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A HIGH-SPEED MULTI-CHEMISTRY AND MULTI-
BATTERY STATE-OF-HEALTH SCREENING SYSTEM FOR
RETIRED LITHIUM-ION BATTERIES

Teodor-lulian VOICILA', Bogdan-Adrian ENACHE?, Mihaela-Viorica
MATEESCU?, George-Calin SERITAN*

The transition to sustainable energy solutions is driving the automotive sector
to shift from internal combustion engine vehicles to electric and hybrid vehicles,
aligning with global objectives of reducing greenhouse gas emissions and achieving
carbon neutrality. However, the exponential growth of the latter's adoption introduces
challenges in managing end-of-life lithium-ion batteries, which are expected to reach
unprecedented volumes in the coming decades. Although no longer suitable for
automotive applications, these batteries often retain about 80% of their initial
capacity, making them viable for “second-life” applications, extending their lifecycle,
reducing costs, and supporting the circular economy. Proper evaluation and
classification of these batteries are essential to ensure safety and effective
repurposing to less demanding applications. This study introduces an intelligent
system and a new methodology for fast, cost-effective, and adaptable screening of
retired lithium-ion batteries. The system's modular design, centered on a cascaded
Buck-Boost DC-DC converter, enables simultaneous testing of multiple batteries,
halving testing time. Also, the wide input/output voltage range allows diverse battery
chemistries and configurations to be tested. Integrating a presorting stage based on
internal resistance measurements minimizes the need for exhaustive state-of-health
evaluations of individual batteries. Validation experiments conducted on ten LFP
battery cells across varying ageing levels (86%—95%) demonstrated the effectiveness
of the proposed approach, achieving accurate grouping within a 2% error margin.
Then, the representative battery from each group can be evaluated using a standard
long-duration, highly accurate method.
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1. Introduction

The world is trying to reduce greenhouse gas emissions and combat climate
change, which has made carbon neutrality a key global objective [1]. Thus, the
increasing demand for sustainable energy solutions is reshaping industries
worldwide, especially the automotive sector, which is undergoing a transition from
internal combustion engine (ICE) vehicles to electric vehicles (EVs) and hybrid
electric vehicles (HEVs) [2]. However, the rapid growth end-of-life (EOL) of
lithium-ion batteries led to an unprecedented volume of batteries reaching their
EOL within the next few decades [3]. Traditionally, EOL batteries involve
recycling, which, while effective in recovering valuable materials, is an expensive
and environmentally taxing process that generates significant waste and pollution
[4]. Recycling also fails to fully leverage the remaining energy potential of these
batteries, which often still retain about 80% of their initial capacity [5]. This
untapped potential has driven interest in "second-life" applications, where batteries
are repurposed for less demanding uses, such as energy storage for renewable
sources, backup power systems, and low-power consumer devices [6]. By
extending the life cycle of batteries, this concept can significantly reduce costs,
decrease environmental impact, and support the circular economy [7].

