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COMPACTNESS OF THE COMPLEX GREEN OPERATOR IN A STEIN
MANIFOLD

Sayed SABER!

Let X be a Stein manifold of dimension n and let Q be a bounded pseudoconvex
domain with smooth boundary bQ in X. If 1 < q <n — 2, n = 3 and if bQ satisfies
both (B;) and (Pp_q_1), then the Green operator G, is a compact operator (and so is
Gn_q—1). Moreover, we show that the compactness in the d -Neumann problem on
locally convexiable domains, yield the corresponding characterization of
compactness of the complex Green operator(s) on these domains.

Keywords: 0 and d-Neumann operators, pseudoconvex domains, Stein manifold.

1. Introduction and main results

On b, 0 induces the tangential Cauchy-Riemann operator ;. The 0, operator is
not only important in several complex variables, it is also important in the theory
of partial differential operators. Let d;, be the L,-adjoint of d,, and O, = 0,0; +
0;0,, be the Kohn Laplacian. If 0 < g <n—1, O, is invertible (on (ker(d,)*
when g = 0, and on ker(d;)* when ¢ = n — 1 with inverse Gq- Gg is the complex
Green operator.

The phenomenon of symmetric requirements at levels Yand (n — 1 —q) was
pointed out by ([1], p.289). He associates to a (0, g)-form ¥ on bQ) and (0,n — 1 —
q) -form @ (obtained through a modified Hodge- * construction) such that ||u|| =
léll, 9, = (—1)9(0;u) and 9,8 = (—1)7(d,u), modulo terms that are O(||u]l).
Consequently, a compactness estimate holds for (0, g)-forms if and only if the
corresponding estimate holds for (0,n—1—q)-forms. In view of the
characterization of compactness on convex domains [2], such a symmetry between
form levels is absent in the 0-Neumann problem.

The 9, complex on the boundary of a complex manifold was first formulated by
Kohn-Rossi [3] to study the boundary values of holomorphic functions and
holomorphic extensions. In [4], Catlin introduced a weakened version of complex
Hessian blow up condition and instead requires only that there exist
plurisubharmonic functions with arbitrarily large complex Hessians. He calls this
condition property (P) and its natural generalization to (0, q)-forms, called(F,), is

now a well-known sufficient condition for compactness of the d-Neumann operator
(see [5, 6]).
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When bQ) is the boundary of a smooth bounded pseudoconvex domain in C", the
operators dy, hence d; and O, have closed range in L2(bQ)was shown in [6, 7, 8],
this property has been established in [9] for compact pseudoconvex orientable CR-
submanifolds of hypersurface type of dimension at least five. In [9], Raich and
Straube showed that if the boundary b{l of a smooth, bounded, pseudoconvex
domain in C"satisfies (B;) and (P,-1—4), then G, is a compact operator on
L3 4 (b9).

The goal of this article is to generalize this result to the case when b() is a
boundary of a bounded smooth pseudoconvex domain in a Stein manifold. More
precisely, if 1 < g <n— 2, n = 3 and if bQ satisfies both (F;) and (Pp,_1_4), we
prove that G, is a compact operator (and so is G_1-4). Our methods involve 0-
techniques follow [10], a jump formula in the spirit of Shaw [6], and a detailed
study of compactness of the d-Neumann operator N on the annulus between two
pseudoconvex domains. Moreover, we also show that compactness of G, implies
compactness of Nyon (p, g)-forms on Q. Finally, if bQ is locally convexifiable then
(P;) and (P,_1_4) is equivalent to compactness of G, (see [11] as well).

Theorem 1.1. Let Q) be a bounded pseudoconvex domain with smooth boundary

in a Stein manifold X of dimensionn andlet 1 < g < n — 2, n > 3. If bQ satisfies
both (F;) and (P,_1_4), then G, and G,_;_,; are compact operators on L%,,q(bﬂ)
and L}, _1_q(bQ), respectively.

The proof of Theorem 1.1 can be obtained in several steps. First, we prove the
compactness estimates of the d-Neumann problem on an annulus between two
pseudoconvex domains in a Stein manifold. Second, a compactness of the 9 -
Neumann operator on such domains. Third, we prove compactness of the canonical
solution operators for d;, on the same annulus. Finally, we prove the existence and
compactness of the complex Green operator.
Theorem 1.1 and the results of Raich-Straube [10] and Fu-Straube [11, 12]
immediately allow us to characterize compactness of the complex Green operator
on smooth bounded locally convexifiable domains.
Theorem 1.2. Let Q be a smooth bounded locally convexiable domain in a Stein
manifold X of dimension n and let 1 < g <n —2, n = 3. Then, the following
statements are equivalent:

(i) The complex Green operator G4is compact.

