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THE SECOND DUAL OF VECTOR-VALUED LIPSCHITZ ALGEBRAS

Emamgholi Biyabani1, Ali Rejali2

Let (X ,d) be a locally compact metric space, 0 < α 6 1 and E be a Banach algebra such
that the linear span of character space ∆(E) be norm-dense in E∗. Then lip0

α (X ,E)∗∗ is isometrically
isomorphic as Banach algebra with Lipα (X ,E∗∗). We show that lip0

α (X ,E) is Arens regular and
2−weakly amenable Banach algebra.
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1. Introduction

Let (X ,d) be a metric space and B(X) (resp. Cb(X)) indicates the Banach space consisting of
all bounded complex-valued functions on X , endowed with the norm

∥ f∥sup = sup
x∈X

| f (x)| ( f ∈ B(X)).

Take α ∈ R with α > 0, then Lipα X is the subspace of B(X), consisting of all bounded complex-
valued functions f on X such that

pα( f ) := sup
{
| f (x)− f (y)|

d(x,y)α : x,y ∈ X , x ̸= y
}
< ∞.

It is known that Lipα X is endowed with the norm ∥.∥α given by

∥ f∥α = pα( f )+∥ f∥sup;

and pointwise product is a unital commutative Banach algebra, called Lipschitz algebra.
Let (X ,d) be a metric space with at least two elements and (E,∥.∥) be a Banach space over

the scalar field F(= R or C) for a constant α > 0 and a function f : X −→ E, set

pα ,E( f ) := sup
x ̸=y

∥ f (x)− f (y)∥
d(x,y)α ,

which is called the Lipschitz constant of f . For any metric space (X ,d), any Banach algebra E and
any α > 0, we define the Lipschitz algebra Lipα(X ,E) by

Lipα(X ,E) := { f : X −→ E : f is bounded and pα ,E( f )< ∞},
with pointwise multiplication and norm

∥ f∥α,E := pα ,E( f )+∥ f∥∞,E .
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The Lipschitz algebra lipα(X ,E) is a subalgebra of Lipα(X ,E) defined by

lipα(X ,E) = { f : X −→ E :
∥ f (x)− f (y)∥

d(x,y)α −→ 0 as d(x,y)−→ 0}.

If X is a locally compact metric space, then lip0
α(X ,E) is a subalgebra of lipα(X ,E) consisting of

those functions tend to zero at infinity. The elements of Lipα(X ,E) and lipα(X ,E) are called big
and little Lipschitz operators, respectively. Set,

|∥ f∥|α,E := max{∥ f∥∞,E , pα ,E( f )},
for all f ∈ Lipα(X ,E). The ∥.∥α,E and ∥|.∥|α,E are equivalent norms on Lipα(X ,E). Let Cb(X ,E)
be the set of all bounded continuous functions from X into E. For each f ∈ Cb(X ,E), define the
norm

∥ f∥∞,E := sup
x∈X

∥ f (x)∥,

and for f ,g ∈Cb(X ,E) and λ ∈ F, define

( f +g)(x) = f (x)+g(x), (λ f )(x) = λ f (x), (x ∈ X).

It is well known that (Cb(X ,E),∥.∥∞,E) becomes a Banach space over F and Lipα(X ,E) is a linear
subspace of Cb(X ,E), see [5]. If E is a Banach space (resp; algebra), then (Lipα(X ,E),∥.∥α,E),
(lipα(X ,E),∥.∥α,E) and (lip0

α(X ,E),∥.∥α ,E) are Banach spaces (resp; algebras) of Cb(X ,E), see
[4].

It is clear that the Lipschitz algebra Lipα(X ,E) contains the space Cons(X ,E), consisting of
all constant vector-valued functions on X . The Lipschitz algebras were first considered in [2, 13].
There are valuable works related to some notions of amenability of Lipschitz algebras, [7, 9, 10]
discussed amenability of vector-valued Lipschitz algebras. [3, 12] investigated some properties of
vector-valued Lipschitz algebras.