An effective sorting and evaluation process is essential to facilitate the
integration of retired batteries. This process must accurately assess each battery's
state of health (SOH) to ensure its suitability for repurposing. Generally, the
screening process has two phases. First, the batteries are visually inspected for any
visible physical damage. The visual inspection initiates the process by eliminating
batteries with potential defects such as corrosion, swelling, and material leakage
[8]. Therefore, only batteries that pass the first test can be evaluated in the second
phase, where they will be subjected to sorting methods. This stage assesses the SOH
and classifies the batteries according to certain criteria that depend on the battery
chemistry and the energy application’s requirements [9]. Traditional battery sorting
methods, such as complete charge-discharge cycles, Coulomb counting or
Electrochemical Impedance Spectroscopy, are often slow, costly, and tailored to
specific battery models, limiting their scalability and adaptability [10]. The fastest
and easiest to implement methods are DC ohmic resistance and AC ohmic
resistance, but they are often sensitive to external factors and have low accuracy
[11], [12]. Hybrid methods incorporating intelligent algorithms (e.g., neural
networks, fuzzy logic) and conventional methods offer improved accuracy but
require substantial computational resources and complex training data, which can
hinder their practical application [13], [14]. Analyzing the methods mentioned
reveals that they fall into one of two categories: either fast methods with relatively
low precision and low/medium complexity or slow and complex but have very high
accuracy.
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An essential first step in the widespread reuse of EOL batteries is accurate
SOH estimation, which enables quick and precise classification. Given that
numerous battery pack models may be collected and processed at centralized
recycling facilities, the underlying electrochemistry of the various packs, modules,
and cells often differs. Individual modules or cells within the same pack may exhibit
varying SOH levels due to differences in cycling conditions, temperatures, charge
and discharge rates [15]. These factors contribute to significant variation in SOH
levels, making the screening process a crucial prerequisite for regrouping batteries
effectively. To ensure efficiency, a reliable system for SOH battery evaluation must
balance speed and accuracy, employing a combination of methods to address these
challenges. SOH assessment must also consider safety concerns, which implies that
the evaluation should address each cell due to inconsistent packs/modules [16].
While future battery management systems (BMSs) are expected to incorporate
advanced SOH determination capabilities to support second-life applications, the
broader retirement process-encompassing transportation, storage, module
dismantling, fabrication of new modules, and actual testing, remains time-intensive
[17], [18], [19]. This prolonged process introduces further complications; as
batteries undergo these administrative and logistical steps, their SOH may degrade
due to the lack of real-time monitoring. Addressing these challenges, this research
proposes a novel intelligent screening system designed to enhance the evaluation
and classification of EOL lithium-ion batteries from the automotive industry. The
proposed system integrates an intermediate presorting stage that significantly
reduces testing time by grouping batteries based on a fast-screening method. This
presorting is followed by a detailed evaluation of a representative battery from each
group using established methods, ensuring accurate SOH determination while
minimizing overall testing efforts.
The principal contributions of this paper are delineated as follows:
e Proposing a new methodology for screening end-of-life batteries (Section
2);
e Proposing a multi-chemistry, multi-battery screening system (Section 2);
e System validation by analyzing ten aged LFP batteries (Section 3).

2. Materials and methods

The intelligent sorting system proposed in this study aims to address the
limitations of conventional battery sorting methods by integrating an innovative
approach that reduces testing time, enhances accuracy, and provides scalability.
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A. Battery screening methodology

The system combines a presorting stage based on internal resistance with a
detailed evaluation of a representative battery from each group, ensuring that
battery classification is efficient and reliable, Fig. 1.
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Fig. 1. Proposed methodology for screening retired batteries — a) integration of the presorting
phase b) detailed presorting process.

The presorting stage is a crucial step in the proposed methodology, designed
to minimize the overall testing time by eliminating batteries that do not meet the
basic criteria for reuse. This stage involves a quick assessment of the internal
resistance of each battery, which serves as an indicator of the battery's health and
consistency with other batteries in the group, as studied in [20]. The presorting
process includes the following key steps:

1. Fast screening: Initially, a novel regression model based on knee/elbow
point is used for precise open circuit voltage (OCV) estimation of the batteries and
characterizing their state of charge (SOC) according to OCV. Next, each battery is
subjected to a controlled DC pulse for 18 seconds, which can be either a charge or
discharge pulse depending on the battery’s initial state of charge (SOC), Fig. 2. The
duration and amplitude of the pulse are set according to established standards, such
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as the US Advanced Battery Consortium (USABC) manual [21], to ensure
consistency and reliability of the measurements.
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Fig. 2. Proposed methodology for screening retired batteries — a) integration of the presorting
phase b) detailed presorting process.

After the pulse ends, the voltage at the battery terminals is measured again,
and the internal resistance is determined using Ohm’s law, equation 1:
R — U(ty) —U(ty) (D
" [pulse
where U(t;) is the OCV, U(t;) is the voltage after the pulse and I, is the
applied charge/discharge current.

