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A STUDY ON CONFORMAL SEMI-INVARIANT
RIEMANNIAN MAPS TO COSYMPLECTIC MANIFOLDS

Murat Polat!

In [3], Akyol and Sahin introduced the concept of conformal
semi-invariant Riemannian maps to almost Hermitian manifolds. In this
article, we expand this concept to almost contact metric manifolds as a
generalization of totally real submanifolds and semi-invariant Riemannian
maps. Herewith, we present conformal semi-invariant Riemannian maps
from Riemannian manifolds to cosymplectic manifolds. To ensure the exis-
tence of this concept, we prepare a illustrative example, investigate the ge-
ometry of the leaves of D1, Dy, D1 and Dy. We find necessary and sufficient
conditions for conformal semi-invariant Riemannian maps to be totally ge-
odesic. We also investigate the harmonicity of such maps.
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1. Introduction

Fischer introduced Riemannian map between Riemannian manifolds as
a generalization of an isometric immersion and Riemannian submersion that
satisfies the well known generalized eikonal equation ||, |* = rankd, which is
a bridge between geometric optics and physical optics [5]. Let ¥ : (N, gn,) —
(N2, gn,) be a smooth map between Riemannian manifolds such that 0 <
rank?d < min {dim(V;),dim(Ny)} . We state the kernel space of 0, by V, =
kerd, at ¢ € Ny and consider the orthogonal complementary space H, =
(ker 19*q)L to ker o, in T;N;. Then the tangent space T, Ny of N; at ¢ has the
decomposition T,N; = (kerd,,) @ (ker ¢, )+ =V, ® H,. We state the range of
Y. by ranged, at ¢ € Ny and consider the orthogonal complementary space
(ranged,,)* to range?,, in the tangent space Ty N2 of Ny at 9(g) € No.
Since rankd < min {dim(N;), dim(N>)}, we have (ker 9, )+ # {0} . Therefore
the tangent space Ty N2 of Ny at ¥(q) € Ny has the decomposition Ty(q) Ny =
(ranged,,) ® (ranged,, ). Then ¥ is called Riemannian map at ¢ € Ny if
the horizontal restriction ﬁfq . (kerd,, )t — (ranged,,) is a linear isometry

between the spaces ((ker ﬁ*q){gqukkerﬂ*q)l) and (mngeﬁ*q,gNzg(q)|Tangeg*q).
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In other words, 9 satisfies
gn, (Ve A1, 0, A2) = gn, (Ar, Az), (1)

for all A;, Ay vector field tangent to I'(ker 9, )*.

Different features of Riemannian maps have been investigated extensively
by many authors such as [1, 7, 9, 10, 14, 18, 19, 11, 6, 20]. Detailed development
in the theory of Riemannian map can be found in [15].

Conformal Riemannian maps as a generalization of Riemannian maps
and the harmonicity of such maps have been introduced in [16, 17]. Conformal
anti-invariant Riemannian maps have been studied in [2, 12]. In this article,
we expand this concept to almost contact metric manifolds as a generalization
of semi-invariant Riemannian maps and totally real submanifolds.

The paper is organized as follows. Section 2 contains preliminaries. Sec-
tion 3 includes conformal semi-invariant Riemannian maps from Riemannian
manifolds to cosymplectic manifolds and provides this notion by non-trivial
example. Then, we get a decomposition theorem by using the existence of con-
formal semi-invariant Riemannian maps. Moreover, conformal semi-invariant
Riemannian maps allow us to obtain new conditions for a map to be harmonic.
We also investigated the total geodesicity of conformal semi-invariant maps.