(i1) Both Gzand G,,_;_4 are compact.

(iii) The 0,-Neumann operators N, and Nj,_;_, are compact.

(iv) bQ satisfies both (F;) and (Pp_1_4).
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(v) bl does not contain (germs of) complex varieties of dimension g nor of
dimension (n — 1 — q).
In fact, on a locally convexifiable domain, compactness of N is equivalent to each
of (iv) and (v), at level g (see [11, 12]). By Theorem 1.4 in [10], (ii) implies (iii).
Also, (iii), (iv), and (v) are equivalent on these domains, and by Theorem 1.1, they
imply (ii). (i) and (ii) are equivalent by the symmetry in the form levels for d,,.

2. Basic Properties

Let X be a complex manifold of dimension n with a Hermitian metric c. Let
(1 cX be an open submanifold with smooth boundary bQ) and defining function p
so that |dp| = 1 on bQ. Denote by Ly, ...,L,, a C® special boundary coordinate
chart in a small neighborhood U of some point z, € bQ, i.e., L; € T*%n U N Q
with L; tangential for 1<i<n-1 and <L;, Lj >=6;;, where §;; is the
Kronecker symbol. Note that L;(p) = 0for1 <i <n—1 and L,(p) = 1. Denote
Ly, ...., L,, the conjugate of Ly, ..., L,, respectively; these form an orthonormal basis
of T%C on U. The dual basis of (1,0) forms are w?, ..., w™ = V2 dp. Set ¢;; and p;;
to be the coefficients of 0d¢ and 00p, respectively. That is 0d¢p =
Yik=19@j ! A@® and 90p =X}ioqpjx @/ A@F. For two (p,q)-forms
f=%1,fiyo'A@) and g=3;,9;;0' A&/, where 0<pq<n I=
(i1, - ip) and | = (jy, ..., Jq) are multiindices and w' = w' A .. A 0P, @/ = &' A
..\ @, one defines (f,g) = Xy, f1; g1 Let A, p,q)be the space of (p, g)-forms
at z equipped with the standard Hermitian metric and let C5% (£2) be the space of
complex-valued differential forms of class € *and of type (p, q) on Q. The Cauchy-
Riemann operator 0: Cpg-1(Q) — €574 (Q) is defined by
n

5f=ZZZkf,J TN A+, @2.1)
LK j=1
where the dots refer to terms of order zero in f. Let Dy, ,(U) be the space of (p, q)-

forms f on U such that

fiy =0on bQ) whenn € J. (2.2)
Thus, for forms f € D (U),
n

of = (—1)P—1225]fpﬁ,j,(w' AGK 4 e, 2.3)

IK j=1
where 6].(” = e%L;(e™?) and the dots indicate terms in which no f;; and f; jxare
differentiated and which do not involve ¢. We use Lf,,q (Q, @) to denote the space
of (p, q)-forms with coefficients in the space of square integrable functions L?(Q)
with respect to the weighted function e~®. For a real function ¢ in class C?, the
weighted L%,-inner product and norm is defined by
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<f.92p= [F.reav and IF I =<f.f >,
QO

where dV is the volume element induced by the Hermitian metric. Let
0: L%, a Q) — lf,‘qH(Q) be the maximal closure of the Cauchy-Riemann operator
and 0 "be its Hilbert space adjoint. The space of the harmonic (p, q)-forms is
defined by X, ,(Q) = {u € Dy, 4 (Q): du=0"u= 0}
The d-Neumann operator Ny: L%,‘q Q) — l?,’q (Q) is the inverse of the restriction of
O, to (R, , (@)Y, where o, = 00" + 0*0 is the complex Laplacian operator. For
nonnegative integer k, one defines the Sobolev space

WE(@) = {f € L2,g(@): IIf Il k(g < +o0}.
where the Sobolev norm of order k is defined by

1f 1 gy = j S Ipefiav

QO lalsk

) a2n
) , for = (ay, ..., azy), la|l = Xa;, xq,...,%2p

Where D% = (—)al (

0x4
are real coordinates for ().
Definition 2.1. A compactness estimate is said to hold for the d -Neumann problem
on Q if for every M > 0 there is a constant C; > 0 such that the estimate
lllZ; ) < MQ(at,w) + Cullullyss o

is valid for all u € dom @ N dom 0* c L%,,q(ﬂ). Here Q(u,u) refers to the form
Q(u,u) = ||u”i]2),q(9) + “ au”if,,q(n) + | 0"u
Sobolev norm of order —1 for forms on ().