This simple yet effective approach allows for rapid assessment without the
need for complex equipment or prolonged testing procedures.

2. ID allocation: At the end of the presorting phase, each battery receives
an identifier consisting of three elements: a unique identification number regarding
the battery chemistry and the sequence number within the measurement process,
the battery’s SOC, and the internal resistance.

3. Grouping: after the testing is done, battery groups are formed from 10
mQQ to 10 mQ starting from the battery with the lowest internal resistance.

4. Data processing: The mean value and the standard deviation are
calculated for each group formed to ensure homogeneity within each group.
Batteries that exceed the acceptable range of variation are flagged and either
excluded or subjected to additional evaluation.

After all groups have been checked and the outliers eliminated, the sorting
phase is applied to a single battery closest to the average value in the group. This
battery is selected for detailed testing using a slow but highly accurate method, such
as Electrochemical Impedance Spectroscopy (EIS). Based on the SOH results of
the representative battery, the entire group is classified for potential second-life
applications. Groups with high SOH are designated for more demanding
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applications, while those with lower SOH are allocated to less critical uses. This
hierarchical sorting ensures that each battery is optimally utilized according to its
remaining capacity and performance characteristics. Moreover, this approach
drastically reduces the number of batteries requiring complete testing, reducing
time, costs, and resource utilization.

B. System implementation

From the hardware point of view, the core of the system is a four-quadrant
bidirectional DC-DC power converter, studied in detail in [22]. This power
converter enables simultaneous charge and discharge testing of multiple battery
cells, allowing for rapid evaluation and classification. Its design optimizes the
power transfer between batteries, allowing one battery to act as a power source and
the other as a load. The converter’s power density and flexibility enhance the
system's ability to evaluate a variety of battery chemistries, making it suitable for a
wide range of applications beyond the automotive sector. Thus, the modular and
scalable nature of the system allows for easy adaptation and expansion, making it
capable of handling larger battery packs or different configurations as needed. The
electrical diagram of the proposed control and power circuits is presented in Fig. 3.
The diagram consists of five functional blocks:

- Power supply block: both the control circuit and the power circuit
are powered by a battery with a voltage higher than 14 V. This voltage passes
through two step-down converters to power the control circuit at 5 V and the power
drivers at 12 V. The use of batteries to power the circuit allows the solution to be
used on site.

- Test block: This block contains the bidirectional DC-DC converter
and the 2N batteries to be tested. The power circuit has four operating scenarios:
voltage step-down from left to right and vice versa, voltage step-up from left to
right, and inverse.

Control block: The microcontroller (ESP32) provides the control
signals for the power converter based on the battery terminal voltage and OCV. It
is also responsible for processing data from current and voltage sensors to
determine the internal resistance of the tested batteries.

User interface block: This is achieved using two buttons for inserting
test data and initializing the test and a 2x16 LCD display for viewing data.

Protection block: From a hardware point of view, protection is
achieved by the diodes, which don’t allow energy transfer between the batteries
when the circuit is not controlled. By software means, the microcontroller turns off
the power switches in case of overvoltage, undervoltage, short circuit, or other
operating anomalies.
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Fig. 3. Electrical diagram of the proposed system (control circuit and power circuit).

Fig. 4 presents the top view of the designed device. The power circuit for
battery testing is in the upper area. In the lower area, we have the user interface
block (LCD and buttons), the SD card module, the microcontroller, and the power
supply block containing a holder for four 18650 batteries.
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Fig. '4. Prototype of the proposed system (top view).

