U.P.B. Sci. Bull., Series C, Vol. 75, Iss. 2, 2013 ISSN 2286 — 3540

CONTEXT BASED SYSTEMS ARCHITECTURE

Alexandru PETCULESCU?

Some of the most dynamic systems being built today consist of physically
mobile hosts and logically mobile agents. Such systems exhibit frequent
configuration changes and a great deal of resource variability. In this article we
present the idea used by context-aware systems, continuing with a practical example
- a semantic matching algorithm. Finally we present results obtained in the
implementation of this algorithm and our conclusions.

1. Introduction

The current era in computer science is an era of integration where users are
allowed to access different resources and applications anyplace, anytime under no
constraints. This diffusion requires an appropriate support in terms of application
platforms that adapt to different scenarios and supports application mobility and
increased complexity.

In this dynamic environment the software development increases in
complexity as the setting is more open and dynamic compared to the traditional
environment. In these terms the applications need an opportunistic behavior which
is highly adaptive and dependent on resource availability, resources that may be
transient in nature. The trend in software development for this environment is not
to eliminate the complexity and burden, but to reduce this complexity by shifting
as much logic as possible to the support infrastructure. Here a high abstraction
level will provide the developer increased power in code development and
solution architecture.

The term of context-aware computing refers to a system that is capable to
explicitly detect and adapt to environment changes, e.g. an interruption of a video
service due to network failure, low battery exception, or appearance in the
network of certain resources. Most of the current facilities that support context-
awareness regard simple measurements like temperature or location that are
measured by host sensors. But there are times when the applications need to go
beyond the basics and then the programmer needs to include more complex
processes including communication and discovery. In the traditional network
concepts the connection persists extended periods of time while in the ad-hoc
network the frequent disconnections implies a significant increase in the

! PhD Student, Computer Science Department, University POLITEHNICA of Bucharest,
Romania, e-mail: alexp@microsoft.com



78 Alexandru Petculescu

programming effort. The paradox is that the mobile devices need access to a
broader area of resources than common systems, making the problem of acquiring
and maintaining connection to resources a problem of great interest. In a static
paradigm a programmer simply declares the resource that the application needs.
For the mobile paradigm we need a solution that maintains the access to specific
resources despite environment’s rapid changes caused by mobility, software
components’ migration and connectivity changes. An example would be a device
that needs access to a printer and as the user moves a printer should be available
as any printer is available in wireless coverage. Today this task may be fulfilled,
but the coding of this workflow cannot be easily implemented as in traditional
paradigm. In fact for a developer to implement this scenario he should deal with
constant discovering of the wireless neighbors while maintaining existing
connections. Our idea is that we may implement this at a middleware level that
would make transparent to the user the process of identifying and maintaining
access to the resources declared in the application.

In this article, after a brief introduction of dynamic environments we will
address the problems rising in mobile and dynamic applications and all the
necessary measures that need to be fulfilled in order to have an adequate
environment dedicated to running this type of applications. The rest of the article
will present a semantic matching algorithm used in context-aware applications
and the results obtained by implementing this algorithm.

2. Context-Aware middleware requirements

In comparison to conventional applications the mobile paradigm applied to
computing environment arise new issues that make service availability a critical
problem in application development. Mobility is the key in this new paradigm
here both in terms of users and devices. Users should be able to access their
applications from any point even while on the move roaming between access
points maintaining continuous connectivity. In the mobile paradigm network
disconnections are frequent for users’ devices as long as they are both voluntary
in order to preserve battery power or costs and involuntary while on the run as
wireless connectivity is lost. Another problem arising is the degree of
heterogeneity in terms of devices — screen resolution, computing power, operating
system, memory — and network technologies.

The most important issue in pervasive computing is the challenge in
distributed resource retrieving and operating and destroys some assumptions of
the traditional service based scenarios. This impact is created by a new meaning
of the notion of context. There have been some definitions for the term of context
[1]. In this paper from now on the term context will refer any information used for



Context based systems architecture 79

describing the state or the activity of an entity or the environment where it
operates.

The traditional middleware is independent in term of resource availability
from user location and device properties as it relies on a static context. Changes in
a static environment in terms of resources are small, predictable and rare. The
traditional middleware systems are designed for a static context making
transparent to the user the low level details of the network and provide
applications a transparent view of the execution platform. In this new paradigm
the context is very dynamic and can’t be foreseen as context variations are
frequent.