Definition 2.2. The boundary b{Q satisfies (F,) if for every positive number
M, there exists Uy, C bQ, Ay, € C?(Uy) so that forall z € Uy, and v € Az pq) >

(Ho<Ay <1,

(2) XFk=14k(2) (z,v) = M|v(2)|?, for all z € bQ, where Ay (2), j, k =
1,2,..,nis defined by 004(2) = X} yo1 A(2) @/ A"

Definition 2.3. Forany u € L}, ;_;(bQ), if for some a € L2 ;(b(), we have

fu A Of = (COP* fpanf,

for every f € Cy2pn—1-4(X), then u is said to be in domdj, and d,u = f.

The 9, operator is a closed, densely defined, linear operator from
Lf,'q_l(bﬂ) to Lfq(bQ), where 0 <p<n,1<qg<n-1.

Definition 2.4. Dom 0;, is the subset of L%,,q (bQ)) composed of all forms f
for which there exists a constant € > 0 such that

|< £, 0pu >pa| < C llullpgs

d
6x2n

2
|L]2)Iq(Q)and ”u“W];}l(Q) refers to the
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for all u € dom 0,. For all f € dom 0, let d;f be the unique form in L2 ;(b€)
satisfying
< 0,f u >pa=< f,0puU >pq,
for all #<dom 0p. Let O, = 0,05 + 0;0p: dom O, — L3 ;(bQ) be the Jj-
Laplacian ~operator defined on domn, = {u € L3 ;(bQ): u € dom d, N
dom d5; 0, € dom 0}, and d;; € dom 0, }. The space of harmonic forms X5 , (bQ2)
is denoted by
Kb ,(bQ) = {u € D, ,(Q): pu = dju = 0}.
Following [13]; Proposition 1.3, the d,-Laplacian operator is a closed, densely
defined self-adjoint operator. One defines the complex Green operator
Gq: L5 (b)) — dom O,
as follows: If « € X} (), set Gya = 0. If @ € Rang O, define G, = B, where B
is the unique solution of OpB = a with § L X} . (1), and we extend G, by linearity.
It is easy to see that G, is a bounded operator.

3. Proof of Theorem 1.1

This section deals with the main result of this article. The proof of Theorem 1.1 can
be obtained in several steps.

3.1. Compactness estimates for the @ -Neumann problem

Lemma 3.1. Let X be a complex manifold of dimension n > 3. Let () and , are
two bounded pseudoconvex domains such that Q € Q; c X. We call Q* = Q;\Q
an 'annulus'. Assume the outer boundary of Q* satisfies property (P,), and the inner
boundary satisfies property (P,_4-1). Then, the compactness estimates for (p, q)-
forms, 0 < q < n — 1, holds for the -Neumann problem on Q.

Proof. By a partition of unity argument, we need to prove this lemma for supported
in a small neighborhood of the boundary since Q is elliptic in the interior. Let u be
supported in a small neighborhood U of b}, and let p be a defining function of Q.
Let z, € bQ, and let M be a positive constant. Since Q™ satisfies (P;) at bQ, there
is a plurisubharmonic function A1 € C* () with 0 < A* < 1, such that forall z €
by,

n
z 1 (2) 5, = M]t]?. (3.1)
jk=1
By continuity of the second derivative of A, there exists a neighborhood U
(dependent of M) of z, such that A* € C*(U) and (3.1) holds forall z € U n Q.
Let Au denotes the sum in (2.1), then one obtains
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n n
— 2 - -
”Au”?p = ZZ”L]uU”q) - Z Z < Lkul‘jK ,L]'ul‘kK >(P' (32)

L] j= LK j,k=1
Let Bu denote the sum in (2.3), one obtains

IBullf, = (=1)P~ 1226 upjgw’ A@X + (1P 122( jo)upjrw’ Ak (3.3)

LK j=1 LK j=
Since Au and Bu differ from @ and 0* by terms of order 0 which do not depend
on ¢, it follows from (3.2) and (3.3) and by d1rect calculation that

182 z (Ajkulﬂ{iul kK) + f z z Pjklrjx Ukx e~ ?dS +

LK jk=1 unbQ LK jk=1
- 2 = 2
5; ZlnL,.u,,,n(p < C llully +2|| 3’ ’ 3.4)
M J=

Since ¢ = y(A') € C*(Q,) satisﬁes% < e~ ? <1, it follows from (3.4) that

n n
1 _ 1 B _
%Z Z (Ajkuz,jx’uz,kx)(p +§ f Z Z PjrlUsjx Uk e~ ?dS

LK jk=1 UnbQ, LK jk=1

n
1 — 2 R
+7) DlEull] < c it +2] aulf’