The control logic implemented within the ESP32 microcontroller is shown
in Fig. 5.
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The initialization of the testing process is carried out using a general switch
that powers the entire circuit. This also acts as a general protection function. If the
switch is closed, then the global variables are read from the ROM memory, and the
object configuration is initialized. In the main loop of the code, the input/output
pins (PWM, SDA, SCL, DAC, ADC) are configured, as well as their initial state
(high, low, digital output, digital input and so on), and communication with the
devices is established. The sequence for entering the test parameters cannot be
initialized until communication is established. The device will repeat the
communication sequence until it is valid. A device reset will be required if the result
is invalid after multiple attempts. In the initialization phase of the procedure, the
user is expected to choose the type of test, DCR Test or Grouping Test. DCR Test
is the sequence through which the internal resistance of the batteries is evaluated
and requires the introduction of the following input parameters: the battery
chemistry (LFP, NMC, LiPo, etc.) and capacity (900 mAh, 1100 mAh, etc.). After
the test is approved, there is a first stage of checking the capacity range, and then
the pre-test stage follows. Here, the OCV measurement function is called to
determine the SOC of the batteries based on the developed models. Also, the current
pulse is calculated as C/4 of the capacity, and it is determined which battery will be
charged and which will be discharged, as well as the operating mode of the power
converter (forward Buck, reverse Boost, reverse Buck, forward Boost). After this
pre-testing stage, a timer is started for 18 seconds, during which the
charge/discharge current pulse is applied. The battery voltage and current are
monitored for the control loops and provide protection.

After the timer is finished, the power circuit is stopped, and the data
processing phase is started. In this last stage, the internal resistance of the batteries
is calculated and saved onto an SD card along with the other parameters. The
program returns to the initialization menu after each DCR Test. After all the
batteries on the site have been tested, the Grouping Test option can be selected. This
test will access the file loaded on the SD card and run the battery grouping function
mentioned above.

3. Results and discussions

To validate the proposed system, a series of experiments was conducted
using ten LFP battery cells grouped into four sub-lots based on their SOH. Each
sub-lot represented different ageing levels, ranging from 86% to 95% SOH (Table

1.
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Table 1
SOH values of the tested batteries
Battery ID capl:coi?;fi?lilllAh] capl;:gf;'t[ir‘;i&h] Actual SOH [%] | Sublot

EH17ﬁ)l())l(};02406 1053.0 95.72 1
EH17ﬁ)l())l(};07606 1049.6 95.41 1
EH17ﬁ)l:)l(};05424 1009.6 91.78 2
EH17ﬁ)I())1;;11443 1015.4 92.30 2
EH17ﬁ)I())1;z;14013 976.4 88.76 3

APR- 1100 - " 3
EH171000708804 : :
EH17ﬁ)I())1;;07901 966.0 87.81 3
EH17ﬁ)I())1(};14657 947.32 86.12 4
EH17ﬁ)l())l(}‘;11199 945.01 85.91 4
EH17ﬁ)I()11(};01957 944.46 85.86 4

Each testing phase involves checking two batteries with different SOH and
SOC values. The SOC values were chosen based on the storing conditions by
deposits or clients as follows: charged according to the standard storage procedure,
with SOC considered at 40%; partially charged after long-term storage, with SOC
considered at 80%; and fully charged with SOC considered as 95%-100%.
Therefore, the following operating scenarios will be considered for system
validation:

. Scenario 1: Battery 1 SOH 86% - SOC 80%, Battery 2 SOH 88% -
SOC 80%, FW Buck operating mode.

. Scenario 2: Battery 1 SOH 86% - SOC 95%, Battery 2 SOH 95% -
SOC 40%, RE Buck operating mode.

. Scenario 3: Battery 1 SOH 88% - SOC 95%, Battery 2 SOH 92% -
SOC 40%, RE Buck operating mode.

. Scenario 4: Battery 1 SOH 86% - SOC 80%, Battery 2 SOH 92% -
SOC 40%, FW Buck operating mode.

. Scenario 5: Battery 1 SOH 88% - SOC 80%, Battery 2 SOH 95% -

SOC 40%, FW Buck operating mode.