Thus supporting mobile applications in dynamic environments becomes an
important problem as it requires to present information about location, system
level data as device properties, environment conditions etc. all of them creating
the before mentioned context. The logic of the context behavior should be clearly
separated from the service logic reducing the complexity of the development of
the services that are part from the mobile paradigm.

These considerations create the need for designing a new middleware
platform that supports context driven applications. The key features here are:

e The application management layer should interact with underlying
layers in order to retrieve information that helps decision taking
mechanisms based on user’s context and device characteristics. This
layer interaction should enable the middleware to dynamically collect,
represent and process context driven information and push it to the
application level.

e This level of the middleware dedicated to context driven information
processing should not interfere nor modify the application logic.

3. Current work in context modeling

In the last few years context information management systems came into
researchers focus in order to create suitable models for them. The first attempts
were directed towards context modeling for particular applications or classes of
applications but soon they discovered that a better alternative is to direct their
efforts towards a generic approach for a context provisioning model so that it
would fit many different applications. The first approaches have been fulfilled in
order to obtain a model that would get to an agreement in terms of common
information that has to be collected as location, identity and time, but the term



80 Alexandru Petculescu

context is still subject to different interpretations and one purpose is to define this
concept as generic as possible leaving applications the possibility of extending
and refining the concept of context accordingly.

The definition for the right model of context representation is an important
step in the designing of context-aware application. Context-aware term first
appeared in literature in [1] describing the context as location, identity
information of persons in vicinity together with objects and their changes.
Another definition worth looking over is given by the same authors: "any
information that can be used to characterize the situation of entities (i.e., whether
a person, place or object) that are considered relevant to the interaction between a
user and an application, including the user and the application themselves" [2]. Of
course there are several others definitions in literature but the one described
earlier are the ones that we will take into account in this thesis.

Below we will explore the most relevant approaches to context modeling
and we will classify them conforming to the data structures used for representing
the context correlated with the corresponding system.

o Key-Value. This model is the simplest data structure used for keeping
context information. Schilit et al. [3] used this model to provide
context information as values to an environment variable of an
application. This model is used in many implementations of service
discovery frameworks where the functionalities are described as a list
of attribute-value pairs used in the discovery procedure. An example
of a framework that uses this example is Jini [4]. The advantage of the
key-value model is that is easy to manage but the disadvantage is that
it has no capabilities to model a more complex structure needed by
efficient context collecting algorithms.

e Markup scheme. Markup scheme models are modeled as a
hierarchical data structure by using markup tags for the attributes. The
content kept by markup tags is defined by other markup tags
recursively. Typical way of utilizing markup scheme model is to
describe metadata by using eXtensible Markup Language (XML).
XML is a textual language used to describe arbitrary data structures in
machine-readable form by utilizing documents called XML Schemas.
By using XML Schemas it is possible to pre-determine the format,
vocabulary and the structure of an XML document. Consequently, this
forces the designers of an application, which utilizes the XML



Context based systems architecture 81

Schema, to comply with the requirements of the given XML Schema.
Hence, all the documents complying with the XML Schema are
unambiguous to both machine and human readers. XML Schemas are
well-suited in the mobile service landscapes due to their
computational lightness.

Graphical model. A well-known modeling tool is the Unified
Modeling Language (UML) together with is graphical interface —
UML diagrams. The UML is a suitable tool for modeling the context
information because of its generic structure. Its best example in
defining an object based on its context is the approach used in Entity-
Relationship(ER) diagrams used in database representation diagrams
making it easy for representing an entity and keeping the
representation in a relational database.

Object-oriented model. This model uses concepts from object
oriented programming as encapsulation and reusability in the concept
of context modeling. The idea is to rely on an abstract definition of an
object and encapsulate the details about information collection and
processing and hide it from the application level and offering only
relevant information using interfaces. An example here is the TEA
project [5] and their concept of cues that offers an abstraction of
sensors: a function that takes a sensor as an input and returns the
symbolic representation of a particular context.

Logic-based models. Uses facts, expressions and rules in order to
represent the context. This model uses the logic in order to represent
the conditions that takes initial facts and expressions and applies the
logical conditions to get to a derived set of expressions and facts.
These logical conditions are in fact a set of rules applied by logical
expressions. Logic based models have in common a formalization in
context processing and representation. An example from this category
is the GAIA framework [6] using first-order predicate logic in order to
formally represent the context. There are different logic types inferred
in this model — other solutions adopting fuzzy logic for representing
the context.



