy, using a minimal set of general rules,
followed by a statistical (data driven) approach, while the second one uses a set of
phonetic transcription rules that work aligned with the correctly syllabified words.
Moreover, we demonstrate that lexical stress prediction can help the L2P process,
by solving some additional ambiguities.

Keywords: Text-to-speech synthesis, syllabification, letter-to-phone conversion,
lexical stress, n-grams

' PhD student, Faculty of Electronics, Telecommunications and IT, University POLITEHNICA of
Bucharest, Romania, e-mail: catalin20_09@yahoo.com

2 Prof,, Faculty of Electronics, Telecommunications and IT, University POLITEHNICA of
Bucharest, and Romanian Academy Center for Artificial Intelligence, Bucharest, Romania, e-
mail: bdragos@messnet.pub.ro

3 Assistant Prof,, Faculty of Electronics, Telecommunications and IT, University POLITEHNICA
of Bucharest, Romania

4 PhD student, Faculty of Electronics, Telecommunications and IT, University POLITEHNICA of
Bucharest, Romania

130 Citalin Ungurean, Dragos Burileanu, Vladimir Popescu, Aurelian Dervig

1. Introduction

A high-quality text-to-speech (TTS) synthesis system based on a
concatenation approach usually includes a natural language processing (NLP)
stage that provides the phonetic transcription of the input text together with the
appropriate linguistic information for prosody generation and speech unit
selection, along with a signal processing stage that transforms the information
received into speech [1], [2].

Our research team works for several years in the text-to-speech synthesis
field. Several versions of a Romanian language TTS system were built
successively in order to improve the performance of different constituent modules
and consequently enhance the quality of the synthesized speech. The current
version is based on acoustic segment concatenation and uses multiple instances of
non-uniform speech units (diphones and polyphones — to solve a number of
difficult vowel-semivowel transitions), labeled (off-line) according to contextual
and phonetico-prosodic information from a recorded speech corpus [3]. The NLP
stage of our TTS system provides the phonetic transcription of the input text,
together with prosodic marks and auxiliary contextual and phonetic information.
In [4] and [5] we described two important modules of this stage, namely the
automatic diacritic restoration (modified in the most recent version, by adding a
morphological analysis stage), and respectively the lexical stress assignment.

The main purpose of this paper is to discuss two other important modules
of the NLP stage. More specifically, we propose an automatic syllabification
algorithm for the Romanian language, and a letter-to-phone (L2P) conversion one.

The first algorithm is essentially based on a hybrid strategy that uses n-
gram similarity measures and a limited rule-set. The statistical approach used here
is similar, up to a point, to that used for the lexical stress resolution algorithm, but
some new aspects exist, though. First of all, the training corpus used for the
syllabification is built in a different manner, by means of a manually correctly-
syllabified text corpus. Secondly, even though our approach is based on the same
Katz backoff algorithm, we purposefully chose not to use n-grams smoothing
techniques under the level of trigrams. A final classic decision is made, though, by
calculating the emission probabilities and choosing the alternative which
maximize it.

The L2P proposed algorithm is mainly build in a ruled-based manner,
however using information from the syllabification and stress assignment
modules. It is interesting to observe that in a classical NLP approach, one usually
performs the L2P conversion first, followed by the syllabification task. This
usually happens because each syllable is centered on a vowel and, for accurate
rule-based syllable identification, vocal phonetic resolution must come first.
However, in our work we considered the reversed approach, that is, after

Hybrid syllabification and letter-to-phone conversion for TTS synthesis 131

identifying the borders of the syllables by also using lexical stress information for
a number of difficult situations, the phonetic transcription task is solved in a
deterministic manner, using a (minimal) set of L2P conversion rules.