Two data sets (Tables 2 and 3) were performed to ensure the results were
redundant. The data obtained for verification (Table 3) will also be used to validate
the sorting method.
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Table 2

Experimental data obtained following the application of the algorithm for determining the

internal resistance of batteries

Scenario 1 | 2 | 3 | 4 | 5
ID1 LFP11 001 7 | LFP11 003 9 | LFP11 005 9 | LFP11 007 8 | LFP11 009 7
8 085 4 083 2 072 1 080 7 077
ID2 LFP11 002 8 | LFP11 004 4 | LFP11 006 3 | LFP11 008 4 | LFP11 010 3
0 075 1 045 7 056 0 058 9 048
Technology LFP
Capacity 1.1
[Ah]
Ipulse [A] +0.375
OCV1 |V] 3.319 3.340 3.338 3.323 3.318
OCV2 |V] 3.322 3.267 3.259 3.265 3.263
SOC1 [%] 78.07 94.29 92.77 81.17 77.29
SOC2 [%] 80.40 41.96 37.62 40.84 39.74
vdtl [V] 0.032 0.031 0.027 0.030 0.029
Vdt2 [V] 0.029 0.017 0.021 0.022 0.018
Rinl [Q] 85.79 83.11 72.39 80.43 77.75
Rin2 [Q] 75.07 45.45 56.15 58.82 48
Table 3

Second experimental data obtained following the application of the algorithm for
determining the internal resistance of batteries

Scenario 1 2 3 4 5
ID1 LFP11 011 7 | LFP11 013 9 | LFP11 015 9 | LFP11 017 7 | LFP11 019 7
8 082 4 085 2 072 8 080 8 074
ID2 LFP11 012 7 | LFP11 014 4 | LFP11 016 3 | LFP11 018 4 | LFP11 020 4
9 077 2 048 8 058 3 056 0 045
Tehnology LFP
Capacity 1.1
[Ah]
Ipulse [A] +0.375
OCV1 |V] 3.319 3.34 3.338 3.319 3.319
OCV2 |V] 3.321 3.268 3.26 3.27 3.265
SOC1 [%] 78.07 94.29 92.77 78.07 78.07
SOC2 [%] 79.62 42.53 38.14 43.69 40.84
Vdtl [V] 0.031 0.032 0.027 0.030 0.028
Vdt2 [V] 0.027 0.018 0.022 0.021 0.017
Rinl [Q] 82.67 85.56 72 80.43 74.67
Rin2 [Q] 77.33 48.13 58.98 56.15 45.33
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The groups of batteries after the sorting procedure

Table 4

Battery ID Corresponding battery | Internal resistance [mQ]
Group 1 LFP11 001 84 085 EH171000714657 85.79
LFP11 013 94 085 EH171000701957 85.56
Group 2 LFP11 007 _81 080 EH171000711199 80.43
LFP11 009 77 077 EH171000814013 77.75
LFP11 003 95 083 EH171000701957 83.11
LFP11 011 78 082 EH171000714657 82.67
LFP11 012 79 077 EH171000707901 77.33
LFP11 017 78 080 EH171000711199 80.43
Group 3 LFP11 004 40 045 EH171000702406 45.45
LFP11 010 39 048 EH171000707606 48
LFP11 014 42 048 EH171000702406 48.13
LFP11 020 40 045 EH171000707606 45.33
Group 4 LFP11 006 37 056 EH171000705424 56.15
LFP11 008 40 058 EH171000711443 58.82
LFP11 016 38 058 EH171000705424 58.98
LFP11 018 43 056 EH171000711443 56.15
Group 5 LFP11 005 92 072 EH171000708804 72.39
LFP11 015 92 072 EH171000708804 72
LFP11 002 80 075 EH171000707901 75.07
LFP11 019 78 074 EH171000814013 74.67
Table 5
Results obtained after applying the grouping method
Group 1 Group 2 Group 3 Group 4 Group 5
Average 85.67 80.28 46.72 57.52 73.53
[mQ]
Standard 0.16 2.40 1.54 1.58 1.56
deviation
[mQ]
Range of 85.51- 77.88-82.68 45.18-48.27 55.93-59.11 71.97-75.09
values [mQ)] 85.83
Accepted LFP11 001 | LFP11 007 8 | LFP11 004 4 | LFP11 006 3 | LFP11 005 9
batteries _84 085 1_080 0_045 7_056 2 072
LFP11 013 | LFP11 003 9 | LFP11 010 3 | LFP11 008 4 | LFP11 015 9
_94 085 5 083 9 048 0_058 2 072
LFP11 011 7 | LFP11 014 4 | LFP11 016 3 | LFP11 002 8§
8 082 2 048 8 058 0_075
LFP11 017 _7 | LFP11 020 4 | LFP11 018 4 | LFP11 019 7
8 080 0 045 3 056 8 074
SOH [%] 86 86-88 95 92 88
Battery LFP11 001 | LFP11 007 8 | LFP11 014 4 | LFP11 006 3 | LFP11 005 9
closest to _84 085 1_080 2 048 7_056 2 072
average LFP11 013 | LFPI1 017 7 LFP11 018 4
_94 085 8 080 3_056
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Therefore, groups of batteries were formed in 10 m€2 increments, starting
with the battery with the lowest internal resistance (Table 4).

