U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 2, 2015 ISSN 1223-7027

POLYNOMIAL APROXIMATION ON UNBOUNDED SETS
AND THE MULTIDIMENSIONAL MOMENT PROBLEM

Octav OLTEANU!

We solve a two dimensional moment problem on a space of absolutely
integrable functions in a strip. To this end, we approximate nonnegative continuous
compactly supported functions by sums of tensor products of positive polynomials
on the corresponding intervals. Thus, one characterizes the solutions in terms of
“computable” quadratic mappings. Next, we prove an application of an extension
theorem for linear operators defined on a subspace that is “distanced” with respect
to a bounded convex subset. Finally, one considers an application of the abstract
Markov moment problem to a space of analytic functions. A common characteristic
of all these results is the Hahan-Banach principle and its generalizations.
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1. Introduction

Using polynomial decomposition or approximation in existence, uniqueness
and construction of the solution of classical moment problems is a well - known
and natural technique [1] - [22]. For the study of the uniqueness and the

construction of the solutions, one uses > - approximation [20], [17]. The

approximation in L' norm is sometimes sufficient for the characterization of the
existence of the solution. This is one of the ideas of the present work. In the real
multidimensional moment problem, one of the main difficulties is the fact that the
positive polynomials are not writable in terms of sums of squares. We solve this

difficulty by means of appropriate polynomial ! approximation. For various
results concerning decomposition of polynomials of several variables see [1], [3],
[6] - [9]. For approximation results applied to the complex moment problem,
similar to our results in the real case, see [11] and the reference there. Uniqueness
of the solution is considered in [20]-[22], and in many other works of the
References and of outside. Probabilistic approach of the uniqueness problem
appears in [22]. The background is partially contained in [1], [23], [24]. For
earlier basic related results, see the Introduction of [17] and the references therein.
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The paper is organized as follows. In Section 2, we prove an application of
polynomial approximation results to a Markov moment problem in an unbounded
strip. Section 3 is devoted to an application of an earlier result concerning
extension of linear operators defined on a subspace distanced with respect to a
convex set. Section 4 contains an application of the solution of an abstract
moment problem to a space of analytic functions. Section 5 concludes the paper.

2. Approximation and the Markov moment problem

The following lemma appeared firstly in [15]. A complete proof has been
published in [16].
Theorem 1. Let A< R" be an arbitrary closed subset and v a positive regular
determinate Borel measure on A, with finite moments of all orders. Then for any

nonnegative continuous vanishing at infinity function v (Cy(4)) . » there exists a

sequence (pm )m of polynomials on A, p,, 2y, p,, >V in L{, (A) We have
limjpmdv = Jt//dl/,
A A

the cone P, of positive polynomials is dense in (L{, (A))+ and P is dense in

LL(4)

Recall that a determinate measure is, by definition, uniquely determinate
by its moments [22]. Here the novelty is that approximation holds by
“dominating” polynomials. Let v =v| xv, be the product of two measures on the

strip § =Rx [0,1], vy verifying the conditions from Lemma 1 for n=1, 4 =R,
and v, being a positive Borel regular measure on [0,11 Let Y be an order
complete Banach lattice with solid norm:
il <vaf= [l < |
Theorem 2. Let
1 ik (. 2
X =L,(8) @ rlt.2) =113, (j.k)e N=, (e1,15) € S.
Let (yj’k)(j,k)eNz be a sequence in Y and GeB,(X,Y) a linear positive
bounded operator. The following statements are equivalent:
(a) there exists a unique operator F satisfying the conditions
. 2
FeBX,Y), Flpj )=y V(i k) e N2,
0<Fly)<Gy) vy e X, |F|<|G

b
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(b) for any finite subsets (m n p) e N3 and any { } _o e have:

m P
0< ZQiOtj Z(_l)kcllg z+] n+k Zaza] Z CkG(¢(i+j,n+k))

i,j=0 k=0 i,j=0 k=0

Proof. Let ¢ be a continuous nonnegative compactly supported function, and K
its support contained in S. One chooses a rectangle R, containing
Ky x [0,1], Ky = pn (K)
One approximates the extension of ¥ to R, vanishing outside its support by
means of Luzin’s theorem. Next, we approximate this continuous function on the
rectangle by the corresponding Bernstein polynomials in two variables. Each term
of such Bernstein polynomial is the tensor product of two positive polynomials on
K;,j=12,K,=[01]