1] j=1
Since Q% is pseudoconvex domains at b(),, it follows from (3.5) that
j lul2dV < C [lull? + 2|| du|”
unQ,
Let S5, = {z € X: —6; < p(2) < 0}. Since bQ; is compact, by a finite covering
{U,}7%, of bQ; by neighborhoods U, as above, there exists a positive number &;
(depend on M) such that
2 2
M lul?dv <c (Qaww + Il (o+1). (3.6)
Since b} satisfies property (F;) at b{), there is a plurisubharmonic function A2 e
C®(Q)with0 < A% <1, suchthatforallz€ UNQ,
n

Z 2 (2) ity = M|t|%. (3.7)
k=1
For every(t,, ..., t,) € C". By continuity of the second derivative of A2, there exists
a neighborhood U (dependent of M) of z, such that 2> € C*(U) and (3.7) holds for
allzeUNQ.LetA=—A%andletp = y(1%) € C*(Q). Noticethat —1 <1 <0

andp = y(1) = %el_ Thus %e‘l < e ¥ < e~* Hence (3.4) implies

(3.5)
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n

Z Z ]kuI]KlquK) + f Z Z PjrUrjk Urkk € Ads

k=1 Uan IK jk=1
n
1 T 2 ’ = 2
+§Z]Z||Ljuulll < C'llullf + 2 Jull; (3.8)
]
>t NEwl3 = oy el L |} + ul.

Then we get thatif j <n
— 2 2 _ 2
IZwrs |l = 67w jucll < ey sty >at fyopg piilns|” e72dS

= O(ILullllwlly).
Thus, for @ > 0, it follows that

L] j=1
1 n-1 n-1
2 -
Tt a ZZ”‘SJ'A”UKHA B f 11|u11| e~ dv i — Cyllull}
Lk j=1 una L] j=1
n-1

l .= n—
“17a fzz pyjluyl e ds (3.9)

unbQ L] j=1
From (3.8) and (3 9) and by taking ¢ = 8 i.e., 12(1 + a) = 108, one obtains

108 f zz( "u"fK'al,kK)a_zzlﬂuzﬂze‘ﬂ v

unQ \ LK jk=1 1] j=1
1 - ) $ :
ts f z Z (ot e Terc) —Zzpjﬂuzﬂ e
unbQ \ LK jk=1 1] j=1
1 - $
2 — 2
F I 6t lds = > [1Tw |
17 j=1 17 j=1

< ¢'1% 4 2| gul; (3.10)
In the second line of (3.10), the integrand (without the weight factor) is therefore
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n n
_ 2
PjkUrjk Uk — Pjj |u,,]|

LK jk=1 j=1

<P]k <Z pkk) ]k)uI]K U ki (3.11)
IK jk=1

. 2
This is because every |u1, ]| can be written in precisely g ways as |u,, jK| . Note

that the Hessian of p is negative semi definite on the complex tangent space at
points of bQ © bQ" . As a result, the second line in (3.10) is nonnegative: the right
hand side equals at least |u |? times the sum of the smallest g eigenvalues of the

Hermitian matrix
-1
<P;k - (z pkk) ]k) .
j,k=1

Such a sum equals minus the trace of Y.7C1 pyx plus a sum of ¢ eigenvalues of

-1 ) .
(p jk);'lk—l’ hence is at least equal to the negative of the sum of the largest (n — 1 —
.' -1 : :
q) eigenvalues of (ij);lk_la and so is nonnegative. For each z € b(), we may

. . n-1 . . .. .
diagonalize (ij)j k_lunder a unitary transformation and the positive semi-

definiteness is invariant under such transformation. Thus
n-1

1 n—1
<ij - E(Z pkk) 5jk> .
k=1 j k=1

is positive semidefinite in U N b . Observe that as in (3.11), the integrand (without
the weight factor e ~%) in the first line in (3.10) is then
n n

_ 2
z z Ajicly jk Up ek — z z /1jj|u1,]|

LK jk=1 LK j=1

= Z Z <Ajk - = (Z Akk) 5jk) Uy jk Uy ki
TR k=1 I\i=

These terms can be estimated by the right hand side of (3.10) plus

C,1||e"1/2u||‘2NBh(Q+

in the first line are restricted so that no normal components of u appear, and the
-2/2