2. Preliminaries

Let N be an odd-dimensional smooth manifold. Then, N has an almost
contact structure [15] if there exist a tensor field P of type—(1,1), a vector
field &, and 1-form 1 on N such that

P2E1 = _El +77(E1)€7P§ - 07770 P = 0777(5) = 1. (2)

If there exists a Riemannian metric gy on an almost contact manifold N
satisfying:

gn(PEy, PEy) = gn(Ey, Er) —n(E1)n(Es), (3)
gN(Er, PEy) = —gn(PEy, Es),
n(E) = gy (£, §), (4)

where Fy, Ey are any vector fields on N, then N is called an almost contact
metric manifold [4] with an almost contact structure (P,&,n, gy) and is sym-
bolized by (N, P,&,n, gn)-

A manifold N with the structure (P,&,n, gy) is said to be cosymplectic
[15] if

(Vi P)Ey =0, (5)

for any vector fields £y, F, on N, where 37 stands for the Riemannian connec-
tion of the metric gy on N. For a cosymplectic manifold, we get

V=0, (6)
for any vector field F; on N.
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¥, can be considered as a part of bundle hom(T Ny, 91T N;) — Ny, where
Y~IT Ny is the pullback bundle. The bundle has a connection v/ induced from
N2
the pullback connection 7Y and the Levi-Civita connection /™. Then the
second fundamental form (579.)(A1, Az) of 9 is given by [8]
Ny
(V9.)(Ar, A2) = Vi, 0. Az — 0.(V4) Aa), (7)
N2 N2
for all Ay, Ay € I'(T'Ny), where Vilﬁ*Ag o = VS*All‘}*Ag. It is known that
(VUs) (A1, Ag) is symmetric and (794) (A1, Ag) has no component in ranget.,
for all Ay, As € I'(ker9,)* [15]. It means that, we get

(V9. (A1, Ay) € T(ranged,)* .

The tension field of 9 is defined to be n’ghe trace of the second fundamental
form of ¥, i.e. 7(¥) = trace(vd.) = >, (Vi) (ei,€;), where m = dim(Ny)

i=1
and {ey,es,...,e,} is the orthonormal frame on N;. Moreover, a map ¢ :
(N1, 9n,) = (Na, gno) is harmonic if and only if the tension field of ¥ vanishes
at each point ¢ € Nj.

For any section B; of (ranged,)t and vector field A; on Ny, we get
VZfBl, which is the orthogonal projection of ngBl on (ranged,)t, where
vt is linear connection on (ranged, )’ such that y%tgy, = 0. For a Rie-
mannian map ¢ we describe Sg, as ([15], p. 188)

Vi, Br = —Sp, 0. AL + VT By, (8)

where Sp, v, A; is the tangential component of Vf;? 1, B1 and v V2is Levi-Civita
connection on N,. Therefore, we have

Via, Bi(q) € Toq) N2, Sp, 0. Ay € g (TyNy)
and
V%_Bl = (79*<1(Tq]\/'1))L

at ¢ € N1. We know that Sp, 9, A; is bilinear in By, and JA; at ¢ depends only
on By, and 9,,A4;,. From here, using (7) and (8) we have

gN2(SB119*A17 ﬁ*AQ) = JN» (Blﬁ (vﬁ*)(Alv AQ))v (9)

where Sp, is self adjoint operator for Ay, Ay € I'(ker9,)+ and By € I'(ranged,)*.
For all By, By € I'(ranged,)* we define

VB = RITYB) + B

where R(7 32 Bs) ) and /% B, denote ranged, and (ranged,)* part of 75 Ba,

respectively. Therefore (ranged,)* is totally geodesic if and only if

ngBz = V% Bo. (10)
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3. Conformal semi-invariant Riemannian maps to cosymplectic
manifolds

Definition 3.1. [17] Let ¥ : (N1, gn,) — (N2, gn,) be a conformal Riemannian
map (cRm). Then, ¥ is a horizontally homothetic map if H(grad\) = 0.

Definition 3.2. [16] Let ¥ : (N1, gn,) — (N2, gn,) be a smooth map between
Riemannian manifolds. Then, ¥ is a cRm at ¢ € Ny if 0 < rankd,, <
min {dim(N;), dim(N2)} and 9., maps the horizontal space H(q) = (ker ¥,,)"
conformally into rangetd.,, it means that there exists a number A*(q) # 0 such
that

9N- (ﬁ*quv ﬂ*qAQ) = )‘Z(Q)gNl (Ala AQ)’
for Ay, Ay € T'(ker 9,)t. Moreover, if 9 is cRm at any q € Ny, then ¥ is called
cRm.