Bade, Curtis and Dales [1] studied that if (X ,d) is a compact metric space and
0 < α 6 1, then the second dual space of lipα X is isometrically isomorphic to Lipα X . The method
of their proof is an adaptation of one due to de Leeuw [6] who proved the result, when X is the
circle group T. It was shown in [8] that (lipα X)∗∗ is isomorphic to Lipα X in the case that X is a
manifold. In [14], author studied Lipα(X ,B) and (lipα(X ,B))∗∗, where X is a compact metric space
and B is a Banach space. In general, Lipα(X ,B) is not Banach algebra, unless B is a Banach algebra.
Moreover, he claimed that lipα(X ,B)∗∗ and Lipα(X ,B) are isometrically isomorphism as Banach
algebras. In this paper, we improve these results in a general case.
Moreover, we study that if (X ,d) is a locally compact metric space, 0 < α 6 1 and E is a Banach
algebra such that the linear span of character space ∆(E) is a norm-dense in E∗, then lipα(X ,E)∗∗ is
isometrically isomorphism as Banach algebras with Lipα(X ,E∗∗). Also, we prove that lip0

α(X ,E) is
Arens regular and 2−weakly amenable.

2. Preliminaries

Let (X ,d) be a metric space and α > 0. Lipα(X ,E), lipα(X ,E) and lip0
α(X ,E) are vector

spaces, Banach spaces and Banach algebras whenever E is so, respectively. Also, if (X ,d) is a
metric space and E is a Banach algebra, then Lipα(X ,E) is a commutative (unital) Banach alge-
bra if and only if E is a commutative (unital) Banach algebra. Let E be a ∗−Banach algebra and
f ∗(x) = ( f (x))∗ for x ∈ X and f ∈ Lipα(X ,E), then pα( f ∗) = pα( f ) and ∥ f ∗∥∞,E = ∥ f∥∞,E so that
Lipα(X ,E) is a ∗−Banach algebra.

It is easy to see that f ∈ Lipα(X ,E) if and only if σ ◦ f ∈ Lipα X for all σ ∈ E∗. Also, let
(X ,d) be a normed space, α > 1 and E be Banach algebra. Then Lipα(X ,E) = cons(X ,E).

Let (X ,d) be a compact metric space and 0 < α 6 1 and E be a Banach algebra, then
∆(C(X ,E)) = {∆x,σ : x ∈ X , σ ∈ ∆(E)}, where

∆x,σ ( f ) = σ( f (x)), ( f ∈ Lipα(X ,E), x ∈ X).
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Define φ : X ×∆(E)→ ∆(C(X ,E)) where (x,σ)→ ∆x,σ . Then φ is a bijection and
∆(C(X ,E)) = X ×∆(E), see [11]. We set

∆(lipα(X ,E)) = {φ |lipα (X ,E) : φ ∈ X ×∆(E)} := {∆l
x,σ : x ∈ X , σ ∈ ∆(E)},

∆(lip0
α(X ,E)) = {φ |lip0

α (X ,E) : φ ∈ X ×∆(E)} := {∆0
x,σ : x ∈ X , σ ∈ ∆(E)},

and

∆(Lipα(X ,E)) = {φ|Lipα (X ,E) : φ ∈ X ×∆(E)} := {∆L
x,σ : x ∈ X , σ ∈ ∆(E)}.

Let A be a commutative Banach algebra. Then the radical of A denoted by Rad(A), is defined
by

Rad(A) := ∩φ∈∆(A) kerφ.
Clearly, Rad(A) is a closed ideal of A. Also A is called semisimple if

Rad(A) = {0}.

Lemma 2.1. Let (X ,d) be a metric space, E be a commutative Banach algebra and
0 < α 6 1. Then the following statements are equivalent.
(i) Cb(X ,E) is a semisimple Banach algebra.
(ii) Lipα(X ,E) is a semisimple Banach algebra.
(iii) lipα(X ,E) is a semisimple Banach algebra.
(iv) E is a semisimple Banach algebra.

