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EXTREMAL FIRST AND SECOND ZAGREB INDICES OF APEX
TREES

Naveed AKHTER?, Muhammad Kamran JAMIL?, loan TOMESCU?

Let G be a simple connected graph with edge set E(G)and vertex set V (G).

The first and the second Zagreb indices of the graph G are defined as

M;(G) = z (d (V))2 and M,(G) = Z d(u)d(v), respectively, where
vev(G) uveE(G)

d(v) isthe degree of the vertex V. A graph G is called an apex tree [8] if it contains

a vertex X such that G —X is a tree. For any integer K >1 the graph G is called
k-apex tree if there exists a subset X of V (G) of cardinality K suchthat G— X s

atreeandforany Y <V (G) and |Y |[<k, G—Y isnotatree. Inthis work we have

determined upper and lower bounds of M1 (G) and an upper bound of M»(G) ink-
apex trees. The corresponding extremal k-apex trees are also characterized in each case.
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1. Introduction

Let G be asimple graph with vertex set V(G) and edge set E(G). The first
and second Zagreb indices of G are defined as

MiG)= Y dw)P= Y (du)+d(v)

veV (G) uveE(G)
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MaG)= 3 du)d(),
uveV (G)
where d(v) is the degree of the vertex v. In the last decade a lot of work was done
on these two indices. In [4] a history of these graph parameters as well as their
mathematical properties are presented.
All graphs considered in this paper are simple, finite and connected. For a
vertex veV(G), its degree is denoted by dg(v) and if G is clear from the context

we simplify the notation to d(v). The minimum degree of G is denoted by 6(G). A
vertex in G of degree one is called pendant vertex. For X <V (G), G-X is the

subgraph of G obtained from G by removing the vertices of X and edges incident
with them, in particular G —{v} is denoted by G—v. The complete bipartite graph

K1 n-1 isknownas n-star and is denoted by S,,. The integers iy, i,,...,i, are called
almost equal if max{iy,ip,....in} —min{iy,iy,...,i,} <1. The join of two vertex-disjoint
graphs G and H is the graph G+H with V(G+H)=V(G)uV(H) and the
edges of G+H are all edges of graphs G and H and the edges obtained by joining
each vertex of G with each vertex of H.

In topological graph theory, graphs that contain a vertex whose removal yields
a planar graph play an important role and are called apex graphs [1, 6]. Along these
linesagraph G is called an apex tree [8] if it contains a vertex x such that G—x is
a tree. The vertex x is called apex vertex of G . Note that a tree is always an apex
tree, hence a non-trivial apex tree is an apex tree which itself is not a tree. For any
integer k >1 the graph G is called k-apex tree if there exists a subset X of V(G)
of cardinality k such that G—X is a tree and for any Y <V (G) and |Y |<k,
G-Y isnotatree. Avertex in X is called k-apex vertex. Clearly, 1-apex trees are
precisely non-trivial apex trees. Apex trees and k-apex trees were introduced in [7]
under the name quasi-tree graphs and k-generalized quasi-tree graphs, respectively.
Recently in [9] Kinkar Ch. Das et al. determined upper and lower bounds on weighted
Harary indices for apex trees and k-apex trees.

Forany n>3 and k>1, let
(@ T(n) denotes the set of all non-trivial apex trees of order n.
(b) Tx(n) denotes the set of all k-apex trees of order n.
Note that T;(n) =T(n).

We need the following upper bounds on Zagreb indices:
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Lemmal.l [2,3]If T isatreeoforder n,then
@ MyM)<n(n-1) ; (b)) My(T)<(n-1)?
and in both cases equality holds if and only if T =S,,, the star graph of order n.

The following Lemma easily follows from definitions.
Lemmal.2 If u,veV(G) are notadjacent, then

(8 MyG+w)>MiG) ;  (b) Ma(G+uv)>M;,(G).
Lemmal3 If GeT(n), Mi(G) and M,(G) are as large as possible and x is
an apex vertex of G, then:

@ o(G)=2;(b) d(x)=n-1.

