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A HIGH-SPEED MULTI-CHEMISTRY AND MULTI-

BATTERY STATE-OF-HEALTH SCREENING SYSTEM FOR 

RETIRED LITHIUM-ION BATTERIES 

Teodor-Iulian VOICILA1, Bogdan-Adrian ENACHE2, Mihaela-Viorica 

MATEESCU3, George-Calin SERITAN4 

The transition to sustainable energy solutions is driving the automotive sector 

to shift from internal combustion engine vehicles to electric and hybrid vehicles, 

aligning with global objectives of reducing greenhouse gas emissions and achieving 

carbon neutrality. However, the exponential growth of the latter's adoption introduces 

challenges in managing end-of-life lithium-ion batteries, which are expected to reach 

unprecedented volumes in the coming decades. Although no longer suitable for 

automotive applications, these batteries often retain about 80% of their initial 

capacity, making them viable for “second-life” applications, extending their lifecycle, 

reducing costs, and supporting the circular economy. Proper evaluation and 

classification of these batteries are essential to ensure safety and effective 

repurposing to less demanding applications. This study introduces an intelligent 

system and a new methodology for fast, cost-effective, and adaptable screening of 

retired lithium-ion batteries. The system's modular design, centered on a cascaded 

Buck-Boost DC-DC converter, enables simultaneous testing of multiple batteries, 

halving testing time. Also, the wide input/output voltage range allows diverse battery 

chemistries and configurations to be tested. Integrating a presorting stage based on 

internal resistance measurements minimizes the need for exhaustive state-of-health 

evaluations of individual batteries. Validation experiments conducted on ten LFP 

battery cells across varying ageing levels (86%–95%) demonstrated the effectiveness 

of the proposed approach, achieving accurate grouping within a 2% error margin. 

Then, the representative battery from each group can be evaluated using a standard 

long-duration, highly accurate method. 
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1. Introduction 

The world is trying to reduce greenhouse gas emissions and combat climate 

change, which has made carbon neutrality a key global objective [1]. Thus, the 

increasing demand for sustainable energy solutions is reshaping industries 

worldwide, especially the automotive sector, which is undergoing a transition from 

internal combustion engine (ICE) vehicles to electric vehicles (EVs) and hybrid 

electric vehicles (HEVs) [2]. However, the rapid growth end-of-life (EOL) of 

lithium-ion batteries led to an unprecedented volume of batteries reaching their 

EOL within the next few decades [3]. Traditionally, EOL batteries involve 

recycling, which, while effective in recovering valuable materials, is an expensive 

and environmentally taxing process that generates significant waste and pollution 

[4]. Recycling also fails to fully leverage the remaining energy potential of these 

batteries, which often still retain about 80% of their initial capacity [5]. This 

untapped potential has driven interest in "second-life" applications, where batteries 

are repurposed for less demanding uses, such as energy storage for renewable 

sources, backup power systems, and low-power consumer devices [6]. By 

extending the life cycle of batteries, this concept can significantly reduce costs, 

decrease environmental impact, and support the circular economy [7].  

An effective sorting and evaluation process is essential to facilitate the 

integration of retired batteries. This process must accurately assess each battery's 

state of health (SOH) to ensure its suitability for repurposing. Generally, the 

screening process has two phases. First, the batteries are visually inspected for any 

visible physical damage. The visual inspection initiates the process by eliminating 

batteries with potential defects such as corrosion, swelling, and material leakage 

[8]. Therefore, only batteries that pass the first test can be evaluated in the second 

phase, where they will be subjected to sorting methods. This stage assesses the SOH 

and classifies the batteries according to certain criteria that depend on the battery 

chemistry and the energy application’s requirements [9]. Traditional battery sorting 

methods, such as complete charge-discharge cycles, Coulomb counting or 

Electrochemical Impedance Spectroscopy, are often slow, costly, and tailored to 

specific battery models, limiting their scalability and adaptability [10].  The fastest 

and easiest to implement methods are DC ohmic resistance and AC ohmic 

resistance, but they are often sensitive to external factors and have low accuracy 

[11], [12]. Hybrid methods incorporating intelligent algorithms (e.g., neural 

networks, fuzzy logic) and conventional methods offer improved accuracy but 

require substantial computational resources and complex training data, which can 

hinder their practical application [13], [14]. Analyzing the methods mentioned 

reveals that they fall into one of two categories: either fast methods with relatively 

low precision and low/medium complexity or slow and complex but have very high 

accuracy. 
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An essential first step in the widespread reuse of EOL batteries is accurate 