Lastly, the second fundamental form of 4 is given by [16]
(Vﬁ*)(Al, AQ)Tangeﬁ* = A1 (11’1 )\) 19*142 + Ag (11’1 )\) 19*141 (].1)
—gn, (A1, Ag)V.(gradln ).

Therefore, if we state the (ranged,)t component of (79,)(A1, As) by
(70, ) (A, Ay)an9€99) ™ then we can write

(VO)(A1, A2) = (V0.)(Ay, Ag)remse’ (12)
+(70.)(Ar, Ag){renee?s),
for Ay, Ay € T'(ker¥,)*. Therefore we get

(V) (A1, A2) = A;(InX) YAy + A (In X)) 9. A (13)

—gn, (A1, Ag)V,(gradln \)

+(v19*)(A17A2)(rangeq9*)i_
Definition 3.3. Let ¥ be a cRm from a Riemannian manifold (Ny,gn,) to
an almost contact metric manifold (Na, P,&,n,gn,). Then ¥ is a conformal

semi-invariant Riemannian map (csiRm) at ¢ € Ny if there is a subbundle
D, C (rangev,) such that

ranged,, = D1 ® Dy, P(Dy) = Dy, P(Dy) C (ranged.,)*,

where Dy is orthogonal complementary to Dy in ranged,. If 9 is a csiRm for
any q € Ny, then 9 is called a csiRm.

For ¥, A; € I'(ranged,), then we write
P’l9*A1 = ¢19*A1 + (.U19*A1, (14)

where ¢, A; € I'(D;) and wi,A; € I'(PD,). Also, for v,A; € I'(D;) and
V. Ay € T'(Dy), we have gy, (0.A1,9.A43) = 0. Thus we have two orthogonal
distributions D; and D, such that

(kerﬁ*q)L = Dl D DQ.



A study on Conformal semi-invariant Riemannian maps to cosymplectic manifolds 99

On the other hand, for By € I'((ranged,) "), then we have
PBy = 1By + a1 By, (15)

where 8By € I'(D;) and a1 By € I'(n). Here 7 is the complementary orthog-
onal distribution to w(Ds) in (ranged,)” . It is easy to see that 7 is invariant
with respect to P.

Example 3.1. Let Ny be an Fuclidean space given by
N, = {(ul,u2,u3,u4,u5) ER’ :uy #0,uy #0,us # O}.
We describe the Riemannian metric gn, on Ny given by
gn, = dui + dud + duj + duj + duj.

Let Ny = {(vy,v2,v3,v4,v5) € R%} be a Euclidean space with metric gy, on No
given by
gn, = €2 dv? 4+ e* dvi + e dv? + dv? + dv?.

An almost contact structure (P,&,n) on (Na, gn,) can be choosen as

0 0 0 0
P(a—vl) = 8_1)2’P(8_1;2 = o
0 0 0 0
P(a—vg) = 3_@4’]3(3_04 =
0
n = dv5,£—a—v5,P(€)—

Then a basis of T;N; is

{ei:eulaa f0r1§i§5},

and a P-basis on Tyq Ny is
.0 T R
{ej_a_%f0T1§]§4,e4_e 8_1)476_65_8_%}’
for all ¢ € Ny. Now, we define a map ¥ : (N1, gn,) = (No, gn,, P) by
19(“’17“27”37“’47“5) = (Ul,UQ,U5,0,0).

Then, we have
kerd, = Span{U; = e3,Us = €4},

(kerd,): = Span {A; = e, Ay = ey, A3 = e5} .
Hence it 1s easy to see that
VA = e"el, V. Ay = e"el, 0, As = e'le;

and

gn, (19* (Au) , Vs (Alj)) = €2u19N1 (Au', Alj)
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fori,j=1,2,3. Thus 9 is a cRm with A\ = e** and we get
ranged, = Span{e“e], e"tel, e"es},
(ranged,)* = Span{e},€},
= Span {e"e],e"es}, Dy = Span {e"'e5} .
Moreover it is easy to see that
Py, Ay =e"el, POAy = —e"el, PU A3 = e'ley.
Thus 9 is a csiRm.