Proof. (iv) =⇒ (i) Let x ∈ X and θx : Cb(X ,E)→ E is defined by θx( f ) = f (x). Then θx is linear,
continuous and epimorphism. Thus

θx(Rad(Cb(X ,E)))⊆ Rad(E) = {0}.
So

Rad(Cb(X ,E))⊆ ker(θx) = { f : f (x) = 0}.
Hence Rad(Cb(X ,E))⊆ ∩x∈X ker(θx) = {0}. So Cb(X ,E) is semisimple.
(i) =⇒ (iv) Let φ : E →Cb(X ,E), define by φ(z) = φz, where φz(x) = z for x ∈ X . Then φ is linear,
isometric and homomorphism. Hence

φ(Rad(E))⊆ Rad(Cb(X ,E)) = {0}.
But φ is one-to-one, so Rad(E) = {0}.

(ii) =⇒ (iv) Let φ : E → Lipα(X ,E) defined by φ(z) = fz, where fz(x) = z for x ∈ X . There-
fore ∥ fz∥α ,E = ∥z∥= ∥ fz∥∞,E for each z ∈ E. Hence

φ(Rad(E))⊆ Rad(Lipα(X ,E)) = {0}.
Then Rad(E) = {0}.
(iv) =⇒ (ii) Let σ ∈ ∆(E) and φσ : Lipα(X ,E) −→ Lipα X define by φσ ( f ) = σ ◦ f . Then φσ is
linear, continuous and epimorphism. Thus

φσ (Rad(Lipα(X ,E))⊆ Rad(Lipα X)⊆ ∩x∈X δx = {0},
where, δx(g) = g(x) for g ∈ Lipα X . Hence

Rad(Lipα(X ,E))⊆ ∩σ∈∆(E) kerφσ = { f : σ ◦ f (x) = 0, σ ∈ ∆(E), x ∈ X}
= { f : f (x) ∈ ∩σ∈∆(E) kerσ , x ∈ X}
= { f : f (x) ∈ Rad(E), x ∈ X}= {0}.
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(i) =⇒ (iv) Let φ : E → Lipα(X ,E) defined by φ(z) := fz, where fz(x) = z for x ∈ X . Then
∥ fz∥α ,E = ∥z∥= ∥ f∥∞,E for each z ∈ E. Thus φ is well-defined.
Also,

φ(Rad(E))⊆ Rad(Lipα(X ,E)) = {0},
and φ is one-to-one, so Rad(E) = {0}.
(iii)⇐⇒ (iv) is similar to (ii)⇐⇒ (iv).

�

Recall that (X ,d) is called uniformly discrete if there exists ε > 0 such that d(x,y)≥ ε for all
x,y ∈ X with x ̸= y.

Lemma 2.2. Let (X ,d) be a uniformly discrete metric space, E be a Banach algebra and α > 0.
Then Lipα(X ,E) = B(X ,E) with equivalent norms.

Proof. Suppose that (X ,d) is uniformly discrete. Thus there exists ε > 0 such that for all x,y ∈ X
with x ̸= y, we have

d(x,y)≥ ε.

Suppose that f ∈ B(X ,E), we have

pα( f ) = sup
x ̸=y

∥ f (x)− f (y)∥
d(x,y)α ≤ 1

εα sup
x ̸=y

∥ f (x)− f (y)∥ ≤ 2
εα ∥ f∥∞ < ∞.

It follows that f ∈ Lipα(X ,E). Moreover

∥ f∥∞ ≤ ∥ f∥α ≤ (1+
2

εα )∥ f∥∞,

and consequently B(X ,E) = Lipα(X ,E) with equivalent norms.
�

3. Second dual of vector-valued Lipschitz algebras

Let (X ,d) be a compact metric space and 0 < α 6 1. Bade, Curtis and Dales [1] showed that
(lipα X)∗∗ ∼= Lipα X isometrically isomorphic as Banach algebras.
In this section, we generalized it for locally compact metric space (X ,d) and vector-valued Lipschitz
algebras with a different proof. In fact, we show that

lip0
α(X ,E)∗∗ ∼= Lipα(X ,E∗∗).

Let (X ,d) be a locally compact metric space, E be a Banach algebra and 0 < α 6 1, x ∈ X and
σ ∈ E∗. Then ∆0

x,σ ∈ lip0
α(X ,E)∗, where ∆0

x,σ ( f ) = σ( f (x)) for all f ∈ lip0
α(X ,E)∗.