There are a limited number of achievements in the field of syllabification
and L2P conversion for the Romanian language. For example, in [6] the authors
describe a rule-based phonetic conversion system for a reported 4.79% Word
Error Rate (WER). The rule-set has been built from a phonetically-transcribed
dictionary by successively running the algorithm, counting error conversions, and
extracting of new rules. After 11 such iterations, the WER decreased from 21% to
4.94%, at which point the algorithm seems to saturate. The reported results have
been obtained on a dictionary composed of 4,779 frequent Romanian words,
extracted from a corpus of literary texts and scientific works. Moreover, using this
L2P module and a supplementary rule-set (24 rules), the authors implemented a
syllabification module, with a 10.55% WER reported result.

Another syllabification algorithm is described in [7], and works on a rule
based principle as well. First of all, there is a general set of three rules. A more
extended rule-set (exception set), composed of 100 rules, is finally applied and the
authors report 15% WER results for syllable detection.

A final example of L2P conversion algorithm is described in [8]. The
method relies on two distinct parts. First, the method starts with a L2P rule set
built with the help of linguists. The second component tries to overcome the
inconsistency of this set; to this end, the authors use a freely available software
tool (WEKA) to obtain an extensive rule-set. The software is well documented
over the Internet and is well known throughout the Academic world. The reported
algorithm accuracy is between 78% and 94.8% for different test sets.

The paper is structured as follows: Sections 2 and 3 discuss the principles
of the two proposed algorithms, Section 4 describes the experiments performed
and the main results obtained, and Section 5 concludes the paper with final
remarks.

2. Syllabification algorithm description

In the Romanian language, any syllable must contain one single vowel.
There could also co-exist other typical vocalic letters, but these are considered to
be, at the phonetic level, semivowels, and occur together in diphthongs or even
triphthongs which must be spotted for a syllabification attempt. The Romanian
language benefits from a good language processing framework, which is a quite
up-to-the-minute achievement of the Romanian Academy [9], being generally
recognized as the starting point for any linguistic effort. Other interesting ideas, as
those presented in [10] may also support the scientific effort, by offering some
additional points of view. Despite these large linguistics exertions, it must be

132 Citalin Ungurean, Dragos Burileanu, Vladimir Popescu, Aurelian Dervig

established that, for a certain written word, it is not possible to apply all the
syllabification rules acknowledged by linguists (e.g., in [9]), because in the
written form there is no difference between vowels, semivowels or hiatus. In other
words, the hiatus cannot be directly emphasized, nor the diphthongs or
triphthongs. It is necessary to perform an analysis in order to recognize different
kinds of vowels, i.e. in diphthongs / triphthongs, or hiatus. In our framework this
is achieved through a statistical training on a correctly syllabified corpus and is
implemented in the syllabification module.

For the task of Romanian words syllabification, we extracted from [9] a
minimal set of general syllabification rules, denoted by G, which covers only a
small part of all possible situations. The G set has seven rules; we will illustrate
only the first three of them:

e Two identical adjacent vowel letters are placed in different syllables,
except for the ii pair which is placed at the end of the word.

o The letter sequence vowel-consonant-vowel (VCV) can be separated
between the first vowel and the consonant, except for the sequence
including a final i.

e The letter sequence vowel-consonant-consonant-vowel (VCCV) can be
separated between the two consonants, except when the first consonant is
one of the following letters: b, ¢, d, f, g, h, p, t and the second one is 1 or r
— in such cases the syllables separation is made between the first vowel
and the consonant.

It is important to note that the G rule-set can not cover all the particular
situations that can arise in the Romanian language. Nevertheless, this proved to be
useful because it can solve some unclear situations while also lessening the
overall algorithm complexity. Consequently, every word entering the algorithm is
first passed through the general syllabification rule-set, for solving a limited but
clear number of situations; another advantage of this approach is that the number
of possible syllabifications variants, generated throughout the algorithm and
amongst which the resolution must be done by computing the emission
probabilities, is significantly reduced. Then, one uses a statistical approach based
on n-gram similarity measures. The complete training and testing procedures are
presented next.