SOH estimation, which enables quick and precise classification. Given that 

numerous battery pack models may be collected and processed at centralized 

recycling facilities, the underlying electrochemistry of the various packs, modules, 

and cells often differs. Individual modules or cells within the same pack may exhibit 

varying SOH levels due to differences in cycling conditions, temperatures, charge 

and discharge rates [15]. These factors contribute to significant variation in SOH 

levels, making the screening process a crucial prerequisite for regrouping batteries 

effectively. To ensure efficiency, a reliable system for SOH battery evaluation must 

balance speed and accuracy, employing a combination of methods to address these 

challenges. SOH assessment must also consider safety concerns, which implies that 

the evaluation should address each cell due to inconsistent packs/modules [16]. 

While future battery management systems (BMSs) are expected to incorporate 

advanced SOH determination capabilities to support second-life applications, the 

broader retirement process-encompassing transportation, storage, module 

dismantling, fabrication of new modules, and actual testing, remains time-intensive 

[17], [18], [19]. This prolonged process introduces further complications; as 

batteries undergo these administrative and logistical steps, their SOH may degrade 

due to the lack of real-time monitoring. Addressing these challenges, this research 

proposes a novel intelligent screening system designed to enhance the evaluation 

and classification of EOL lithium-ion batteries from the automotive industry. The 

proposed system integrates an intermediate presorting stage that significantly 

reduces testing time by grouping batteries based on a fast-screening method. This 

presorting is followed by a detailed evaluation of a representative battery from each 

group using established methods, ensuring accurate SOH determination while 

minimizing overall testing efforts. 

The principal contributions of this paper are delineated as follows: 

• Proposing a new methodology for screening end-of-life batteries (Section 

2); 

• Proposing a multi-chemistry, multi-battery screening system (Section 2); 

• System validation by analyzing ten aged LFP batteries (Section 3). 

2. Materials and methods 

The intelligent sorting system proposed in this study aims to address the 

limitations of conventional battery sorting methods by integrating an innovative 

approach that reduces testing time, enhances accuracy, and provides scalability. 
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A. Battery screening methodology 

The system combines a presorting stage based on internal resistance with a 

detailed evaluation of a representative battery from each group, ensuring that 

battery classification is efficient and reliable, Fig. 1. 

 
Fig. 1. Proposed methodology for screening retired batteries – a) integration of the presorting 

phase b) detailed presorting process. 

The presorting stage is a crucial step in the proposed methodology, designed 

to minimize the overall testing time by eliminating batteries that do not meet the 

basic criteria for reuse. This stage involves a quick assessment of the internal 

resistance of each battery, which serves as an indicator of the battery's health and 

consistency with other batteries in the group, as studied in [20]. The presorting 

process includes the following key steps: 

1. Fast screening: Initially, a novel regression model based on knee/elbow 

point is used for precise open circuit voltage (OCV) estimation of the batteries and 

characterizing their state of charge (SOC) according to OCV. Next, each battery is 

subjected to a controlled DC pulse for 18 seconds, which can be either a charge or 

discharge pulse depending on the battery’s initial state of charge (SOC), Fig. 2. The 

duration and amplitude of the pulse are set according to established standards, such 
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as the US Advanced Battery Consortium (USABC) manual [21], to ensure 

consistency and reliability of the measurements. 

 
Fig. 2. Proposed methodology for screening retired batteries – a) integration of the presorting 

phase b) detailed presorting process. 

After the pulse ends, the voltage at the battery terminals is measured again, 

and the internal resistance is determined using Ohm’s law, equation 1: 

𝑅𝑖𝑛 =
𝑈(𝑡2) − 𝑈(𝑡1)

𝐼𝑝𝑢𝑙𝑠𝑒

 
(1) 

where 𝑈(𝑡1) is the OCV, 𝑈(𝑡2) is the voltage after the pulse and 𝐼𝑝𝑢𝑙𝑠𝑒  is the 

applied charge/discharge current. 

This simple yet effective approach allows for rapid assessment without the 

need for complex equipment or prolonged testing procedures. 

2. ID allocation: At the end of the presorting phase, each battery receives 

an identifier consisting of three elements: a unique identification number regarding 

the battery chemistry and the sequence number within the measurement process, 

the battery’s SOC, and the internal resistance.  