82 Alexandru Petculescu

o Ontology-based models. Ontology is *“a formalization of a
conceptualization” according to Gruber [7]. Ontologies allow context
description using explicit formalisms. There is a new approach in
context representation using semantic based context as semantics
allows knowledge sharing and reusing. As an example is the CONON
approach used by Wang et al. [8].

4. Context-awareness based on semantic metadata

The solution for supporting context based application and to permit correct
application management is the use of metadata in implementing the model for
context information representation and the decisions in the application behavior
having clearly separated the management layer from the logic layer of the
application. Metadata is used in describing the context information of a system
and its structure together with the management operations abstracted.

Metadata effectiveness is based on the language used for implementing
metadata specifications and the environment that act as running platform for the
metadata. Metadata specification should use declarative languages to ease the
understanding of users of different levels, to reduce the overhead spent in
metadata reusing and modification and to easily highlight potential conflicts and
inconsistencies. Metadata runtime is responsible for metadata maintenance and
policy operations independent from application logic. In the sections below we
will look over the existing models for metadata specification together with
examples of current middleware platforms that use metadata to acquire context-
aware adaptation of running applications.

Considering these conclusions the following guidelines for designing a
new middleware platform for mobile devices emerged:

e Context-awareness support. This new middleware should offer
context information to support its representation and management.
The middleware needs to push context information to the application
level and to provide adaption strategies based on this context.

e Semantic metadata support. A type of metadata defined in an
unambiguous manner making it easy to be interpreted by a computer.
This middleware should reason about metadata and the entities it
describes and take the appropriate decisions based on the information
provided.



Context based systems architecture 83

5. Mobile Services Discovery

In a mobile environment a user that joins the network is able to access all
the resources available in that network anytime, anyplace accordingly to the rights
he is granted in the network and using all the connectivity options provided by the
mobile device. Due to this assumption that a user is allowed to access public
services when join a network it means that we need a mechanism that allows
dynamic discovery of the services a user needs to fulfill his goals, minimizing the
costs of service discovery, binding and configuration in terms of user’s
involvement, discovery based on users context e.g. his geographical position.
Because we are talking about a mobile environment the service discovery task
becomes a complex task due to terminal heterogeneity, service availability which
may change frequently and environment conditions change quite often. The
services that a user needs to discover in order to fulfill their goals are not known
beforehand and the providers are supposed to promote their services to users that
held devices with different technical capabilities not known until the interaction
time. More than that, service developers cannot know and code all the existing
configurations a device can have at access time — and here we include data format
and discovery protocol.

In order to attain a supportive solution for pervasive environments we have
to work in the area of service discovery and retrieval. The discovery model needs
to move from network oriented discovery to context oriented discovery. In this
new mobile concept the old model based on network infrastructure or
administrative domain isn’t versatile enough to allow a proper definition of
discovery boundaries and an automatic selection of the proper service. The central
piece of the puzzle now is the user and the user’s context. The discovery solution
we are looking for should take advantage of the user’s context in order to retrieve
the services list and select the proper service for the task. This would bring great
benefit in users experience as it would save time and effort in service discovery
and selection as the searching would be constrained to certain scopes based on
user context.

As no assumptions can be taken for good about a user’s context and
services operate in an open and dynamic environment the need of semantic
language adoption becomes a crucial point. The first advantage brought by the use
of semantics is the formal representation of context and service properties in an
abstract manner. Another advantage is automated interpretation of the context and
service representation. More than that allows interoperability of initially unknown
entities. Service retrieval could also benefit from the use of semantics as
traditional queries are likely to fail in pervasive environments as a user doesn’t
have all the identifiers needed in order to call a service. Discovery matching based
on service attributes isn’t suitable here as it relies on exact keyword matching.



84 Alexandru Petculescu

Our approach in this perspective is to use metadata in order to represent the
properties of the entities in a mobile network and automatically infer requested
capabilities compared to offered capabilities of a service. The automatic inferring
is based on semantic matching algorithm as described in next chapter.

6. Semantic matching algorithm

In this section the algorithm used for semantic matching between user
requests and service profiles is presented.