Extend the polynomial in the first variable #; such that it vanishes outside
pri(Ry). Then we use Luzin’s theorem, followed by Theorem 1, applied to
n=1,A=R. Hence one obtains a positive approximating polynomial on the
whole real axes in the first variable, which is a sum of two squares. On the other
hand, the polynomial in the second variable 7, is a linear combination with

positive coefficients of special polynomials 5 (1 —t )p , (n, p) e N? [6]. Using

these conclusions, one obtains approximation of ¥ in LL (S ) by sums of tensor
products

p1®pa, pi(t)=q>(n)vh € R, pa(0)=13(1-13)”.
From the preceding arguments, we infer that the assertion (b) says that

0<Fy(p1 ®72)<G(p ®p), IN?j(fj)> 0,/=12,(1.t2)€5,

where F{y is defined on the subspace of polynomials, such that the moment
conditions are accomplished. Application of Theorem from Section 5.1.2 [23] p.
160, leads to the existence of a positive linear extension F e L, (X],Y) of F,
where X| c X is the subspace of all functions from X having their modulus

dominated by a polynomial. This subspace contains the subspace of continuous
compactly supported functions. Hence /o F' has a representing positive measure
for all linear positive functional # on Y. Using these conclusions, one obtains

approximation of y in L}, (S ) by sums of tensor products
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k(m)
pm,l.j ®pm,2,j — Y, m—>x,
Jj=0
Pm,l.j(f1)=6131,1,j(f1)af1 €R, pm,p,j(tZ)zt;j (1-12)P7 1, €[0.1]
Now, using the density of sums of tensor products of positive polynomials in
X, we prove that

0<F(y)<Gly)y eC(S)y>0.
To this end, we proceed as follows. Applying Fatou’s lemma, one obtains:

k(m)
0 < h(F(w)) < liminf,, (ho F)[ D Pt ®Pmy, j] <
j=0

k(m)
limm(hoFZ)[zpm,l,j ®pm,2,j]_ (D

WEW) v e(C(s), her?.

Assume that

Fw)-Fly)ey,
Using a separation theorem, it should exist a positive linear continuous functional

heY, such that

h(Fy(w)-Fly))<o,
that is /(F,(w))< h(F(w)). This relation contradicts (1). The conclusion is that
we must have

Fly)<F(w)y e(C(9)),.

Then for arbitrary g € C,(S) one writes
Fle)< Pale* J+ Pale™)- Palle) = I (el <l el
The conclusion is that the operator F’ is positive and continuous, of norm

dominated by ||F )

extension preserving these properties. This concludes the proof. i

, on a dense subspace of L}, (S ) It has a unique linear
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3. Distanced subspace with respect to a convex subset and the moment
problem

The following extension result for linear operators has a nice geometric
meaning and leads to interesting results in the moment problem.

If V' is a convex neighborhood of the origin in a locally convex space, we
denote by pj the gauge attached to V. See also [17] and the references there.

Theorem 3. Let X be a locally convex space, Y an order complete vector lattice
with strong order unit ug and S < X a vector subspace. Let A X be a convex
subset with the following qualities:
(a) there exists a (convex) neighborhood V' of the origin such that
(S+V)N4A=d
(A and S are distanced);
(b) A is bounded.
Then for any equicontinuous family of linear operators {f )i }je ;< L(S Y ) and for
any yeY, \{0}, there exists an equicontinuous family {F Ji }je = L(X Y ) such
that
Fj(s):fj(s), se€ S and Fj(a)z y,ac A, jeJ.
Moreover, if V' is a neighborhood of the origin such that
fj(VﬂS)c [—uo,uo], (S +V)ﬂA =,
O<aeRstpyla)<a,Vaed, oy >0st 5 <ajuyg,
then the following relations hold

Fj(x)s(l+a+a1)pV(x)-u0, xeX,jel.

We denote by X the space of all continuous functions in the polydisc

n
D= H{z j| < 1}, which can be writen as a power series with real coefficients,
Jj=1
centered at (0,...,0) in the open polydisc D. Let

(oj(zla'"azn): lel Z;{” s J = (jk)zzla

n
= ij 21
k=1
On the other hand, consider a complex Hilbert space H, Uy € A(H ) a selfadjoint

operator acting on H . Denote
Y, ={UecAH)UU,=UU}Y={UeY; UV =VUVV €Y},
Y, ={UeY;U(h)h)y>0Vhe H}
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Here A(H ) stands for the real vector space of all selfadjoint operators acting on

H. Obviously, Y is a commutative algebra of selfadjoint operators. Moreover, Y
is an order complete vector lattice [23], [10], and the operatorial norm is solid on
Y:

u|<|=|u|<|v|.u.ver.

n
Theorem 4. Let (Bj )jeN” , kz:ljk >1 be a sequencein Y,0< & <1, such that

B, <M -e1* I = (e ju) e N | 2 1.