3. Grouping: after the testing is done, battery groups are formed from 10 

mΩ to 10 mΩ starting from the battery with the lowest internal resistance. 

4. Data processing: The mean value and the standard deviation are 

calculated for each group formed to ensure homogeneity within each group. 

Batteries that exceed the acceptable range of variation are flagged and either 

excluded or subjected to additional evaluation. 

After all groups have been checked and the outliers eliminated, the sorting 

phase is applied to a single battery closest to the average value in the group. This 

battery is selected for detailed testing using a slow but highly accurate method, such 

as Electrochemical Impedance Spectroscopy (EIS). Based on the SOH results of 

the representative battery, the entire group is classified for potential second-life 

applications. Groups with high SOH are designated for more demanding 
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applications, while those with lower SOH are allocated to less critical uses. This 

hierarchical sorting ensures that each battery is optimally utilized according to its 

remaining capacity and performance characteristics. Moreover, this approach 

drastically reduces the number of batteries requiring complete testing, reducing 

time, costs, and resource utilization. 

B. System implementation 

From the hardware point of view, the core of the system is a four-quadrant 

bidirectional DC-DC power converter, studied in detail in [22]. This power 

converter enables simultaneous charge and discharge testing of multiple battery 

cells, allowing for rapid evaluation and classification. Its design optimizes the 

power transfer between batteries, allowing one battery to act as a power source and 

the other as a load. The converter’s power density and flexibility enhance the 

system's ability to evaluate a variety of battery chemistries, making it suitable for a 

wide range of applications beyond the automotive sector. Thus, the modular and 

scalable nature of the system allows for easy adaptation and expansion, making it 

capable of handling larger battery packs or different configurations as needed. The 

electrical diagram of the proposed control and power circuits is presented in Fig. 3. 

The diagram consists of five functional blocks: 

- Power supply block: both the control circuit and the power circuit 

are powered by a battery with a voltage higher than 14 V. This voltage passes 

through two step-down converters to power the control circuit at 5 V and the power 

drivers at 12 V. The use of batteries to power the circuit allows the solution to be 

used on site. 

- Test block: This block contains the bidirectional DC-DC converter 

and the 2N batteries to be tested. The power circuit has four operating scenarios: 

voltage step-down from left to right and vice versa, voltage step-up from left to 

right, and inverse. 

 Control block: The microcontroller (ESP32) provides the control 

signals for the power converter based on the battery terminal voltage and OCV. It 

is also responsible for processing data from current and voltage sensors to 

determine the internal resistance of the tested batteries. 

 User interface block: This is achieved using two buttons for inserting 

test data and initializing the test and a 2x16 LCD display for viewing data. 

 Protection block: From a hardware point of view, protection is 

achieved by the diodes, which don’t allow energy transfer between the batteries 

when the circuit is not controlled. By software means, the microcontroller turns off 

the power switches in case of overvoltage, undervoltage, short circuit, or other 

operating anomalies. 
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Fig. 3. Electrical diagram of the proposed system (control circuit and power circuit). 

Fig. 4 presents the top view of the designed device. The power circuit for 

battery testing is in the upper area. In the lower area, we have the user interface 

block (LCD and buttons), the SD card module, the microcontroller, and the power 

supply block containing a holder for four 18650 batteries. 

 
Fig. 4. Prototype of the proposed system (top view). 

The control logic implemented within the ESP32 microcontroller is shown 

in Fig. 5.  
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Fig. 5. System software flowchart. 
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The initialization of the testing process is carried out using a general switch 

that powers the entire circuit. This also acts as a general protection function. If the 

switch is closed, then the global variables are read from the ROM memory, and the 

object configuration is initialized. In the main loop of the code, the input/output 

pins (PWM, SDA, SCL, DAC, ADC) are configured, as well as their initial state 

(high, low, digital output, digital input and so on), and communication with the 

devices is established. The sequence for entering the test parameters cannot be 

initialized until communication is established. The device will repeat the 

communication sequence until it is valid. A device reset will be required if the result 

is invalid after multiple attempts. In the initialization phase of the procedure, the 

user is expected to choose the type of test, DCR Test or Grouping Test. DCR Test 

is the sequence through which the internal resistance of the batteries is evaluated 

and requires the introduction of the following input parameters: the battery 

chemistry (LFP, NMC, LiPo, etc.) and capacity (900 mAh, 1100 mAh, etc.). After 

the test is approved, there is a first stage of checking the capacity range, and then 

the pre-test stage follows. Here, the OCV measurement function is called to 

determine the SOC of the batteries based on the developed models. Also, the current 

pulse is calculated as C/4 of the capacity, and it is determined which battery will be 

charged and which will be discharged, as well as the operating mode of the power 

converter (forward Buck, reverse Boost, reverse Buck, forward Boost). After this 

pre-testing stage, a timer is started for 18 seconds, during which the 

charge/discharge current pulse is applied. The battery voltage and current are 

monitored for the control loops and provide protection. 