2.1. The training procedure

1. From each word w of a manually-built training corpus, T1 (composed
of correctly-syllabified words, with start and stop markers for every
input attached to the words), extract the n-grams of length 1,...,n, at
character level; the word is written as <S1-S2-...-Sn> where by S; we

Hybrid syllabification and letter-to-phone conversion for TTS synthesis 133

denote the inner word syllables. The syllable delimiter “ - 7, as well as
the start “ < ” and stop “ > ” word markers are considered to be
internal characters.

2. For an n-length history, also extract n-grams of order n-1, n-2,...,1.
3. Count the frequencies of all n-grams.

Calculate and store the resulting maximum likelihood (ML)
probabilities, for 1,...,n.

5. Calculate the probabilities according to the Katz backoff method [5],
[11] down to the level of trigrams. Discard previous data and store the
results.

2.2. The testing procedure

1. Each test word w is passed through the G syllabification rule-set. Start
and stop markers are placed at the beginning of the resulted pre-
syllabified word, and the w form is obtained:

w=/[l,---1---1,, ,where/, = < and [, = >.

2. From every w generate all possible syllabification variants g;,

j=1,..,2", by inserting the syllable marker * - ” after each character
from w, where by L we denote the w length, given in number of
characters.

3. Forevery g; extract the n-grams with history 1,....n.

4. Calculate the emission probabilities with the Katz backoff formula,
where the conditional probabilities are those obtained during the
training stage.

5. Chooseg; ., which yields a maximal word probability, and return it at

the output as the correctly syllabified version for w.

The correct variant is chosen from the forms which successfully passed
through all the levels of the algorithm so that it yields the maximal emission
probability. This is calculated as a product of the conditional probabilities of the
n-grams extracted from a test word, according to Katz algorithm and presented in
[5] and [11]. The modification used by our method consists in not using the
smoothing technique for the unseen n-grams, under the level of trigrams. This
approach relies on a good coverage for the n-grams training corpus and considers
the impossible n-grams, under the 3rd level, as carrying no probability. The
drawback is that for longer histories the effect of data sparseness becomes more
visible and impacts the final statistical results.

134 Citalin Ungurean, Dragos Burileanu, Vladimir Popescu, Aurelian Dervig

The training and testing phases of the syllabification algorithm are
depicted in Fig. 1.

Input word

TRAINING TESTING 1

Apply the G rule-set

!

Generate variants

]

Manually syllabified corpus T1

l

Extract n-grams

Extract n-grams and calculate
the final probability

!

Choose the variant
> with maximum
probability

A

Calculate and store
probabilities

Syllabified word

Fig. 1. The syllabification algorithm

Example: the word sora (sister), without passing through the G rule-set,
will generate all the 64 possible syllabified variants (the - “ marker is inserted
after each character):

g1= <sora>, g, =<-sora>, gz = <s-ora>, g,= <s-0-ra>,...,g=<s-0-r-a->

For this example, the word passes through the algorithm according to the
graph depicted in Fig. 2.

<s- — STOP <sor-a — STOP
<sor- <
<sor-- — STOP
<s <sor
<sora —— <sora>—— OK
Pp(<sora>)
< <so - - —» STOP OK

<so-ra> —»
p(<so-ra>)
<so-ra

<sora- —» STOP
< —» STOP <so-r- — STOP

Fig. 2. The principle of the syllabification algorithm for the word sora (sister)

Hybrid syllabification and letter-to-phone conversion for TTS synthesis 135

It can be noticed that, without passing through the G rule-set, the number
of all possible variants grows exponentially with L, where L is the character length
of a test word, taking into account the start and stop delimiters.

We observed that for the words with a length greater than 10, the method
becomes time-consuming. Therefore, we decided to address this problem by
stopping the algorithm for the unseen n-grams. Thus, our process will be stopped
in a controllable manner, by ignoring theoretically-impossible variants.