) as in [10]. Thus, estimate (3.10) remains valid when the sums

2
Ul o

second and third lines from (3.11) (in its modified form), we obtain for u supported
in a special boundary chart:

right hand side is augmented by C,1||e ) Omitting the nonnegative
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n 1 n-1
fz z Aj — = zﬂkk Sjie | jic Upjece~*dV
T\i=

unQ LK jk=1 B 5 A ,
< C (Ml + | aully + 5 ull,) + Calle™2ully,, gy (312)

We use (3.12) with A = —pu,, near the support of u, where u,, satisfies (1) and (2)
in Definition 2.2 of (P,_1—4). At a point, the integrand on the left hand side of

(3.12) (without the exponential factor) is at least as big as |u|%times the sum of the
smallest g eigenvalues of the Hermitian matrix

n—-1
1
<(_.uM)jk ~3 (kZ (.uM)kk) 5jk> |
=1 Jjk=1

Such a sum equals minus the trace of Y.7C1(up )k plus a sum of ¢ eigenvalues of

o*u

n-1

((yM) J'k);l;il’ hence is at least equal to the negative of the sum of the largest (n —
1 — q) eigenvalues of ((HM) J'k):-l;y which in turn is at least equal to the sum of

the smallest (n — 1 — q) eigenvalues of ((yM) J'k);l;il’ (by the Schur majorization

theorem ([14], Theorem 4.3.26). That is, the sum is at least equal to the sum of the

0%uy
az]-az‘k

n-1
smallest (n — 1 — q) eigenvalues of ( ) , S0 1s at least equal to M. After
k=1

absorbing the term C ||u||i% 4@ and rescaling M, it follows that

2 2 2
M [ v < ¢ (0w + Tullfy or) + Cullulyy o
UnQ,
Let S5, = {z € X: =6, < p(2) < 0}. Since bQ is compact, by a finite covering
{U,}7-, of bQ by neighborhoods U, as above, there exists a positive number &,
(depend on M) such that

2 2 2
M flul v < ¢ (Qww) + lullfy (qr)) + Curllulliys v (3.13)
582
LetSs = S5, U Ss,, where § = min{dy, 6,}. Then, by (3.6) and (3.13), one obtains
2 1 2
M f ul?dv < ¢ (Qww) + ull?y (qr) + C'ullulliyss (oo ) (3.14)

Now, we estimate the integral over Q+\S,. Choose y5 € C5°(Q") so that y5(z) =
1 whenever p(z) < —6 and z € Q*\S,. For a constant s still to be determined we
have the inequality

2 2 1 2
||y6u||L]2),q(Q+) < S“V(Sullw%)’q(g+) + B ||V6ullwa%l(g+) (315)
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On the other hand, since Q is elliptic, by Gdrding's inequality, there is a constant
C, depending only on the diameter of the domain Q% such that

lysullds (e < G (QQswvsw) + vsullyy (o+))
< 262(“}/5(0_11)”?%“(9” + ||y6(6_*u)||i%1q(9+)
v A1l oy + s 8Tl o)+ vsulEy o
< 0ullig oy *+ 1970l oy + CollullEy o (.16)

Since the sum of the commutator terms is bounded by Cg||u||? for some constant
C5 dependent of §. From (3.15) and (3.16), for a suitable choice of s small, we get

2 2
lysulify (o) < 2Cos (QCww) + ||u||11]2)lq(9+))
2 2
+26,Csslullly o) + 5 ulysy ooy G
By combining (3.14) and (3.17), one obtains

Mluly ooy < [ lul?av + Mllysuliy o)
Ss

< (C; + 2C,sM)Q(u,u) + (C; + 2C,sM + ZCZC3SM)||u||i%q(Q+)
1 M 2
+ (€' + %) lullyoy v )
Now, we choose small s and large M so that % + 2C,s + 20,035 < % and so that
% + 20,5 + 20,035 < g . Then, one obtains the compactness estimate
lullZ, () < 2000 + Cellullys v ) (3.18)
where C, = 2 (6’7’" + i) Thus, the proof follows

3.2. Compactness of the 0-Neumann operator

An immediate consequence of the basic estimate (3.18) is the following
result whose proof can be found in H rmander [15]. The closed range property of
d is observed in this section by combining the compactness estimate with results in
H 6 rmander [15].

Lemma 3.2. Let X be a complex manifold of dimension n. Let () and Q, are two
bounded pseudoconvex domains such that O € Q; € X. We call * = Q;\Q an
'annulus’. Assume the outer boundary of QO satisfies property (F,), and the inner

boundary satisfies property (P,_;_q). Then, forl < q <n—2, n = 3, we have
(i) The space of harmonic forms 8, ,(Q") is finite dimensional.
(ii) The operator 6__has closed range in L2 4 (Q*) andL§ 44, (QF).
(iii) The operator @ has closed range in L% ;(Q")and L5, ,_, (Q*).
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(iv) The d-Neumann operators Né2+ is compact from L%,,q Q) to itself.
(v) The canonical solution operators to d given by d*N$': 12 ,(Q*) —
L5 q-1(Q%) and Nél:ld_*: L q+1(Q1) — 15 4 (Q) are compact.