After the timer is finished, the power circuit is stopped, and the data 

processing phase is started. In this last stage, the internal resistance of the batteries 

is calculated and saved onto an SD card along with the other parameters. The 

program returns to the initialization menu after each DCR Test. After all the 

batteries on the site have been tested, the Grouping Test option can be selected. This 

test will access the file loaded on the SD card and run the battery grouping function 

mentioned above. 

3. Results and discussions 

To validate the proposed system, a series of experiments was conducted 

using ten LFP battery cells grouped into four sub-lots based on their SOH. Each 

sub-lot represented different ageing levels, ranging from 86% to 95% SOH (Table 

1). 
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Table 1  

SOH values of the tested batteries 

Battery ID 
Nominal 

capacity [mAh] 

Effective 

capacity [mAh] 
Actual SOH [%] Sublot 

APR-

EH171000702406 

1100 

1053.0 95.72 1 

APR-

EH171000707606 
1049.6 95.41 1 

APR-

EH171000705424 
1009.6 91.78 2 

APR-

EH171000711443 
1015.4 92.30 2 

APR-

EH171000814013 
976.4 88.76 3 

APR-

EH171000708804 
971.9 88.35 3 

APR-

EH171000707901 
966.0 87.81 3 

APR-

EH171000714657 
947.32 86.12 4 

APR-

EH171000711199 
945.01 85.91 4 

APR-

EH171000701957 
944.46 85.86 4 

Each testing phase involves checking two batteries with different SOH and 

SOC values. The SOC values were chosen based on the storing conditions by 

deposits or clients as follows: charged according to the standard storage procedure, 

with SOC considered at 40%; partially charged after long-term storage, with SOC 

considered at 80%; and fully charged with SOC considered as 95%-100%. 

Therefore, the following operating scenarios will be considered for system 

validation: 

• Scenario 1: Battery 1 SOH 86% - SOC 80%, Battery 2 SOH 88% - 

SOC 80%, FW Buck operating mode. 

• Scenario 2: Battery 1 SOH 86% - SOC 95%, Battery 2 SOH 95% - 

SOC 40%, RE Buck operating mode. 

• Scenario 3: Battery 1 SOH 88% - SOC 95%, Battery 2 SOH 92% - 

SOC 40%, RE Buck operating mode. 

• Scenario 4: Battery 1 SOH 86% - SOC 80%, Battery 2 SOH 92% - 

SOC 40%, FW Buck operating mode. 

• Scenario 5: Battery 1 SOH 88% - SOC 80%, Battery 2 SOH 95% - 

SOC 40%, FW Buck operating mode. 

Two data sets (Tables 2 and 3) were performed to ensure the results were 

redundant. The data obtained for verification (Table 3) will also be used to validate 

the sorting method. 
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Table 2  

Experimental data obtained following the application of the algorithm for determining the 

internal resistance of batteries 

Scenario 1 2 3 4 5 

ID1 LFP11_001_7

8_085 

LFP11_003_9

4_083 

LFP11_005_9

2_072 

LFP11_007_8

1_080 

LFP11_009_7

7_077 

ID2 LFP11_002_8

0_075 

LFP11_004_4

1_045 

LFP11_006_3

7_056 

LFP11_008_4

0_058 

LFP11_010_3

9_048 

Technology LFP 

 

Capacity 

[Ah] 

1.1 

 

Ipulse [A] ±0.375 

 