In the previous example, the process stopped after only 9 branches, which
is significantly smaller that the 64 theoretically-possible number. Also, one can
observe that there are only two variants which will first pass through the
algorithm, which are <sora> and <so-ra>. The algorithm will finally decide that
the variant <so-ra>, that returned the maximal probability, is the correct form and
will provide it at the output.

We point out that the preceding example was chosen only for theoretical
reasons, disregarding (for the ease of discussion) the effects of applying the G
rule-set. As we already mentioned, passing through the G set first, will
substantially reduce the number of choices among which a decision is made.

3. L2P algorithm description

The following main difficulties are specific for the Romanian letter-to-
phone conversion task: the presence of diphthongs, triphtongs, and hiatus, and the
graphemes ce, ci, che, chi, ge, gi, ghe, ghi which have multiple phonetic values.
For our study we used a basic set of 34 phones which is composed of 29 basic
phonemes and five allophones for the vowels e, i, 0, and u: four semivowels for
each vowel of the mentioned group and the final (unvoiced)-i which carries no
lexical stress and always follows a consonant (as in comori — treasures, poti —
you can). The semivowels appear inside the syllables near vowels, resulting in
phonetic diphthongs or triphtongs.

Even though a one-to-one correspondence between letters and phones does
not exist, obviously, the correspondence is bi-univocal for consonants and for the
vowels a, 4, 4, 1. As previously noticed, the diphthongs, triphthongs, and hiatus,
which may result from the juxtaposing of several letters from the set a, e, i, 0, u,
a, i(2), are extremely difficult to differentiate in an automatic manner.

However, we observed that a relatively regular structure still exists. For
example, we distinguished that from all the 49 possible pairs associations, the
following distinct situations could occur: impossible type associations (14), hiatus
type association (13), vocalic pairs that can form both hiatus and ascendant
diphthongs (7), vocalic pairs which can form both hiatus and descendant
diphthongs (14), vocalic pairs which can form hiatus and both ascendant or
descendant diphthongs (1) — as for the iu vocalic pair.

136 Citalin Ungurean, Dragos Burileanu, Vladimir Popescu, Aurelian Dervig

It is further evident that by using an accurate syllabification algorithm that
can highlight the correct structure of the vocalic sequences (diphthongs,
triphtongs, and hiatus), a subsequent L2P conversion can be much more easily
done, since the number of the remaining ambiguous pairs is limited and
straightforward to distinguish.

The same study was made for triphthongs. We distinguished 16 different
triple vocalic association types: 14 semivowel-vowel-semivowel (SVS) types and
2 semivowel-semivowel-vowel (SSV) types. We must re-emphasize that al these
distinct cases are transformed in different L2P conversion rules, at the syllable
level. Also, it must be mentioned that the triphthong generated rules must be
applied before those obtained for diphthongs, but after hiatus resolution
accomplished by means of the syllabification algorithm.

Our L2P converter, depicted in Fig. 3, uses syllables in order to solve most
of the ambiguities which could occur between hiatus and different diphthongs or
even triphthongs. Furthermore, we mention that the syllable information (more
precisely the vowel / semivowel distinction in diphthongs), also enabled us to
successfully address the correct phonetic transcription for the letter groups ce/ci,
che/chi, ge/gi, ghe/ghi.

The remaining possibly unclear situations are solved by using the lexical
stress assignment algorithm described in [5], e.g. the diphthong iu, which can be
both ascendant or descendant; namely, the lexical stress placed on one of the two
letters will determine that letter to be treated as a vowel, otherwise as a
semivowel. In addition, lexical stress information proved to be a good approach
for the final-i ambiguity resolution.

————— ~r-— - ———— — — — |Input text

v

Preprocessing

+

Syllabification — —

| v

———— = >

Rule-based conversion

|———— >

L — & Lexical stress — —

v
Phonetic transcription
and stress markers

Fig. 3. The L2P algorithm

Hybrid syllabification and letter-to-phone conversion for TTS synthesis 137

Then, the phonetic transcription can be considered deterministic — we used
a set of 45 rules to accomplish the entire letter-to-phone conversion task.
Moreover, we want to mention that our L2P module will also pass (to the NLP
stage output) the lexical stress markers placed in front of the correspondent
phonetically converted syllables. This step is essential for the next signal
processing stage.