Remark 3.1. Throughout this article £ € (ranged,)* will be taken as the Reeb
vector field.

We obtain the following theorem for the geometry of the leaves of D;.

Theorem 3.1. Let ¥ be a csiRm from a Riemannian manifold (Ny, gn,) to
a cosymplectic manifold (No, P,&,n, gn,). Then Dy describes a totally geodesic
foliation on Ny if and only if

1. gNg(ﬁlBl (hl )\) 19*A1+’§ (VA1A3) Pﬁ AQ) = gNg(Sa1Blﬁ*A17P79*A2>+

(VA179 Az)n(Bi),
ii. ¢Spy, B, 0+ A1 has no components in T'(Dy),

for any Ay, Ay, Az, By € T'(kerd,)* such that
VA1, 0. As € T(Dy),0.By € T'(Ds)
and By € T'(range?d,)* such that 9,A3 = 3, By.
Proof. For 9,A,,9,Ay € T'(Dy), B; € T'(ranged,)* and 9,B, € T'(D,), since ¥
is a cRm, using (2), (3) and then from (4), (5), (6), (7) and (15), we have
g, (V20 Az, By)
= =g ((VV?0.) (A1, As) + 0.(V' As), PY.Ay)
9Ny (a5, 05 A1, PO Ay) — gn, (V0. A1, PO, Ay)
+77(VA2§ Az)n(B1),
where 8, B; = ¥, A3 € T'(D,) for A3 € T'(kerd,)*. From (11) and using
(12) in the above equation and since gradln\ € (ranged,)*, using (3) and
¥, A3 = 1 B1 we get
g, (V20, Ag, By)
= —gn, (/1B (In ) 9, A; + 0, (VAlAg) Py, Ay)
9N, (Sar B, 04 Ar, PO Ag) + (7320, Ao)n(By).

This implies the proof of i.
On the other hand, by using (3) and from (4), (5), (6), (14) and (8) we
get
9, (V204 A2, 0. Ba) = gny (—¢Spo, 5, 0s A1, 0. A).

This implies the proof of ii. O
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We obtain the following theorem for the geometry of the leaves of Ds.

Theorem 3.2. Let ¥ be a csiRm from a Riemannian manifold (N1, gn,) to

a cosymplectic manifold (No, P,&,m, gn,). Then Dy describes a totally geodesic
foliation on Ny if and only if

i (V0. Ba)n(Bs) = gn, (VV20.)(Bs, Ag) 797" —7% 0y By, PV, By),
ii. B1(7™20,)(Bs, A3)m9e9)" has no components in T'(Dy)
for any As, Ay, Bs, By € T'(kerd,)* such that

0, As, 0, B3, 9, B, € I'(Dy), By € I'(range?,)™*
and ?9*144 = 6182-

PT’OOf. For 19*143,19*33,19*34 S F(Dg), B2
(15) and since ¥ is a cRm, then from (7),

9N, (Vgiﬁ*&, Bs)

= _gN2<(vN219*)<BS> A4) + ﬁ*(VgiAd
_SOllBQﬁ*B?) + v%i_CHBQ, Pﬁ*B4)
‘H](Vg;ﬁ*BOU(Bz)-

Since Dy defines a totally geodesic foliation on Ny, using (12) we have

95, (V3320 By, By)

gN2((vN219*)(Bg’A4)(Tangez9*
5 By, PO.BY) + (7320, Ba)n(By).