(vi) The embedding of the space dom d N dom 9*, provided with the graph

norm ||u||L2 FOR || 6u|| into L2 4 (Q*) is compact.

L3 q(Q) L2 q(@
Proof. Inequality (3.18) implies that, from every sequence {U,}™, in domd N
dom 9y, with |luyll;,, bounded and du, — 0, d;, u, — 0, one can extract a
subsequence which converges in (weighted) L%,,q(QJ’). It suffices to find a
subsequence which converges in W, 3 (Q%) (using that L, ; (Q%) — Wy 2(Q%) is
compact); (3.18) implies that such a subsequence is Cauchy (hence convergent)
In L%,,q Q). General Hilbert space theory (H o rmander [15]; Theorems 1.1.3 and
1.1.2) now gives that Npq(Q+) is finite dimensional and that 0: L3 ,(Q*) —
pq+1(Q+) and al (Q+) — L
have the estimate

2
Il o) < £QCw ) + CollHaullly oy

for u €dom @ Ndom 0*. This estimate implies the existence of Ngas a bounded
operator on L%,,q(QJ’) that inverts O, on X, ,(Q%). Moreover, the range of
0:12 4(Q%) — 12 ;,1(2*) has finite codimension in kerd c L3 ,(Q*), because
R, q(Q)is finite dimensional). But the (unweighted) orthogonal complement of
this range in kerd c L3 ,(Q") equals X,,(Q%), which is therefore finite
dimensional as well.

- 1(Q%) have closed range. Therefore, we

(3.19)

To see the compactness of NQ+, it suffices to show compactness on
R, q(Q5) (sinceJerfJr is zero on X, ,(Q%)). When u € 85 ,(Q%), we have from
(3.19) (since N3 u € 85 ,(Q1))

2 — 2
N8 P12, oy < aNé”fIIL;q(m) o
= ||(a*N&

Nmfan )

& f IILZ Ly 320
Thus, we only need to show that both 3* N and d N +1 are compact. Now 0* N,?: 1

gives the weighted norm minimizing solution to du = f when f €Imd c
L2 q+1(Q+) For such f, (3 18) therefore implies (with constants independent of M)

NQ 1f” 2 (Q+)

L2 q(@*)
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< _”f”AM

Wpt (Q+)

;N f||W5}l (@) (3.21)
Because C is independent of M and O_IMN,{;;'CIH L8 41 (QF) — Wi (QY)
compact (L*(Q*) imbed compactly into W™*(Q")), (3.21) implies that "N, is
compact on Im 0 ([16], Lemma 2.1, [17], Proposition V.2.3). But on the orthogonal
complement ofImd, 9* N(?H = 0, and so "N} +1 is compact from L2 bq+1(Q7) to

< —
=y ”f”Lf),q(Q"'

L% q(Q%). To estimate 9" N, we cannot invoke (3.18) directly (because ] "Ng is a

(q — 1)-form), and an additional step is needed. We have (again for f € Imd
Lpq(2%)
P.q

=y 2 == + +
| q+1f||L]2)Iq(Q+) =< aaAMiV)?M,qfl N)?M,qf >21M
=< f' N)?M qf >AM
< E||f||iM — || Aqull
< S, + 5119 L g vt s ooy

Here we have used that f =0 and that f LR, (Q%) (since feImad c
L%, q(Q%)) in the equality in the second line, the inequality |ab| < iaz + eb?, and

(3.18) for the last estimate. The middle term in the last line can now be absorbed,
and combining the resulting estimate with

| LZ (Q+)
gives an analogue of (3.21). The rest of the argument is the same as above. (vi)
follows from (3.18) as in Lemma 1.1 in [12].