Proof. (a) Suppose that 6(G) =1 and y eV (G) is a pendant vertex, then xy ¢ E(G)
and G+xyeT(n). By Lemma 1.2, M{(G+xy)>M;(G), which contradicts our
hypothesis. Now we will show that 6(G) <2. Suppose that all vertices have degree

greater or equal to three. Now for any vertex veG, each vertex in G—v has degree
greater or equal to two, which impliesthat G—v isnotatree forany veV(G).Hence

0(G) = 2. The conclusion similarly holds for M, (G).

(b) Let GeT(n), My(G) is as large as possible and X be an apex vertex of
G . Suppose to the contrary that d(x) <n-1, then there is a vertex y eV (G) such
that xy¢E(G) . Now G+xy is also in T(n) and My(G+xy)>M.(G), a
contradiction, hence d(x) =n—1. The conclusion similarly holds for M,(G).

2. Extremal k-Apex Trees for M(G)
In this section we will find upper and lower bounds of M4(G) for k-apex trees.
Lemma 2.1 [5] For any two vertex-disjoint graphs G and H, we have:
2
My(G+H)= M{(G)+My(H)+N (G)|(V (G+H)-(G)|)
2
+HV (H)[(IV (G +H) =1V (H)])

+4\E(G)\(yv (G+ H)H\/(G)\)

+H[E(H)|(V (G+H)|=IV (H))).
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Theorem 2.2 1f GeT(n) and n>5, then
M{(G)<2n’ -6
and equality holds if and only if G =K;+S,_;.
Proof. If GeT(n) and M(G) is as large as possible, then by Lemma 1.3 we have

G =Ky +T,_1, Where T,,_; isatree of order n—1, therefore by using Lemma 2.1, we
obtain
M1(G) = My(Ki+Tyq)

= My (Kq)+My(Tpog) +V (Kl)‘(’V (K +Toa)| =V (Kl)‘)z

HIV M) AV (K + Ty ) |-V (T ) D?
+HA[E(K [V (K +Th_g) [=IV(Ky) D)
+4|E(Tn_0) [V (Ky +Tp_g) [= [V (Th_1) .
Using Lemma 1.1 yields
My(G) < (n-1)(n—2)+(n-1)?+(n-1)(n—(n-1))’
+4(n-2)(n—(n-1))
= 2n%-6.
Lemma 1.1 guaranties that equality holds if and only if G =K;+S,_;.
Theorem 2.3 If k>2, n>5 and G eT,(n), then
M (G) < (k +1)(n—-1)% + (n—k —1)(k +1)?
and equality holds if and only if G =K} +S,_.
Proof. We will prove it by induction on k. We have already proved this property for

k=1 in Theorem 2.2. Now suppose that the result is true for (k -1)-apex trees. Let
G €Ty (n) has the maximum M;(G). Let V, <V (G) be the set of k-apex vertices.

As M;(G+uv)>M;(G) for any uve E(G) this implies that V|, forms a complete

graph and for any u eV, d(u)=n-1. So the number m of edges of the graph G
is

m:[;j+k(n—k)+n—k—1
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_k(k+1
2
Let xeV, and V,_; =V, —x.Notethat d(x)=n-1, G-X isa
(k-1)-apex tree and

Mi(G-x)= ¥ (do(v)-1)’

veV (G—x)

Mi(G-x)= X dg(v)-2 > dg(v)+ X 1

veV (G-x) veV (G-x) veV (G-x)

= Y dd(v)-2 Y dg(v)+(n-1)—(n-1)*+2(n-1)

veV(G) veV(G)
=M (G)—4m—n?+5n—4,0r
M1 (G) =My (G —x)+4m+n? —5n+4.
By equation (2.1) we have

My (G)= Ml(G—x)+4[@+(k +1)(n—k—1)J+n2 ~5n+4.