The figure 1 is a pseudo code representation of the semantic matching
algorithm that has as inputs a required and an offered capability and returns the
compatibility degree in terms of semantics. A capability is described by its
properties. By offered capability we understand individuals — class instances — and
by requested capability we understand a class explained by restrictions and
service properties restrictions are user defined values. The algorithm iterates
through capabilities collection taking into account each required capability and
consider its relation with a compatible offered capability. There are three possible
cases of relations between an offered capability and a required capability: the case
when the offered capability is an exact instance of the required capability (is
class), the case where the offered capability is a superclass of the required
capability (is superclass), and the case where the offered capability is a subclass of
the offered capability (is subclass) [9]. These relations are computed by reasoning
about the values and the class types of offered and required capabilities. If we
have an exact match for all capabilities then there is full capability between the
user’s request and the service requested. If we don’t have an exact match, than we
evaluate the compatibility based on preferences. We consider subclass and
superclass cases compatible if there is a user preference that states that a certain
constraint may be relaxed over that particular property.

Let’s now evaluate an example: we consider V the vocabulary that
describes the service ontology expressed in OWL-DL (SHOIN(D)). Then we take
C as a class in V that describes a concept capability. C’ is a concept that is
subsumed by C in the ontology interpretation. C” is a concept that C is subsumed
by. We consider now a user request having a capability that is specified by a set of
restrictions contained by C. We now have the following situations:



Context based systems architecture 85

e Case is class. This is the easiest case when the offered capability is a
capability of type C. So both the offered capability and required
capability are instances of the same class C and we compare the
values of the characterizing properties of the offered capability against
the values of the requested capability in order to fulfill the restrictions.

e Case is subclass. The offered capability is capability of type C’. In
this case the required capability is of a type that is a super class of the
type of the offered capability. In our case the values of the properties
that characterize the offered properties satisfy the restrictions of the
required capability. So in the case where the offer is more specific
than the request usually it offers the same properties as the superclass
and some specific properties. But it may be the case where some
properties from the superclass are not defined in the subclass as they
may have no meaning in the subclass (E.g. We have a Vehicle class
and a Rocket subclass; Number of wheels property in Vehicle class
has no meaning for Rocket though it is not defined). In this situation
the algorithm behavior depends on the user preferences. If the
property is relaxed in terms of priority or is optional than it is set as
compatible with the request.

e Case is superclass. The offered capability is capability of type C”. As
C’ is a superclass which is more generic than the requested capability,
any property constrained in the request that exists in the superclass
will have an assigned value in the offered capability.

The use of priorities in requested capability definition is used in
calculating the degree of compatibility between offered and requested
compatibilities. Another use of the compatibility may be to establish the order
used for checking compatibility for requested/offered capabilities. This
prioritization may be consider among the key features of MASF as it allows
service properties evaluation based in the importance assumed in the request. This
feature allows a flexible filtering of the services in the process of discovering the
personalized view of the available services corresponding to a particular user.



86 Alexandru Petculescu

Is OFFERED_CAP type of REQUESTED_CAP?
if (is class)
{
foreach REQUESTED in CAP_PROPERTIES

{
1. Identify OFFERED

/I find corresponding offered capability for the requested one
2. Does OFFERED satisfy REQUESTED?
if (true)

success match for REQUESTED

else
set compatibility level to REQUESTED

}

if (is superclass)

{
foreach REQUESTED in CAP_PROPERTIES
{

/I super-class restrictions
1. Identify OFFERED
2. Is OFFERED an instance of REQUESTED_RESTRICT or superclass ?
if (superclass)
i. create restriction that includes REQUESTED
ii. use it as REQUESTED restriction
if (class)
same as class case
3. Does OFFERED satisfy REQUESTED?
if (true)
superclass success for REQUESTED
else
set compatibility level REQUESTED

}
If (is subclass)
{
foreach REQUESTED in CAP_PROPERTIES
{
IIsub-class restrictions
1. Identify OFFERED
2. Is OFFERED an instance of REQUESTED_RESTRICT or subclass?
if (subclass)
{
/I check restriction based on sub-property and check if restriction is included in range
if (true)
i. create restriction included by REQUESTED
ii. use it as REQUESTEDrestriction
else
return failure for REQUESTED
}
if (class)
same as class case
3. Does OFFERED satisfy REQUESTED?
if (true)
set subclass success for REQUESTED
else
apply preference to REQUESTED

else
return failure

Fig. 1 Semantic matching algorithm



Context based systems architecture 87

7. Evaluation

The following practical examples were for testing purposes only without
being used in a real commercial scenario. Its purpose was to test and evaluate the
practical use and performance of a service discovery scenario based on semantic
matching algorithm.

Scenario

Tested scenario simulates an event registry system offering support for
registration at different types of events in a commercial area: restaurants, movies,
theaters, concerts.