Now, we establish the global regularity for N. From the estimate (3.18) we
can derive a priori estimates for N in the Sobolev k -space.
Corollary 3.3. A compactness estimate (3.18) implies boundedness of the 0-
Neumann operator N in W,% (Q*) for any k > 0.
Proof. By a standard fact of elliptic regularization, one sees that the global
regularity for the d-Neumann operator holds if

2 2
”u”Wk (Q+) < ”Dullwk (Q+), (3 22)
for any u € C57(Q%) N dom O, and for any positive integer k. Moreover, since the
operator O, it is non-characteristic with respect to the boundary. Hence
2 2
”u”WlS’q(Q+) < Ilullwlé_qz(ﬂ-'—) + ”Ak 1l)u”]_‘z (Q+) (323)
where A is the tangential differential operator of order £ . By (3.18) we have
||D/1‘1u||ié’qm+) < Q(u, U) + C”u”\ZNE%l(QJ')

f”LZ (,Q+)
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In fact, it follows by the non-characteristic with respect to the boundary of L,,; the
operator D can be understood as D, or A.
Now we estimate the last term of (3.23), we have

_ 2 _ 2
||/1k 1Du||L%'qm+) < ||D/1 1Aku“L§,q(Q+) + C||ull

< Q(Aku, A¥u) + Cllul|

2
wikgt@ah)
2

wgt@h)

<< A*ou, Aku >12 ,ah T ||[5, Ak]u” + ||[5*,/1k]u||

2 2
L3 g1 L3 g%

+[100,18%, 41l e

+ ||/1k_2D2u||

2
L3 q(@")

+ ||/1k_1Du||

+||[0%, [0, A*]]u| + Clull

2
wigt@h

2
+ Cllull

2
< || 4*ou|| 12 (01 L2 q(2%) ‘Z’Vléif(m)

+ Cllull

2
LZ g%

2 k-1 2 2
= IlDuIlW]ﬁ,q(ﬂJr) + ”A Du||Lf)’q(Q+) Wity

2

13 (aH)°an
be absorbed by the left-hand side term. By induction method, one obtains the
estimate (3.22).

where the second inequality follows by (3.18). Then the term ||A*~* Du|

3.3. Compactness of the canonical solution operator

In this subsection, we produce a compact solution operator for d, on the annulus
between two pseudoconvex domains in a Stein manifold. To do so, we follow Shaw
([6]) in representing a d,-closed form u on the boundary as the difference of two
d-closed forms, @~ on Q and a* on the complement: = a* — @~ . Then, roughly
speaking, property (F;) lets us solve the equation dp~ = a”on Q, with suitable
compactness estimates, while property (P,_;1_4) let’s us do the same for Bt =
a™ on an appropriate 'annular' region surrounding Q.

Lemma 3.4. Let X be a Stein manifold of dimension 7 and let (1 be a
bounded pseudoconvex domain with smooth boundary in X . If b(} satisfies both
(Pp) and (P,_1_4), then, forevery 1 < g <n — 2, n = 3, there exists a compact
solution operator ~ S: L2 ;(bQ) N ker(dy,) - L3 ;-1 (bQ)
such that 0,5 = I.

Proof. By embedding X into ¢2**1, we can pullback a ball containing the image of
bQ) to obtain a strictly pseudoconvex set B such that Q € B . Let Qt = B\Q . In
[18] a Martinelli-Bochner-Koppelman type kernel constructed for Stein manifolds,
and in [19] the transformation induced by this kernel satisfies a jump formula. As a
result, there exists an integral kernel K, ({, z) of type (p,q) at z and (n —p,n —
1 — q) at { satisfying a Martinelli-Bochner-Koppelman formula such that one can
define

a’(z) if zeQ’

jMKq@,z)Aa(:):{a(z) 7 reo
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Where at(z) = K*a(z) if ze Qtanda (z2) =K a(z) if ze QifzeQ
(see [18]; Section 2.3). Let a € Cyg(bQ) N ker d and let k be a fixed nonnegative
integer. From [20], Lemma 9.3.5, there exist 0-closed forms a*(2) € Cp’fq ahH c
W,k Q") and a™(2) € CF,(Q) WK (Q)such that we have the decomposition
a=at—a~ on bQ.

Moreover, we also have the estimates:

”a+llw—1/2(g+) < Clla [[ 2 pay, (3.24)

”a_”W—l/Z(Q) < Clla |l .2poy- (3.25)
Since Q is pseudoconvex, one defines u~ = 0*NJa~, where Ni* denotes the 0-
Neumann operator for the domain (). By using Theorem 6.1.4 in [20], it follows
that u~ e W, } (Q), 0u” = a~ and

DU 17200,y < @ lhy-1r20, ) < Cllt llzony,

for some constant Cin dependent of a. Restricting u~ to the boundary we have

d,u~ = Ta~ on bQ and using the trace theorem for Sobolev spaces, one obtains

u- < C||Du~ < (Cllx . 3.26
e Mz < CIDUTN 3 < Clla oo (3.26)