J

Let {Wk }keN” be a sequence in X, such that y (0,...,O)= 1, V/k” <1,VkeN".

Let B e Y, . Then there is a linear operator applying X into Y such that:

n
Floj)=8;,jeN" > ji 21 Fly,)= B,
k=1

F(p)< (2 +|B|- (M‘1 (1-¢) )) ol -uo, uo = -(M(l —e)" ) L.

n
j :=ij >1 and

k=1

Proof. Due to the behavior at (0....,0) of the functions ¢ s

Wi,k e N", wehave
||s - a"OO > |s(0)— a(0)| >2],Vsel§ = Span{(/)j;

J 21},

Vae 4= conv{l//k; keN" }:> (S+B(0,1))N 4=,
Thus using the hypothesis on the norms of the functions w, k € N”, (where the
unit ball B(0,1) stands for ¥, and ||| stands for pj ), the above relations hold.

Now let s = 2/1 P € SN B(0,1) and define the linear operator F, on the
jeJo
>1 be

subspace S, such that the moment conditions FO((/) j)zB ol

accomplished. Cauchy’s inequalities yield

| <lsl, <t iedo= fls)= D 4;8;< Y|4 |B)|<
jeJo JjeJo

s rew| T | g frewtoraen

JeJo J1eN JneN
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On the other hand, we have:
B<[B|-1=|B]- b (1= 2)")-up.

Application of theorem 3 leads to the conclusion. i

4. An application to a space of analytic functions

We recall the following result [19] on the abstract Markov moment
problem, as an extension with two constraints theorem for linear operators.

Theorem 5. Let X be an ordered vector space, Y an order complete vector
lattice, {xj }jeJ c X, {yj }jeJ cY given families and F|,F, eL(X,Y) two

linear operators. The following statements are equivalent:
(a) there is a linear operator F € L(X,Y) such that

Fl(x)SF(x)SFZ(x)‘v’xeX+,F(xj)=yj Vjeld,;

(b) for any finite subset J, — J and any {xlj }jeJo

c R, we have:

DAxi=vr—yLywr € Xy |= Y Ay <Fwa)-Fily)
jedo jeJo

From Theorem 5 we deduce the following result. Let Y be an
commutative real Banach algebra, which is also an order complete Banach lattice,
with solid norm. Let

aoby € Yy ag | <L b < 1 & = L.

Let (y j )je NG be a sequence in Y,. Consider the space X of all continuous

functions in the unit closed polydisc, which can be represented by sums of
absolutely convergent power series with real coefficients in the open polydisc.
The order relation on X is given by the coefficients of the power series. Namely,

X+= ZC]Z],CJZOVJENn
jeN"
Let
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goj(zl,...,zn)zzljl z,{” s j=(jlsrjy)eN", zk|S1,k=1,...,n.

Theorem 6. (see also [18]) With the above notations, the following statements are

equivalent:
(a) there exists F € B(X Y ) such that

F((pj):yj,j eN",0< F(z//)sw(al,...,an)Jr5~1//(b1,...,bn),
F

velX,, <l+g;
(b) we have: 0< y; Saljl ---a,{” +$-blj1 ---b,{” s =1 jn)eN".
Proof. The implication (a)=> (b) is obvious, because of the relations

pieX, =y :F((pj)e [O,goj(al,...,an)+5-goj(bl,...,bn)J:

0,a/! -ajn +e-b/t-bin | jeN".

Conversely, assume that (b) holds. We verify the implication in (b), Theorem 5.
Namely, we have:

Zlﬂ’j:‘//z_‘//l: Zam%n— Z,Bm(Pm, am,ﬂmZO,meN”:

JjeJo meN" meN"

. . . (71 in s h”.h)_
Zﬂjyj < Zﬂjyj < Zajyj = Zaj(al ay" +&-bj" by |=
jeJo jely jeN" jeN”

=y (ay,ay)+ ey by, )= Falwy) - Fi(yy),
F=0,J0 ={jeJy; 2,20}

A direct application of Theorem 5 leads to the existence of a linear operator
F e L(X,Y), such that

0<F(y)<wlay,..ay)+e-wby,. b, VyeX,.
For an arbitrary ¢ € X, one obtains:
|F((p] < F(¢+)+ F(go_)ﬁ|¢)|(a1,...,an)+£-|(p|(b1,...,bn):>
||F(go)|| < (1+g)-||go||oo, Vope X = |F|| <l+e

This concludes the proof. i

5. Conclusions

In the first part of this work, we apply polynomial approximation results
on unbounded subsets to the real multidimensional Markov moment problem on a
strip. One approximates nonnegative compactly supported continuous functions,
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having their support contained in the strip, by sums of tensor products of positive
polynomials in each separate variable, on the corresponding intervals. For such
polynomials, the analytic expression is well known. Thus, one characterizes the
existence of the solution in terms of quadratic mappings. Secondly, one proves
applications of a theorem of extension of linear operators with two constraints to
the Markov moment problem.