This implies the proof of i.
On the other hand, by the virtue of (3), (8), (12) and (15) we have

gNQ(Vgiﬁ*A:a, V. Bs)
= 9N (Bl(vN%g*)(B& Ag)(rangeﬂ*)i’ 79*33>

Since D, defines a totally geodesic foliation on N, then we can say that

Br(7™21,)(Bs, A3)r%9¢%-)" has no components in T'(D,). This completes the
proof of ii. O

€ I'(ranged,)*, using (3), (5), (14),
(8) and ¥, A4 = 51 B2 we have

)L

Theorem 3.3. Let ¥ be a csiRm from a Riemannian manifold (N1, gn,) to a
cosymplectic manifold (No, P,&,m, gn,)- If (ranged,) defines a totally geodesic
foliation on Ny and ¥ is a horizontally homothetic cRm then we have

Ny (S U Ay, 90, As) (16)
—gn, (0. (V) As), 90, As)

= 9Ny (Sun. 4,94 A1L BLB1) — g, (Vi wiAs, o1 By)
—n(VXfﬁ*Aﬁn(Bl)
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for any Ay, Ay € T'(kerd,)* such that
U, A1, 0, As € T'(ranged,.), By € I‘(r(mgeﬁ*)L
and Vv, Az = 1 B;.
Proof. For Ay, Ay € I'(kerd,)* and B; € I'(ranged,)*, using (3), (5) and from
(15), (14) and 9, A3 = 1 Bywe get
9N, (V20, Az, By)
= =N, (V0. A5, 00, Az) + g, (V200 As, 0. As)
—gn, (V20 By, 99, As) + g, (V2w As, oy By)
+n(V 20, A2)n(By).
Since ¥ is a cRm, using 9,43 = (1B, (7), (13), (8) and if we take
A (In M) = gy, (Ay, Hgradln ) and As (In\) = gy, (A3, Hgradln ), then we
obtain
9N, (V204 Az, Br) (17)
= —gn, (A1, Hgradln \)gn, (0. As, 90, As)
—gn, (As, Hgradln \)gn, (9, A1, ¢, As)
—gn, (A1, A3)gn, (D4 (gradln X), g, As)
— g, (0. (V! As), 90, As)
— Ny (Sww. 4,0 A1, B1B1) + g, (Saq 5y U Ar, 90, As)
(Vi wiaAs, a1 By) + n(7 320, As)n(By).

Since (ranged.) describes a totally geodesic foliation on Ny and ¢ is a
horizontally homothetic cRm, then from (17) we obtain (16). O

+9N2

Theorem 3.4. Let ¥ be a csiRm from a Riemannian manifold (Ny, gn,) to
a cosymplectic manifold (Na, P,€,n, gn,). Then (ranged,)* defines a totally
geodesic foliation on Ny if and only if

4B, (70) Ay A 75
= B B 0.A + T34, PR,
+ay ngAl Pay By),

for any By, By € T'(ranged,)* and Ay, Ay € T'(kerd, )t such that 9,A; =
B1Bs.

Proof. For any By, By € I'(ranged,)* and Ay, Ay € T'(kerd,)*, using (3), (5)
and since Ny is a cosymplectic manifold,

v, (V5 Bz, 0. A1)
= _gN2(827 [Blaﬁ*Al]) - gNQ(PBQ7v’L];£2A1PBl)

+1(V 5 Ba)n(9.Ay).
0
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Then using (7), (8), (14), (15) and from (12), (10) and since (ranged,)*
defines a totally geodesic foliation we have

gna (01 By, (V9.)(Ay, Ay)remee?=)™)
= gvy(Ba, [B1, 0. A1) + Viia, PAL By
+a1 Vi, PouBy).
This completes the proof. 0

Remark 3.2. Let ¥ be a csiRm from a Riemannian manifold (N1, gn,) to
a cosymplectic manifold (No, P,&,m, gn,). From the second fundamental form,
one can easly see that kerd, and (kerv,)* define a totally geodesic foliation
on Nj.

From the above fact we can state following theorem.