Similarly on QF, one defines u* = d *N§+a+, where N,?+ denotes the 0-Neumann

operator for the domain QF and u* € W;‘/qz_l(QJ'), ut € W;‘/qz_l(QJ'), oput =

a*and uis one derivative smoother than a* in the interior of Q*. Also, by using
Theorem 6.1.4 in [20], it follows that
DU llyy-1200y < Clla 1720050 < Cllt 2oy

for some constant C in dependent of. Restricting u* to bQ' we have du* =
ta*ton OF and by using the trace theorem for Sobolev spaces, one obtains

et oo < CIDUNL 3 < Clla iz, (327)
for some constant € independent of « . Letting

u=u"—u" on bQ.
Then d,u = ta on bQ. We also have from (3.26) and (3.27),
I L2y < Clla [lL2pa) (3.28)

where C is independent of a. (3.28) was derived for a € (4 (bQ). But Cp(bQ) N
ker 0, is dense in ker 9, ([20], Lemma 9.3.8). In view of (3.24) and (3.25), (3.28)
then implies that & maps bounded sets in ker 9, © L%,,q (bQ) into relatively compact

sets in L%,‘q (bQ). Both Né2+ and Nc‘f are compact (QF satisfies the assumptions in
Lemma 3.1). Thus 5*N§+ and 5*N§I2 are compact in W;'{JZ(QJ') and W&{f Q),
respectively (again from [21]). The embedding W¥2(Q%) — L2(Q") and

W2(Q) — L2(Q) are also compact. Then, « is compact on ker d,, hence on
12 (be).
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3.4. Existence and Compactness of the Complex Green Operator

In this subsection, we must show that G, is compact and by the symmetry between
form levels, G;,_;—4 s then compact as well. From (3.28), the range of d,,, denoted
by Rang 0,, is closed in every degree. Then, we have ker d,=Rang d;, and the
following orthogonal decomposition: ) ) )
L% 4(bQ) = ker 0, ® Rang d;, = Rang d), @ Rang 0y,.
Repeating the arguments of Theorem 8.4.10 in Chen-Shaw [20], one can prove that
for every @ € dom d,, N dom 05,
lall? < ¢ (|sel® + 1052]|”) = € < Bpa, @ >< Climyallilal,
ie., lall < Clloyall. (3.29)
Since O, is a linear closed densely defined operator, then, from Theorem 1.1.1 in
[15], Rang O, is closed. Thus, from (1.1.1) in [15] and the fact that O is self
adjoint, we have the Hodge decomposition
12 q(bQ) = rang 0, @ X2, (bQ) = 0,0;dom 0, @ 9;0,dom Oy,
Since Oy is one to one on domO, from (3.29), then there exists a unique bounded
inverse operator  G,:rang O, — dom O, N (X2, (bQ))*
such that G,0,a =a on domO,. We can write O,G; =1 on dommO,nN
(g (bQ))*. From the definition of G,, we extend G, to L2 ;(bQ) one obtains
OpGq =1 on L3 4(bQ). For u € L2 ;(bQ2), we have the Hodge decomposition
u = 0,0,Gqu + 0,0,G u.
([20], Theorem 9.4.2). In particular, if d,u = 0, 9;; Gqu gives the canonical solution
to the equation d,a = u. G4 can be expressed in terms of these canonical solution
operators at levels g and g + 1 and their adjoints ([22], p. 1577):
Gq = (55661)*(5;661) + (5ZGq+1)(5;Gq+1)*-
This formula is analogous to the corresponding formula for N, ([5, 12]). Thus,

compactness of G, is equivalent to compactness of both d;G, and 0j; G4 .

From Lemma 3.4, the canonical solution operator d,G, is compact on
L%,,q(bﬂ). We now considera_;Gqﬂ. bQ also satisfies (Pg41) (because (F;) =
(Pg+1))- By assuming that 2q < (n — 2) and since g < (n — 2 — q), thus b(Q) also
satisfies (Pn—l—(q+1)) = (Pp-2-¢)- Consequently, the previous case applies (with
greplaced by (q + 1)), and 9;; Gg4+1 1s compact. Since we may assume without loss
of generality that g < (n — 1 — q), i.e. 2q¢ < (n — 1), in proving Lemma 3.4, the
only case left to consider is 2qg = (n — 1). We argue as follows:(a_qu)*, the
canonical solution operator to d;, is compact because 9;; Gq is. Because ¢ — 1 =

n—1—(q + 1), the symmetry yields a compact solution operator for 9, (as an
operator from (p,q)-forms to (p,q + 1)-forms). Thus, the canonical solution
operator 0;,Gg.1 is compact. Thus, the proof of Theorem 1.1 follows.
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