Also, if σ ∈ ∆(E) then ∆0
x,σ ∈ ∆(lip0

α(X ,E)). We need the following Lemma which its proof follows
immediately form [12, Theorem 5.3].

Lemma 3.1. Let (X ,d) be a locally compact metric space, E be a Banach algebra and 0 < α 6 1.
Then the linear space of {∆0

x,σ ; σ ∈ E∗, x ∈ X} is norm-dense in lip0
α(X ,E)∗

We now state the main result of the paper.

Theorem 3.1. Let (X ,d) be a locally compact metric space, 0 < α 6 1 and E be a Banach algebra
such that the linear span of character space ∆(E) is norm-dense in E∗. Then

lip0
α(X ,E)∗∗ ∼= (Lipα(X ,E∗∗),∥|.∥|α ,E∗∗),

isometrically isomorphic as Banach algebras.
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Proof. We the map φ : lip0
α(X ,E)∗∗ −→ Lipα(X ,E∗∗) is defined by

[φ(F)(x)](σ) := F(∆0
x,σ ), (F ∈ lip0

α(X ,E)∗∗, σ ∈ E∗, x ∈ X),

where,
∆0

x,σ ( f ) = σ ◦ f (x), ( f ∈ lip0
α(X ,E)).

Clearly, ∆0
x,σ ∈ lip0

α(X ,E)∗.

If F1 = F2, then F1(∆0
x,σ ) = F2(∆0

x,σ ). Thus

[φ(F1)(x)](σ) = [φ(F2)(x)](σ) (σ ∈ E∗).

Hence φ(F1)(x) = φ(F2)(x) (x ∈ X) and φ(F1) = φ(F2). Therefore φ is well defined. It is obvious
that φ is linear.
Now since

∥∆0
x,σ∥= sup

∥g∥α,E61
|∆0

x,σ (g)|= sup
∥g∥α,E61

|σ ◦g(x)|

6 sup
∥g∥α,E61

∥σ∥∥g(x)∥

6 ∥σ∥ sup
∥g∥α,E61

∥g∥∞,E 6 ∥σ∥,

it follows that
|[φ(F)(x)](σ)|= |F(∆0

x,σ )|6 ∥F∥∥∆0
x,σ∥ (σ ∈ E∗, x ∈ X),

and so ∥φ(F)(x)∥∞,E 6 ∥F∥ for F ∈ lip0
α(X ,E)∗∗. Hence ∥φ∥6 1, and φ is continuous. Also,

∥φ(F)(x)−φ(F)(y)∥E∗∗

d(x,y)α = sup
∥σ∥61

|φ(F)(x)(σ)−φ(F)(y)(σ)|
d(x,y)α

= sup
∥σ∥61

|F(∆0
x,σ )−F(∆0

y,σ )

d(x,y)α ,

and
|F(∆0

x,σ )−F(∆0
y,σ )|

d(x,y)α 6
∥F∥∥∆0

x,σ )−∆0
y,σ∥

d(x,y)α

=
∥F∥

d(x,y)α sup
∥g∥α,E61

|σ ◦g(x)−σ ◦g(y)|.

Hence

pα,E∗∗(φ(F)) = sup
x ̸=y

∥φ(F)(x)−φ(F)(y)∥E∗∗

d(x,y)α

6 sup
x ̸=y

sup
∥σ∥61

sup
∥g∥α,E61

∥F∥|σ ◦g(x)−σ ◦g(y)|
d(x,y)α

= sup
x ̸=y

sup
∥g∥α,E61

sup
∥σ∥61

∥F∥|σ ◦g(x)−σ ◦g(y)|
d(x,y)α

= sup
x ̸=y

sup
∥g∥α,E61

∥F∥∥g(x)−g(y)∥
d(x,y)α

= sup
∥g∥α,E61

sup
x ̸=y

∥F∥∥g(x)−g(y)∥
d(x,y)α

= sup
∥g∥α,E61

∥F∥pα,E(g)6 ∥F∥.
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Hence pα,E∗∗(φ(F))6 ∥F∥. Define

∥φ(F)∥α ,E∗∗ := max{∥φ(F)∥∞,E∗∗ , pα ,E∗∗(φ(F))}

Then ∥φ(F)∥α,E∗∗ 6 ∥F∥< ∞, and so φ(F) ∈ Lipα(X ,E∗∗). We show that
∥F∥ 6 ∥φ(F)∥∞,E∗∗ since the linear space of {∆0

x,σ : ∥σ∥ 6 1, σ ∈ E∗, x ∈ X} is norm-dense in
lip0

α(X ,E)]∗ by Lemma 3.1. Thus suppose that f := ∆0
x,σ , so

|F( f )|= |F(∆0
x,σ )|6 ∥φ(F)∥∞,E∗∗ .