N—"

+(k+1)(n—k-1). (2.1)

As we have supposed that the result is true for (k-1)-apex trees, we deduce

Mi(G)< k(n-2)?+(n—k-1)k? +4(@+(k +1)(n—k—1)J

+n% —5n+4

= (k+1)(n-1)" +(n—k -1)(k+1)°.

Equality holds if and only if G =K +S,,_.

Theorem 2.4 If GeT,(n), k=1 and n>3k, then
M;(G) >4n+10k —10

and equality holds if and only if G has n—2k+2 vertices of degree 2 and 2k —2
vertices of degree 3.
Proof. By definition of a k-apex tree, there exists a subset X of V(G) of cardinality
k suchthat G—X isatreeandforany Y <V (G) and |Y |<k, G-Y isnotatree.
It follows that d(v) >2 for any vertex ve X . If m denotes the number of edges of
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G, it follows that m>2k +n—k -1=n+k—1. For given natural numbers n and p

, denote f(x,.... %y )= 2L X, where >0 x=p. If > x=p and p is
fixed, it is well known that f(xq,...,Xy; p) is minimum if and only if x,...,X, are
almost equal, or —1<x;—x; <1 for every i, j=1,...,n. Denote this minimum by
f(n,p). It is clear that the function f(n, p) is strictly increasing in p. We have
M{(G) = f(n,2m) > f(n,2n+2k —2) since m>n+k—1. Equality holds if and only

if the degrees of G are almost equal and all vertices in X have the degree equal to
two. Suppose that G has exactly the minimum number of edges, equal to n+k -1
and denote by n; and ny,4 the number of vertices of G having the degree equal to

t and t+1, respectively, where 1<n <n. It follows that n,_,=n-n; and
ty +(t+1)(n—ny) =2n+2k -2, or

(t+)n—ny =2n+2k - 2. (2.2)

If t=1 then (2.2) becomes 2n—n; =2n+2k —2, which is not possible since

ffffffffffffff A;ﬁﬁﬂ%.g

}7 n-3k vertices 4{

2n—n, <2n-1 and 2n+2k—-2>2n. Also, if t>3 we have

‘ k-1 cycles

Fig. 1. k-apex tree with almost equal degrees

(t+1)n—n >4n—n; >3n but 2n+2k—2£8?n—2 since ks%. Consequently, we

have t=2. From (2.2) we get n, =n—2k+2, hence the minimum of M;(G) is

reached if and only if there exist n—2k +2 vertices of degree 2 and 2k —2 vertices
of degree 3. Such a graph is illustrated in Fig. 1.

3. Upper Bound of M, (G) for k-Apex Trees

In this section we will find a sharp upper bound of M,(G) for k-apex trees.
Lemma 3.1 [5] For any two vertex-disjoint graphs G and H, we have:
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Ma(G+H)= My (G)+(V (G+H)-N(G))M;
+(V(G+H)-V(G))E G)\+M
+(V (G+H)[ =V (H)[)My (H)+ (v ( G+H\ V(H)DIE(H)
~122[E(G)|+ [V (G)|(V (G +H) -V ()
—L2R2[E (M) +V (H)I(V (G+H)|-V (H))I*

2

1| 2E@)+V(G)[(V(G+H)-M(e))

2l #2E(H)+V (H)I(V (C+H) -V (H))
Theorem 3.2 If GeT(n) and n>3, then
M, (G) <(n-1)(5n-9)

and equality holds if and only if G =K;+S,_;.
Proof. If GeT(n) and M,(G) is as large as possible then by Lemma 1.3
G =K +T,_1, where T,_; isatree of order n—1. Therefore

M2(G) =Mao(Kq +Th4)
and by using Lemma 3.1, we have

Ma(Ky+Tn 1) = Ma(Ky)+(V (Ky+Tng )| =V (Ky)[) M1 (Ky)
+(’V(K1+Tn )=V (Kq \) (Ky)
M3 (Taog)+(V (K +Tog)| =V (T \)Ml(T 1)
H(V (Ka+Toa)| =V (Taa)|) E (Taa)
—12[ZE(K1)+’V(Kl)\(’V(K1+Tn—1)HV(K1)‘)]2