REFERENCES

[1] NV. I. Akhiezer, The Classical Moment Problem and some related Questions in Analysis, Oliver
and Boyd, Edinburgh-London, 1965.

[2] G. Choquet, Le probléme des moments, Séminaire d’Initiation a I’ Analise, Institut H. Poincaré,
Paris, 1962.

[3] C. Berg, J. P. R. Christensen and C. U. Jensen, A remark on the multidimensional moment
problem, Mathematische Annalen, 243, (1979), 163-169.

[4] C. Berg and P. H. Maserick, Polynomially positive definite sequences, Mathematische
Annalen, 259, (1982), 487-495.

[5] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups. Theory of
Positive Definite and Related Functions, Springer, 1984.

[6] G. Cassier, Problémes des moments sur un compact de R" et décomposition des polyn[Imes
a plusieurs variables, Journal of Functional. Analysis, 58, (1984), 254-266.

[7] K. Schmiidgen, The K — moment problem for compact semi-algebraic sets, Mathematische
Annalen, 289, (1991), 203-206.

[8] M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University
Mathematical. Journal, 42, 3 (1993), 969-984.

[9] F. H. Vasilescu, Spectral measures and moment problems; in Spectral Analysis and its
Applications, pp. 173-215, Ed. Theta, Bucharest, 2003.

[10] L. Lemnete-Ninulescu, Using the solution of an abstract moment problem to solve some
classical complex moment problems, Romanian Journal of Pure and Applied Mathematics,
51, (2006), 703-711.

[11] L. Lemnete-Ninulescu and A. Zlatescu, Some new aspects of the L moment problem,
Romanian Journal of Pure and Applied Mathematics, 55, 3, (2010), 197-204.

[12] J. M. Mihaila, O. Olteanu and C. Udriste, Markov-type and operator-valued
multidimensional moment problems, with some applications, Romanian Journal of Pure
and Applied Mathematics, 52, (2007), 405-428.

[13] J. M. Mihdila, O. Olteanu and C. Udriste, Markov-type moment problems for arbitrary

compact and for some non-compact Borel subsets of R" , Romanian Journal of Pure and

Applied Mathematics, 52, (2007), 655-664.

[14] J. M. Mihaila, O. Olteanu and C. Udriste, La construction de quelque fonction par des
moments donnes, Balkan Journal of Geometry and Its Applications, 13, 1(2008), 77-86.

[15] A. Olteanu and O. Olteanu, Some unexpected problems of the Moment Problem, Proc. of the
Sixth Congress of Romanian Mathematicians, Academiei, Vol I, Scientific contributions,
pp. 347-355, Bucharest, 2009.

[16] O. Olteanu, Approximation and Markov moment problem on concrete spaces, Rendiconti del
Circolo Matematico di Palermo, (2014) 63: 161-172 DOI 10.1007/s12215-014-0149-7



58 Octav Olteanu

[17] O. Olteanu: New results on Markov moment problem, International Journal of Analysis, Vol.
2013, Article ID 901318, (2013), 17 pages.

[18] O. Olteanu, Polynomial approximation on unbounded subsets and the Markov moment
problem, International Journal of Analysis and Applications, 3, 2 (2013), 68-80.

[19] O. Olteanu, Application de théorémes de prolongement d’opérateurs linéaires au probléme
des moments et a une generalisation d’un théoréme de Mazur-Orlicz, C. R. Acad. Sci Paris
313, Série I (1991), 739-742.

[20] C. Berg and M. Thill, Rotation invariant moment problems, Acta Mathematica, 11, (1991),
207-227.

[21] B. Fuglede, The multidimensional moment problem, Expositiones Mathematicae I, (1983),
47-64.

[22] C. Kleiber and J. Stoyanov, Multivariate distributions and the moment problem, Journal of
Multivariate Analysis, 113, 1 (2013), 7-18.

[23] R. Cristescu, Ordered Vector Spaces and Linear Operators, Ed. Academiei, Bucharest and
Abacus Press, Tunbridge Wells, Kent, 1976.

[24] 1. Colojoara, Elemente de Teorie Spectrala (Elements of Spectral Theory), Ed. Academiei,
Bucharest, 1968, (in Romanian).