Also, if f := ∑n
i=1 ci∆0

xi,σi
such that ∑n

i=1 |ci|6 1 and ∥σi∥6 1 Then

|F( f )|6
n

∑
i=1

|ci||∆0
xi,σi

|6 ∥φ(F)∥∞,E∗∗ .

If f := norm− limγ fγ , where fγ ∈ [lip0
α(X ,E)]∗1, then

|F( f )|= lim
γ
|F( fγ)|6 ∥φ(F)∥∞,E∗∗ .

Therefore
∥F∥= sup

f∈[lip0
α (X ,E)]∗1

|F( f )|6 ∥φ(F)∥∞,E∗∗ 6 ∥φ(F)∥α,E∗∗ .

Hence ∥φ(F)∥α,E∗∗ = ∥F∥, and so φ is a isometry.
Let f ∈ Lipα(X ,E∗∗) and λ := {∆0

x1,σ1
,∆0

x2,σ2
, ...,∆0

xn,σn
} for which xi ∈ X and σ ∈ E∗ with ∥σi∥6 1.

Set
λ1 6 λ2 ⇐⇒ λ1 ⊆ λ2.

Let Vλ :=< ∆0
x1,σ1

,∆0
x2,σ2

, ...,∆0
xn,σn

> and Fλ : Vλ −→ C is defined by

Fλ (
n

∑
1

λi∆0
xi,σi

) :=
n

∑
k=1

f (xk)(σk).

Then ∥Fλ∥6 ∥ f∥α ,E so Fλ ∈V ∗
λ . Also, Fλ is linear and w∗−continuous, so by Hahn Banach Theo-

rem there exists w∗−continuous extension
F̄λ : lip0

α(X ,E)∗ −→ C such that ∥F̄λ∥ 6 ∥ f∥α ,E and F̄λ is w∗−continuous. So there exists fλ ∈
lip0

α(X ,E) such that F̄λ = f̂λ . Put F ∈ w∗− cl{ f̂λ}, then F ∈ lip0
α(X ,E)∗∗ such that φ(F) = f , so

φ is onto.

Now, we show that φ is a homomorphism. Let F,G ∈ lip0
α(X ,E)∗∗, x ∈ X and

σ ∈ ∆(E). Then

F�G(∆0
x,σ ) = F(G�∆0

x,σ ) = F(G(∆0
x,σ )∆

0
x,σ ) = F(∆0

x,σ )G(∆0
x,σ ).

Similarly,
F♢G(∆0

x,σ ) = F(∆0
x,σ )G(∆0

x,σ ).

Hence

[φ(F�G)(x)](σ) = F�G(∆0
x,σ )

= F(∆0
x,σ )G(∆0

x,σ )

= [φ(F)(x)](σ).[φ(G)(x)](σ),

for all x ∈ X , σ ∈ ∆(E). Since the linear span of character space ∆(E) is norm-dense in E∗, it follows
that

φ(F)(x).φ(G)(x)(σ) = φ(F�G)(x)(σ), ,(x ∈ X , σ ∈ E∗).

Then φ(F).φ(G) = φ(F�G).
�
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Corollary 3.1. Let (X ,d) be a locally compact metric space, 0 < α 6 1 and E be a reflective
Banach algebra such that the linear span of character space ∆(E) is norm-dense in E∗. Then
lip0

α(X ,E)∗∗ ∼= Lipα(X ,E).

Let (X ,d) be a compact metric space. Then lip0
α(X ,E) = lipα(X ,E). By Theorem 3.1, the

following corollary is immediate.