The proposed L2P algorithm is presented in the following:

1. For each test word do the following steps:

a. Preprocessing: transform y to i, ke to che, ki to chi, k to ¢, x to
cs, and w to v.

b. Obtain the syllabified form of the word from the syllabification
module.

c. Obtain the stress information for the word, from the lexical
stress assignment module and mark the stressed vowel on the
correctly syllabified word.

2. For each syllable in the word identify the type of the inner diphthongs
and triphthongs, and based on this vowel / semivowel information,
perform the letter-to-phone conversion according to the set of 45 rules.

3. Replace the graphemes ce/ci, che/chi, ge/gi, and ghe/ghi with the
corresponding phones or phone pairs, according to the vowel /
semivowel information previously acquired.

4. For the syllables which carry the diphthong iu:
a. If the lexical stress is positioned on the i letter, i becomes a
vowel and u is a semivowel.
b. If the lexical stress was predicted on the letter u, or the lexical
stress is missing, u becomes a vowel and i is a semivowel.

5. For the word ending syllable which finishes in i letter, preceded by a
consonant:
a. Ifthe lexical stress is predicted on the i letter, i becomes a vowel.
b. If i carry no lexical stress, i is phonetically replaced by the
final-i phone.

4. Experiments and results
4. 1. Experiments for syllabification

We started our experiments with an initial T corpus composed of 56,284
correctly syllabified words, from which we extracted a first 20% test set.

The syllabification algorithm was tested for different #-gram histories, and
the best results were found for a length of 5, as can be seen in Table 1.

138 Citalin Ungurean, Dragos Burileanu, Vladimir Popescu, Aurelian Dervig

Table 1
Syllabification results for various n-gram lengths
n-gram length (history) WER (%)
2 28.62
3 15.54
4 6.30
5 2.86
6 3.92

It can be noticed a fast algorithm performance improvement until a history
of 5, but after this level the performance slightly decreases. We consider this
degradation to be normal; it indicates both the saturation of the training data and
the limits of our method, which does not use smoothing techniques under the level
of trigrams, for matters of speed.

Three different training / testing experiments have also been performed on
these data, by splitting the initial T corpus in three different T1 and (T-T1)
training and respectively testing corpora, but always keeping the same 80% versus
20% ratio. In this manner, training and testing words were always different in
these experiments.

The results of the three tests are shown in Table 2.

Table 2
Syllabification results for three different tests
Test words Errors WER (%)
Test 1 11,256 347 3.08
Test 2 11,257 331 2.94
Test 3 11,257 322 2.86

The overall performance of the syllabification algorithm, calculated as the
media of the three tests accomplished, is a 2.96 % WER.

4.2. Experiments for the L2P conversion

We tested the proposed L2P conversion algorithm on a manually-corrected
test corpus which has 11,819 different inputs. The result (in terms of the WER) is
presented in Table 3, and the error distribution, for different phonetic ambiguities,
is given in Fig. 4.

Table 3
Overall L2P conversion result

Words Errors WER (%) |
11,819 356 3.01

Hybrid syllabification and letter-to-phone conversion for TTS synthesis 139

50
L2P error distribution
40 +
g 30+
(0]
=}
T>s 20
10 +
0 ‘ |_| ‘ . =
. '\ . N . N N A BN o N 6 ™ N
& @ AR R I SN S
o o &
2 S
v ¥ S Error type

Fig. 4. Error distribution for the L2P conversion algorithm

5. Conclusions

For a preliminary version of the syllabification algorithm, we applied only
a statistical approach and ignored any syllabification rules. We obtained a
minimum of 5% WER, which represented a result fairly similar to the one
reported in Section 4. However, a notable drawback of this method was an
increased processing time for longer words (i.e., with more than 10 characters),
with a negative impact on the complete TTS system processing time.