OCV1 [V] 3.319 3.340 3.338 3.323 3.318 

OCV2 [V] 3.322 3.267 3.259 3.265 3.263 

SOC1 [%] 78.07 94.29 92.77 81.17 77.29 

SOC2 [%] 80.40 41.96 37.62 40.84 39.74 

Vdt1 [V] 0.032 0.031 0.027 0.030 0.029 

Vdt2 [V] 0.029 0.017 0.021 0.022 0.018 

Rin1 [Ω] 85.79 83.11 72.39 80.43 77.75 

Rin2 [Ω] 75.07 45.45 56.15 58.82 48 

Table 3  

Second experimental data obtained following the application of the algorithm for 

determining the internal resistance of batteries 

Scenario 1 2 3 4 5 

ID1 LFP11_011_7

8_082 

LFP11_013_9

4_085 

LFP11_015_9

2_072 

LFP11_017_7

8_080 

LFP11_019_7

8_074 

ID2 LFP11_012_7

9_077 

LFP11_014_4

2_048 

LFP11_016_3

8_058 

LFP11_018_4

3_056 

LFP11_020_4

0_045 

Tehnology LFP 

 

Capacity 

[Ah] 

1.1 

Ipulse [A] ±0.375 

OCV1 [V] 3.319 3.34 3.338 3.319 3.319 

OCV2 [V] 3.321 3.268 3.26 3.27 3.265 

SOC1 [%] 78.07 94.29 92.77 78.07 78.07 

SOC2 [%] 79.62 42.53 38.14 43.69 40.84 

Vdt1 [V] 0.031 0.032 0.027 0.030 0.028 

Vdt2 [V] 0.027 0.018 0.022 0.021 0.017 

Rin1 [Ω] 82.67 85.56 72 80.43 74.67 

Rin2 [Ω] 77.33 48.13 58.98 56.15 45.33 
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Table 4  

The groups of batteries after the sorting procedure 

 Battery ID Corresponding battery Internal resistance [mΩ] 

Group 1 LFP11_001_84_085 

LFP11_013_94_085  

EH171000714657 

EH171000701957 

85.79 

85.56 

Group 2 LFP11_007_81_080  

LFP11_009_77_077 

LFP11_003_95_083  

LFP11_011_78_082  

LFP11_012_79_077  

LFP11_017_78_080 

EH171000711199 

EH171000814013 

EH171000701957 

EH171000714657 

EH171000707901 

EH171000711199 

80.43 

77.75 

83.11 

82.67 

77.33 

80.43 

Group 3 LFP11_004_40_045  

LFP11_010_39_048  

LFP11_014_42_048  

LFP11_020_40_045  

EH171000702406 

EH171000707606 

EH171000702406 

EH171000707606 

45.45 

48 

48.13 

45.33 

Group 4 LFP11_006_37_056  

LFP11_008_40_058  

LFP11_016_38_058  

LFP11_018_43_056  

EH171000705424 

EH171000711443 

EH171000705424 

EH171000711443 

56.15 

58.82 

58.98 

56.15 

Group 5 LFP11_005_92_072  

LFP11_015_92_072  

LFP11_002_80_075  

LFP11_019_78_074  

EH171000708804 

EH171000708804 

EH171000707901 

EH171000814013 

72.39 

72 

75.07 

74.67 

Table 5  

Results obtained after applying the grouping method 

 Group 1 Group 2 Group 3 Group 4 Group 5 

Average 

[mΩ] 

85.67 80.28 46.72 57.52 73.53 

Standard 

deviation 

[mΩ] 

0.16 2.40 1.54 1.58 1.56 

Range of 

values [mΩ] 

85.51-

85.83 

77.88-82.68 45.18-48.27 55.93-59.11 71.97-75.09 

Accepted 

batteries 

LFP11_001

_84_085 

LFP11_013

_94_085 

LFP11_007_8

1_080 

LFP11_003_9

5_083 

LFP11_011_7

8_082 

LFP11_017_7

8_080 

LFP11_004_4

0_045 

LFP11_010_3

9_048 

LFP11_014_4

2_048 

LFP11_020_4

0_045 

LFP11_006_3

7_056 

LFP11_008_4

0_058 

LFP11_016_3

8_058 

LFP11_018_4

3_056 

LFP11_005_9

2_072 

LFP11_015_9

2_072 

LFP11_002_8

0_075 

LFP11_019_7

8_074 

SOH [%] 86 86-88 95 92 88 

Battery 

closest to 

average 

LFP11_001

_84_085 

LFP11_013

_94_085 

LFP11_007_8

1_080 

LFP11_017_7

8_080 

 

LFP11_014_4

2_048 

 

LFP11_006_3

7_056 

LFP11_018_4

3_056 

LFP11_005_9

2_072 
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Therefore, groups of batteries were formed in 10 mΩ increments, starting 

with the battery with the lowest internal resistance (Table 4).  