Corollary 3.2. Let (X ,d) be a compact metric space, 0 < α 6 1 and E be a reflective Banach
algebra such that the linear span of character space ∆(E) is norm-dense in E∗. Then lipα(X ,E)∗∗ ∼=
Lipα(X ,E).

The following example show that the condition of locally compact is essential in Theorem
3.1.

Example 3.1. Let E be a Banach algebra, then lip0
α(Q,E) = {0} and

Cons(X ,E)⊆ Lipα(Q,E). So {0}= (lip0
α(Q,E))∗∗ ̸= Lipα(Q,E∗∗).

Example 3.2. Let (X ,d) be a uniformly discrete metric space, 0<α 6 1 and E be a Banach algebra.
Then by Lemma 2.2, we have

Lipα(X ,E∗∗) = l∞(X ,E∗∗), lip0
α(X ,E)∗∗ = c0(X ,E)∗∗.

Therefore
c0(X ,E)∗∗ = l∞(X ,E∗∗).

Let A be a Banach algebra and � (resp; ♢) be the first (resp; second) Arens product in the
second duall A∗∗. Then (A∗∗,�) and (A∗∗,♢) are Banach algebras. Also A is regular if and only if
�= ♢. Then algebra A is Arens regular if the algebra (A∗∗,♢) is commutative.

Theorem 3.2. Let (X ,d) be a locally compact metric space, E be a Banach algebra such that the
linear span of character space ∆(E) is norm-dense in E∗ and 0 < α 6 1. Then lip0

α(X ,E) is Arens
regular.

Proof. Define φ : lip0
α(X ,E)∗∗ −→ Lipα(X ,E∗∗) where

[φ(F)(x)](σ) := F(∆0
x,σ ), (F ∈ lip0

α(X ,E)∗∗, σ ∈ E∗, x ∈ X).

Then by Theorem 3.1, φ is isometrically isomorphic as Banach algebras. Let,
F,G ∈ lip∗∗α (X ,E)∼= Lipα(X ,E∗∗). Therefore

F�G(∆0
x,σ ) = F(∆0

x,σ )G(∆0
x,σ ) = F♢G(∆0

x,σ ).

Also,

F�G(
n

∑
i=1

λi∆0
xi,σi

) =
n

∑
i=1

λiF�G(∆0
xi,σi

) = F♢G((
n

∑
i=1

λi∆0
xi,σi

).

Since the linear space of {∆0
x,σ : ∥σ∥6 1, σ ∈E∗, x∈X} is norm-dense in [lip0

α(X ,E)∗]1, it follows
that F�G( f ) = F♢G( f ) for all f ∈ [lip0

α(X ,E)]∗1. Hence

F�G = F♢G, (F,G ∈ lip0
α(X ,E)∗∗)

Therefore lip0
α(X ,E) is Arens regular. �

If (X ,d) is a compact metric space, by Corollary 3.2, the following is immediate.

Corollary 3.3. Let (X ,d) be a compact metric space, E be a Banach algebra such that the linear
span of character space ∆(E) is norm-dense in E∗ and 0 < α 6 1. Then lipα(X ,E) is Arens regular.

If A is a commutative Banach algebra which is Arens regular such that A∗∗ is semisimple.
Then A is 2− weakly amenable Banach algebra, see [7, Corollary 1.11].
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Theorem 3.3. Let (X ,d) be a localy metric space, E be a commutative regular and semisimple
Banach algebra such that the linear span of character space ∆(E) is norm-dense in E∗ and 0 < α 6
1. Then lip0

α(X ,E) is 2−weakly amenable.

Proof. By Theorem 3.1, we have lip0
α(X ,E)∗∗ ∼= Lipα(X ,E∗∗) and by Lemma 2.1,

Lipα(X ,E∗∗) is semisimple so lip0
α(X ,E)∗∗ is semisimple and by Theorem 3.2, lip0

α(X ,E) is Arens
regular. Then by [7, Corollary 1.11], lip0

α(X ,E) is a 2−weakly amenable. �
Corollary 3.4. Let (X ,d) be a compact metric space, E be a commutative regular and semisimple
Banach algebra such that the linear span of character space ∆(E) is norm-dense in E∗ and 0 < α 6
1. Then lipα(X ,E) is 2−weakly amenable.
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