Next, the mean value and standard deviation were calculated for each group,
and it was checked whether there were any gross errors in the range of +c. Also, it
was determined which battery had the internal resistance closest to the mean value
so that only one battery could be subjected to the SOH evaluation process. The
results are presented in Table 5.

The dependency between SOC and OCV is independent of SOH, and the
dependency between SOH and Rin is independent of SOC, so one of the variables
must be known. Thus, SOC and Rin are determined according to the previously
presented procedure, and based on the SOC, the internal resistance at the current
SOC and at 100% SOC is estimated. The difference between the two is then added
to the measured internal resistance. The new internal resistance, corresponding to
100% SOC and the current SOH, is compared to the internal resistance at 100%
SOC and SOH. Suppose the internal resistance is greater than that at 100% SOH
after the comparison. The method is validated in that case, confirming that the
studied battery has a different SOH than a new one. For modelling the dependency
between internal resistance and SOC, linear regression with a third-order
polynomial was used to approximate the trend during both charging and
discharging, as shown in Fig. 6.
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Fig. 6. The internal resistance estimation model, Rchg (blue) and Rdchg (Orange).

The characteristic equations for the internal resistance model for charge and
discharge, respectively, are presented in equations (2) and (3):

Rycng = —100.27 - S0C3 +275.35-5S0C? — 215.86-SOC + 103.05  (2)
Repg = —141.84 - S0C3 + 325.64 - SOC? — 215.08 - SOC + 84.315 3)

By applying the two equations for the first group of batteries LFP11 001 84 085
and LFP11 013 94 085, we obtain the following:
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Rgcng = —100.27 - 0.943 + 275.35 - 0.94% — 215.86 - 0.94 + 103.05  (4)
= 60.15 mQ

Reng = —141.84 - 0.843 + 325.64 - 0.842 — 215.08 - 0.84 + 84.315  (5)
= 49.35mQ

For 100% SOC the internal resistances will be:
Rachgio0o = —100.27 - 13 +275.35-0.1% — 215.86- 1 4+ 103.05 (6)

= 62.27 mf)
Rengioo = —141.84 - 13 4+ 325.64 - 1> — 215.08 - 1 + 84.315 (7)
= 53.03 mQ
The difference between resistance becomes:
ARycng = 62.27mQ — 60.15 mQ = 2.11 mQ (8)
AR¢pg = 53.03 mQ — 49.35 mQ = 3.68 mQ 9)

Next, this difference is added to the measured values and compared with the
estimated values at 100% SOC and SOH:

RLFP11—001—84-—085 = 211 mQ + 8579 mQ = 8790 mﬂ (10)
=> 87.90mQ > 62.27 mf)
RLFP11—013—94—085 = 368 mQ + 8556 mQ = 8924 mQ (1 1)

=> 89.24mQ > 53.03 mQ

The batteries' internal resistance is higher than the estimated internal
resistance of a fresh cell at 100% SOC and SOH. Moreover, the results seem to be
the same regardless of the pulse type, charge, or discharge. Table 6 presents the
internal resistance values of the other batteries and compares them with a fresh cell.