Next, the mean value and standard deviation were calculated for each group, 

and it was checked whether there were any gross errors in the range of ±σ. Also, it 

was determined which battery had the internal resistance closest to the mean value 

so that only one battery could be subjected to the SOH evaluation process. The 

results are presented in Table 5.  

The dependency between SOC and OCV is independent of SOH, and the 

dependency between SOH and Rin is independent of SOC, so one of the variables 

must be known. Thus, SOC and Rin are determined according to the previously 

presented procedure, and based on the SOC, the internal resistance at the current 

SOC and at 100% SOC is estimated. The difference between the two is then added 

to the measured internal resistance. The new internal resistance, corresponding to 

100% SOC and the current SOH, is compared to the internal resistance at 100% 

SOC and SOH. Suppose the internal resistance is greater than that at 100% SOH 

after the comparison. The method is validated in that case, confirming that the 

studied battery has a different SOH than a new one. For modelling the dependency 

between internal resistance and SOC, linear regression with a third-order 

polynomial was used to approximate the trend during both charging and 

discharging, as shown in Fig. 6.  

 
Fig. 6. The internal resistance estimation model, Rchg (blue) and Rdchg (Orange). 

The characteristic equations for the internal resistance model for charge and 

discharge, respectively, are presented in equations (2) and (3): 

𝑅𝑑𝑐ℎ𝑔 = −100.27 ∙ 𝑆𝑂𝐶3 + 275.35 ∙ 𝑆𝑂𝐶2 − 215.86 ∙ 𝑆𝑂𝐶 + 103.05 (2) 

𝑅𝑐ℎ𝑔 = −141.84 ∙ 𝑆𝑂𝐶3 + 325.64 ∙ 𝑆𝑂𝐶2 − 215.08 ∙ 𝑆𝑂𝐶 + 84.315 (3) 

By applying the two equations for the first group of batteries LFP11_001_84_085 

and LFP11_013_94_085, we obtain the following: 

y = -141.84x3 + 325.64x2 - 215.08x + 84.315

y = -100.27x3 + 275.35x2 - 215.86x + 103.05
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𝑅𝑑𝑐ℎ𝑔 = −100.27 ∙ 0.943 + 275.35 ∙ 0. 942 − 215.86 ∙ 0.94 + 103.05

= 60.15 𝑚Ω 

(4) 

𝑅𝑐ℎ𝑔 = −141.84 ∙ 0.843 + 325.64 ∙ 0.842 − 215.08 ∙ 0.84 + 84.315

= 49.35 𝑚Ω 

(5) 

For 100% SOC the internal resistances will be: 

𝑅𝑑𝑐ℎ𝑔100 = −100.27 ∙ 13 + 275.35 ∙ 0. 12 − 215.86 ∙ 1 + 103.05

= 62.27 𝑚Ω 

(6) 

𝑅𝑐ℎ𝑔100 = −141.84 ∙ 13 + 325.64 ∙ 12 − 215.08 ∙ 1 + 84.315

= 53.03 𝑚Ω 

(7) 

The difference between resistance becomes: 

∆𝑅𝑑𝑐ℎ𝑔 = 62.27 𝑚Ω −  60.15 𝑚Ω =  2.11 𝑚Ω (8) 

∆𝑅𝑐ℎ𝑔 = 53.03 𝑚Ω − 49.35 𝑚Ω = 3.68 𝑚Ω (9) 

Next, this difference is added to the measured values and compared with the 

estimated values at 100% SOC and SOH: 

𝑅𝐿𝐹𝑃11−001−84−085 =  2.11 𝑚Ω + 85.79 𝑚Ω = 87.90 𝑚Ω 

=>  87.90 𝑚Ω >  62.27 𝑚Ω 

(10) 

𝑅𝐿𝐹𝑃11−013−94−085 = 3.68 𝑚Ω + 85.56 𝑚Ω = 89.24 𝑚Ω 

=>  89.24 𝑚Ω >  53.03 𝑚Ω 

(11) 

The batteries' internal resistance is higher than the estimated internal 

resistance of a fresh cell at 100% SOC and SOH. Moreover, the results seem to be 

the same regardless of the pulse type, charge, or discharge. Table 6 presents the 

internal resistance values of the other batteries and compares them with a fresh cell. 