Theorem 3.5. Let ¥ be a csiRm from a Riemannian manifold (N1, gn,) to a
cosymplectic manifold (Na, P,&,n, gn,). Then ¥ is totally geodesic foliation if
and only if

G((70.) (A1, Ao) 9% — 9, (7N Ag) — Sip. 4,0 A1) (18)
= —Bi((T9.) (A1, Ao) 09T G, Ag) — 9.(T)! As),

W((V0) (A1, Ag) % — 0. (741 A2) = Sup. 4305 A1) (19)
=~ (V) (A1, A2) 770" 4l As) + (V0. As)E,
for any Ay, Ay, Az € T(kerd,)* such that 9, Ay = ¢, As.
Proof. For Ay, Az € T'(kerd,)*, using (2), (7), (14) and from (8) and (12) we

have
(V0. (A1, As)
= —P((V0.) (A1, Ag)rmoet)
—P((V0.)(Ay, Ay)rmoer=))
—P(d.(v 1142)) P(Sus, 4504 A1)
P(VA1 wi, As)
—ﬁ*(VAlAs) + U(VA279 A3)€.

Since ¥ is a cRm, from (14), (15) and taking ranged, and (rangev.)*
components we have

A((V1.)(Ay, Ag) s

= — (V) (A1, Ag) 9% ) 4+ 0. (74! Ag)
—Sup.as 0 AL) = Bi((V0.) (Ar, Ag)ramsers)”
+ Vhy wiAg) — 0.(V! As)
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(vﬁ*)(Al’A3)(mngem)L
= —w((VY.)(Ar, Ap)" 9 + 9, (V) As)
—Sun 4,0 A1) — a1 ((V0.)(Ay, Ag)renoe?)
+ V7, wilAz) + (V0. As)E.
Thus (V9.)(A1, As) = 0 if and only if (18) and (19) are satisfied. This
completes the proof. O

Proposition 3.1. Let 9 be a csiRm from a Riemannian manifold (N1, gn,)
to a cosymplectic manifold (Na, P,£,n, gn,) such that dim(ranged,) > 1. Then
the following statements are true.

i. Dy defines a totally geodesic foliation if and only if (79.)(A1,U;) has

no component in Dy such that

SPﬁ*A;(')gNz (79*1417 Pﬂ*AQ) = ﬁ(vgiAﬂU(A;)

for Ay, Ay € T(Dy), Uy € T'(kerd,) and A} € T'(Dy).
ii. Dy defines a totally geodesic foliation if and only if (7V4)(As, Uy)
has no component in Dy such that
Spo.as()gn, (U Az, PY,AZ) = n(7)" 4, 0. As)n(Ay)
for Ay, As, Ay € T'(Dy), Uy € T'(kerd.,) and Ay € T(Ds).
Proof. We know that D; defines totally geodesic foliation if and only if

gn (VA Az, Uh) =0
and
g (V) Az, A7) = 0
for Ay, Ay € T(Dy), U, € T'(kerd,) and A] € T(D,). Now, since 9 is Riemann-
ian map, using (1),(7) and (8) we have
gn (V3 Ao, U) = —gn, (V9.) (A1, Ur), 9. As),

and similarly
gNl <VX1A27 A;_) = _gN2<v1]9\£2A119*A;_, 19*142)

Since N is cosymplectic manifold, using (3) and then (8), we have
9N (Vgll A27 All)
= —Spy,a (Jgn, (0. A1, PO As) + (7 Ao)n(A)).
This completes the proof of i.

On the other hand, we know that D, defines a totally geodesic foliation
if and only if
gn (VA AL, Uh) =0
and
v (Va3 As, A3) = 0
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for As, Ay € T(Dy), U, € T'(kerd,) and A, € T(D;). Now, since 9 is Riemann-
ian map, using (1) and (7) we have

gn (VI As, Uh) = —gn, ((V9.)(As, Uh), 9. As),
and similarly
9N, (Vﬁ; Ay, Ai’&) = — 9N, (vqj;[ngﬁ*A‘b 19*"4;))

Since N is cosymplectic manifold, using (3),(5) and then (8), we have

9N, (VX;A% A;’;)
= —Spo.as()gn, (0. Az, POLAS)

(79 4,0 Aa) (0. A).