Table 6
Internal resistance at 100% SOC and SOH
Battery ID Rin at 100% SOC & SOH Higher than fresh cell?
[mQ]
Rirp11-001-84-085 87.90 Yes
Rirp11-013-94-085 89.24 Yes
Rirp11-007-81-080 85.09 Yes
Rirp11-003-95-083 84.86 Yes
Rirp11-011-78-082 88.34 Yes
R;rp11-017-78-080 88.08 Yes
Rirp11-004-40-045 57.17 Yes
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Rirp11-010-39-048 59.48 Yes
Rirp11-014-42-048 60.24 Yes
R;rp11-020-40-045 57.05 Yes
R;rp11-006-36-056 67.05 Yes
R;rp11-008-40-058 70.54 Yes
Rirp11-016-38-058 65.96 Yes
Rirp11-018-43-056 65.24 Yes
Rirp11-005-92-072 75.22 Yes
Rirp11-015-92-072 74.83 Yes
R;rp11-002-80-075 80.06 Yes
Rirp11-019-78-074 80.34 Yes

After the sorting process was applied, five groups were determined,
followed by the grouping method where two batteries were eliminated from group
2. Then, for each battery, the actual internal resistance at 100% SOC was calculated
and compared with that of a fresh cell at 100% SOC and SOH. The results indicate
the correct identification of the battery groups, although batteries with SOH of 86%
and 88% were mixed in three groups. However, these results fall within the error
suggested in the literature and the USABC manual of 2%. Once the batteries are
sorted, they are ready to be grouped and integrated into a battery module, which
can be utilized in low-power applications based on the newly determined effective
capacity. However, these second-life applications come with certain restrictions due
to safety limitations. In this new configuration, the battery module will be exposed
to a 15-20% lower discharge current, ranging from 0.5C to 0.8C of the new effective
capacity. Additionally, thermal restrictions will be adjusted with the same
coefficients to prevent fire hazards. All these modifications will be reflected in the
new Battery Management System (BMS) that will equip the second-life battery.

5. Conclusions

To validate the proposed system, experiments were conducted using ten
LFP battery cells grouped into four sub-lots based on their SOH. Each sub-lot
represented different ageing levels, ranging from 86% to 95% SOH. The cascaded
Buck-Boost DC-DC converter played a central role in the testing process,
facilitating simultaneous charge-discharge testing. The control and monitoring of
the system were managed by an ESP32 microcontroller, which ensured precise
regulation of the testing parameters and implemented safety protocols to prevent
overcharging and overheating. The findings confirmed that the internal resistance-
based presorting stage effectively identified groups of batteries with homogeneous
characteristics within a 2% SOH error margin.
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The rapid multi-chemistry and multi-battery screening system for retired
Lithium-lon batteries proposed in this study offers a transformative approach to
battery evaluation, classification, and repurposing from the point of view of testing
time, costs, and adaptability. In this study, a new methodology is proposed, based
on internal resistance measurement, by integrating a presorting stage before the
actual screening. The rapid grouping of batteries with similar internal resistance
minimizes the need for comprehensive SOH evaluations on every individual
battery, and accuracy is achieved by subjecting only one representative battery from
the group to the slow screening method. Moreover, the modular design of the
sorting system, centered around the cascaded Buck-Boost DC-DC converter, allows
for simultaneous testing of two or more batteries, which reduces the testing time by
half. Because of the high-power density and the converter's wide input/output
voltage range, the solution can be easily adapted to complex battery configurations
and battery chemistry.
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