122 (Tpa) V() (V (0 Taco)| - (o)) T
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26 (Kg) v (K| (V (K + T (k)
2NV TV ()

+2E(Th1)
Using Lemma 1.1 yields
M, (G) <(n-1)(5n-9).
Lemma 1.1 guaranties that equality holds if and only if G =K;+S,_;.
Theorem 3.3 If k>2, n>5 and G €T, (n), then
(n—=1)(k +1)(3nk +2n —5k — 2k? —2)

M, (G) < >

and equality holds if and only if G =K} +S;_.

Proof. We will prove this theorem by induction on k. We have already proved this
property for k=1 in Theorem 3.2. Now suppose that the result is true for (k-1)-apex
trees. Let G €Ty (n) has the maximum M5 (G). Let V| <V (G) be the set of k-apex

vertices. As M, (G +uv) >M,(G) forany uve¢ E(G) this property implies that V
forms a complete graph and for any u eV, d(u) =n-1. So the number m of edges
of graph G is

m:(;j+k(n—k)+n—k—1

M+(k+1)(n—k—l). (3.1)

Let xeVy and Vi_; =V, —x.Notethat d(x)=n-1, G-X isa
(k-1)-apex tree and

M(G-X)= ¥ (de(u)-1)(d (v)-1)

uveE(G-x)

= 2 dg(udg(v)- X (dg(u)+dg(v))+ > 1

uveE(G-x) uveE(G-x) uveE(G-x)
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= Y. dg(u)dg(v)+ (n-1)dg (u)

uveE(G-x) xueE(G)
_ (n-)dg(u)- X (dg(u)+dg(v))
xueE(G) uveE(G-x)
- ((n-1)+dg (u))+
xueE(G)
+ > ((n-1)+dg (u))+m-n+1
xueE(G)
=Y deWdgv)- (dg (u)+dg (v))
uveE(G) uveE(G)
- > (n-DdgW)+ Y, ((-D)+dgu))+m-n+1
xueE(G) xueE(G)

= My(G)=M(G)—(n-1)(2m—n+1)+(n—1)?
+2m-n+1+m-n+1,or
M5(G) = M5 (G —X)+M;(G) —3m+2n—2+(n—1)(2m—n+1) - (n—1)°.
By equation (3.1) and Theorem 2.3, we have
My(G)< My(G—x)+(k+1)(n-1)2 +(n—k —1)(k +1)°
-3(k(k+1)2+(k+1)(n—k-1))+2n-2
+(n-1)(2(k (k+1)2+(k +1)(n—k-1))—n+1) - (n-1)*.
As we have supposed that the result is true for (k-1)-apex trees, we get
k(n—2)(3(n—1)(k—1)+2n—2—5k +5—2(k—1)2—2)
2
+Hk+1)(n-1)2 +(n—k -1)(k +1)% -
-3(k(k+1)2+(k+1)(n—k-1))+2n-2+

+(n-1)(2(k (k+1)2+(k+1)(n-k -1))-n+1)— (n-1)?

M, (G) < .

:%(Snzk +3n2k2 —10nk? — 2nk3 —12nk +2n2 + 7k 2 +

+2k3+7k—4n+2)
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:%(nk+n—k—1)(2n+3nk—5k—2k2—2)

_ (n—1)(k+1)(3nk +2n—5k — 2k? —2)
> .
Equality holds if and only if G =K +S,,_.

4. Conclusion

The Zagreb indices have been successfully used in many QSAR/QSPR studies.
A study of weighted Harary indices of apex trees and k-apex trees has been done in [9].
In this paper we determined the upper and lower bounds for Zagreb indices of k-apex
trees. We also characterized the extremal graphs for these indices. It would be
interesting to derive similar results for other famous indices for example Randic index,
sum connectivity index, eccentric connectivity index etc. of k-apex trees.
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