For this reason, we proposed a hybrid rule-based / data-driven approach,
by implementing first a minimal set of deterministic syllabification rules. This
idea has proven to be superior to the previous attempt, as both an improved
syllabification performance and an increased speed processing have been
obtained. An overall result of 2.96 % WER was obtained during tests.

Regarding the phonetic transcription, a detailed analysis of the L2P
conversion results, made for every incorrectly-returned phone, as well as several
complex listening tests that have been conducted for this purpose, proved that for
the overall TTS system, an approximate number of 130 wrong phonetic
conversions (out of 356) can still be considered as acceptable; the perceived
quality of the synthesized speech is almost not affected by these transcription
errors. This observation led to a final L2P conversion result of about 2% WER.

Acknowledgement

The research reported in this paper was funded by the Romanian
Government, under the National Research Authority CNCSIS grant IDEI no.
782/2007.

140 Citalin Ungurean, Dragos Burileanu, Vladimir Popescu, Aurelian Dervig

REFERENCES

[1] D. Burileanu, “Basic Research and Implementation Decisions for a Text-to-Speech Synthesis
System in Romanian”, in International Journal of Speech Technology, vol. 5, no. 3, Kluwer,
Dordrecht, Sept. 2002, pp. 211-225

[2]1 D. Burileanu, C. Negrescu, “Prosody Modeling for an Embedded TTS System
Implementation”, Proceedings of the 14th European Signal Processing Conference
(EUSIPCO), Florence, 2006, pp. 715-718

[31 D. Burileanu, C. Negrescu and M. Surmei, “Recent Advances in Romanian Language Text-to-
Speech Synthesis”, in Proceedings of the Romanian Academy, Series A — Mathematics,
Physics, Technical Sciences, Information Science, vol. 11, no. 1, Publishing House of the
Romanian Academy, Bucharest, 2010, pp. 92-99

[4] C. Ungurean, D. Burileanu, V. Popescu, C. Negrescu and A. Dervis, “Automatic Diacritic
Restoration for a TTS-based E-mail Reader Application”, in UPB Scientific Bulletin, Series
C, vol. 70, no. 4, Politehnica Press, Bucharest, 2008, pp. 3-12

[5] C. Ungurean, D Burileanu, C. Negrescu and A. Dervis, “A Statistical Approach to Lexical
Stress Assignment for TTS Synthesis”, in International Journal of Speech Technology,
Springer Netherlands, vol. 12, no. 2-3, 2009, pp. 63-73

[6]S.A. Toma, E. Oancea and D.P. Munteanu, “Automatic Rule-based Syllabification for
Romanian”, in From Speech Processing to Spoken Language Technology, Publishing
House of the Romanian Academy, Bucharest, 2009, pp. 87-94

[710. Buza, G. Toderean, “Syllable Detection for Romanian Text-to-Speech Synthesis”,
Proceedings of the 6th International Conference on Communications, Bucharest, June 2006,
pp- 135-138

[8] M.A. Ordean, A. Saupe, M. Ordean, M. Duma and Gh.C. Silaghi, “Enhanced Rule-Based
Phonetic Transcription for the Romanian Language”, Proceedings of the 11th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
Timisoara, Sept. 2009, pp. 401-406

[9] Romanian Academy, lorgu lordan — Al Rosetti Lingvistic Institute, Dictionarul ortografic,
ortoepic si morfologic al limbii romane, Ed. a 2-a, Editura Univers Enciclopedic, Bucuresti,
2005

[10] F. Suteu, E. Sosa, Dictionar ortografic al limbii roméane, Editura ATOS, Bucuresti, 1993.

[11] S.M. Katz, “Estimation of Probabilities from Sparse Data for the Language Model Component
of a Speech Recognizer”, in IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 35, no. 3, 1987, pp. 400-401.