Table 6  

Internal resistance at 100% SOC and SOH 

Battery ID Rin at 100% SOC & SOH 

[mΩ] 

Higher than fresh cell? 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟎𝟏−𝟖𝟒−𝟎𝟖𝟓 87.90 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟏𝟑−𝟗𝟒−𝟎𝟖𝟓  89.24 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟎𝟕−𝟖𝟏−𝟎𝟖𝟎 85.09 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟎𝟑−𝟗𝟓−𝟎𝟖𝟑 84.86 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟏𝟏−𝟕𝟖−𝟎𝟖𝟐 88.34 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟏𝟕−𝟕𝟖−𝟎𝟖𝟎 88.08 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟎𝟒−𝟒𝟎−𝟎𝟒𝟓 57.17 Yes 
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𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟏𝟎−𝟑𝟗−𝟎𝟒𝟖 59.48 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟏𝟒−𝟒𝟐−𝟎𝟒𝟖 60.24 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟐𝟎−𝟒𝟎−𝟎𝟒𝟓 57.05 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟎𝟔−𝟑𝟔−𝟎𝟓𝟔 67.05 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟎𝟖−𝟒𝟎−𝟎𝟓𝟖 70.54 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟏𝟔−𝟑𝟖−𝟎𝟓𝟖 65.96 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟏𝟖−𝟒𝟑−𝟎𝟓𝟔 65.24 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟎𝟓−𝟗𝟐−𝟎𝟕𝟐 75.22 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟏𝟓−𝟗𝟐−𝟎𝟕𝟐 74.83 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟎𝟐−𝟖𝟎−𝟎𝟕𝟓 80.06 Yes 

𝑹𝑳𝑭𝑷𝟏𝟏−𝟎𝟏𝟗−𝟕𝟖−𝟎𝟕𝟒 80.34 Yes 

After the sorting process was applied, five groups were determined, 

followed by the grouping method where two batteries were eliminated from group 

2. Then, for each battery, the actual internal resistance at 100% SOC was calculated 

and compared with that of a fresh cell at 100% SOC and SOH. The results indicate 

the correct identification of the battery groups, although batteries with SOH of 86% 

and 88% were mixed in three groups. However, these results fall within the error 

suggested in the literature and the USABC manual of 2%. Once the batteries are 

sorted, they are ready to be grouped and integrated into a battery module, which 

can be utilized in low-power applications based on the newly determined effective 

capacity. However, these second-life applications come with certain restrictions due 

to safety limitations. In this new configuration, the battery module will be exposed 

to a 15-20% lower discharge current, ranging from 0.5C to 0.8C of the new effective 

capacity. Additionally, thermal restrictions will be adjusted with the same 

coefficients to prevent fire hazards. All these modifications will be reflected in the 

new Battery Management System (BMS) that will equip the second-life battery. 

5. Conclusions 

To validate the proposed system, experiments were conducted using ten 

LFP battery cells grouped into four sub-lots based on their SOH. Each sub-lot 

represented different ageing levels, ranging from 86% to 95% SOH. The cascaded 

Buck-Boost DC-DC converter played a central role in the testing process, 

facilitating simultaneous charge-discharge testing. The control and monitoring of 

the system were managed by an ESP32 microcontroller, which ensured precise 

regulation of the testing parameters and implemented safety protocols to prevent 

overcharging and overheating. The findings confirmed that the internal resistance-

based presorting stage effectively identified groups of batteries with homogeneous 

characteristics within a 2% SOH error margin.  
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The rapid multi-chemistry and multi-battery screening system for retired 

Lithium-Ion batteries proposed in this study offers a transformative approach to 

battery evaluation, classification, and repurposing from the point of view of testing 

time, costs, and adaptability. In this study, a new methodology is proposed, based 

on internal resistance measurement, by integrating a presorting stage before the 

actual screening. The rapid grouping of batteries with similar internal resistance 

minimizes the need for comprehensive SOH evaluations on every individual 

battery, and accuracy is achieved by subjecting only one representative battery from 

the group to the slow screening method. Moreover, the modular design of the 

sorting system, centered around the cascaded Buck-Boost DC-DC converter, allows 

for simultaneous testing of two or more batteries, which reduces the testing time by 

half. Because of the high-power density and the converter's wide input/output 

voltage range, the solution can be easily adapted to complex battery configurations 

and battery chemistry. 
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