This completes the proof of ii. 0

Definition 3.4. [13] Let (N1, gn,) be a Riemannian manifold and assume that
the canonical foliations Ky and Ko such that K1 N Ky = {0} everywhere. Then

(N1,9n,) is a locally product manifold if and only if Ky and Ky are totally
geodesic foliations.

Theorem 3.6. Let ¥ be a csiRm from a Riemannian manifold (N1, gn,) to
a cosymplectic manifold (No, P,&,m, gn,) such that dim(ranged.) > 1. Then
(kerd,)* is a locally product manifold of Dy and Dy if and only if

i. (VV.)(A1,Uy) has no component in Dy such that

SPﬁ*A’l(')QNQ (VA1 PO, Ag) = U(Vﬁi!‘b)??(fl/l)

for Ay, Ay € T(Dy), Uy € T(kerd,) and A} € T'(Dy),
ii. (V0.)(As,Ur) has no component in Dy such that

Spo.as()gm (0uAs, PY.A3) = 0(75 4, 9. Ad)i(As)
for Ay, A3, Ay € T(Dy), Uy € T'(kerd,) and Ay € T(Ds).
Proof. The proof is clear by Proposition (3.1) and Definition (3.4). O

Theorem 3.7. Let 9 be a csiRm from a Riemannian manifold (N1, gn,) to a
cosymplectic manifold (No, P&, 1, gn,) such that dim(ranged,) > 1. Then the
base manifold is locally product manifold N, x N if and only iof

rangedx Q(Tangeﬂ*)l

0= g, (V- (VA 00, A1), BLB1) + gy (0. (V5w Ar, B2 Br)
0, (Sp, 3, 0 Ar, 90 AY) + (792, 0 A1)n(By)
for Ay € T'(D,) and B, € T'(ranged,)*.
Proof. Since N is cosymplectic manifold, using (3) we have
9N, (V924,04 A1, Br)
98, (W24, PO AL PBy) + 1(7524, 0 A)n(By),
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for 9,A; € ['(ranged,) and B, € ['(ranged,)*. Using (14), (15), (8) and
then (7) we have
9, (V524,04 A1, By)
I, ((V04) (A1 Ui (99 Av)), B1Br)
+9n, (S5 U AL, 90 A1) + gy (Vs wi. Ar, B2 Br)
+77(V12A119*A1)77(Bl)'

From Definition (3.4), the proof is completed. O

Now, we will examine the harmonicity of csiRm from a Riemannian man-
ifold (N1, gn,) to cosymplectic manifold (Na, P, &, 7, gn,) in the following the-
orem.

Theorem 3.8. Let ¥ be a csiRm from a Riemannian manifold (N1, gn,) to a
cosymplectic manifold (No, P,&,m, gn,). Then 9 is harmonic if and only if the
following conditions are satisfied

1. The fibres are minimal,

.

0 = tracedS,p, A, A1 — P Vif wi, Ay
—0.(VA} A1) — (V7 Pou, Ay)emee,
110
0 = tracewS,p, 4,41 — vf‘f wid, Ay
(TP AN 4 (70,)(Ar, A
for Ay € (kerd,)*.
Proof. For Uy € kerd,, since ¥, U; = 0, using (7) we get
(V9:) (U1, Ur) = =9.(vp; D), (20)
For A; € (kerd,)* using (3), (7), (15), (12) and (8) we have

(V0)(A, A)
= — N Po9. AL — P(—Sup. 0. A1 + V5 wi Ay)
(VN AL + (T AE.

Since ¥ is a cRm, from (14), (15) and taking ranged, and (ranged.)*
components we have

(V0.)(Ar, Ay)enoe? (21)
= 0Su9. 4,041 — B Vif wi Aq
—0u (Va1 A1) — (V4 PoO.Ap) e
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[10]
[11]
[12]
[13]
[14]
[15]

[16]

and
(V0. (Ay, Ay)enoed)” (22)
= wSup,9.4,0:A1 — 1 V% wil, Ay
(P, Aot
Fn((79.) (Ar, Ap)Tmoe) e,
Thus the proof is completed from (20), (21) and (22). O
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