Assuming that a user Alex that was authenticated in the mobile network
wants to make a reservation at a restaurant he starts discovering available
reservation services based on his requirements. These requirements are provided
in a semantic form as in figure 2. Based on the user request the semantic processor
runs the semantic algorithm in order to create the list of the services that qualify
for the user request. Let’s assume that Alex wants to make a reservation at a
restaurant. The initial scope includes all the restaurants in Alex’s vicinity, but in
the interval 13-14 some of them are closed. Alex wants to make a reservation at
13:30. One of the requirements in Alex’s request is the interval that he wants to
use for reservation, expressed in the semantic form. The matching algorithm will
exclude from the retrieved list the restaurants that are closed in the interval 13-14.
If Alex changes the requirements for reservation to start at 14:00 then these
restaurants won’t be excluded from the list. The dynamic behavior explained is
shown in figure 3.

Performance evaluation

The testing environment used for the comparison of traditional web service
vs. our idea was a virtual lab containing a Microsoft Windows 2008 server with
I1S 7.0 and .NET Framework 3.5. The web services and the semantic algorithm
were implemented using ASP.NET technology and the development language
used was C#.

We simulated an environment conforming to the environment described
above and we used as variables the number of services available as well as the
number of semantic requirements used for reasoning and we measured the
overhead introduced by the semantic matching algorithm. Based on the whole set
of operations — including semantic matching, service invocation, gathering the
results — the semantic matching algorithm takes about 5% of the entire time. Of
course, variations in connectivity conditions may affect significantly the results.
As you can see in the results presented in table 1 we have approximately 9 ms for



88 Alexandru Petculescu

a semantic evaluation over 100 services for one requirement and around 11 ms for
4 requirements over the same test sample.

<base_p:service rdf:ID="RestaurantReservation">
<base_p:profile rdf:ID="Restaurant_Profile">
<base_p:id>
<n:name rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">
Moods Restaurant
</n:name>
<n:location rdf:resource="&locate-ont;MallSecondFloor"/>
</base_p:id>
<base_p:requirement_s>
<io_cap:Endpoint rdf:ID="OutputReq">
<base_p:requires>
<device_cap:DeviceCap rdf:resource="&device-ont;GPS"/>
</base_p:requires>
</io_cap:Endpoint>
</base_p:requirement_s>
<base_p:requirement_d>
<base_p:DynamicReq rdf:ID="DynamicReq">
<base_p:requirementCond>

</base_p:requirementCond>
<base_p:condition>

</base_p:condition>
</base_p:DynamicReq>
</base_p:requirement_d>
<base_p:capability_s>
<io:Endpoint rdf:ID="OutputCap">
<io:outFormat rdf:resource="&format-ont;PlainText"/>
<io:outFormat rdf:resource="&format-ont;HTML"/>
</io:Endpoint>
</base_p:capability_s>
<profile:capability_d>
<profile:DynamicCap rdf:ID="DynamicCap">
<profile:capabilityCond>
<client_cap:ReservationCap rdf:ID="ReservationCap">
<client_cap:bookedEntity rdf:resource="&reserv-ont;Table"/>
</client_cap:ReservationCap>
</profile:capabilityCond>
<profile:condition>
<time:TimeCond rdf:ID="Condition_1">
<time:startTime rdf:resource="&time-ont;09:00"/>
<time:endTime rdf:resource="&time-ont;17:00"/>
</time:TimeCond>
</profile:condition>
</profile:DynamicCap>
</profile:capability_d>
</base_p:profile>
</base_p:service>

Legend:
. Identification
. Requirements
. Capabilities

Fig. 2 Semantic matching algorithm



Context based systems architecture

89

Reservation services available for interval 14:00 - 15:00

Services Included in User dynamic view

Discservice internal.citymall.com
:1024/Services/

AsamiReservation

Requirement_ID=Distservice.int
ernal.citymall.com:1024/
Services,
AsarmiReservation®lsProximity
Valid=true

Requirement_|D=Discservice.inter
nal_citymall.com: 1024/ Services/
AsamiReservationtlsininterval

Walid=true

Services excluded from User dynamic view

Discserviceinternal clitymall.com
11024,/ Services, Grill Reservation

Requirement_|D=Disczervice.int
ernal.citymall.com:1024,
Services

GrillR

Requirement_ID=Discservice.inte
nal.citymall.oom: 1024/ Services)
il vation#lsininterval

raximity

Valid=true

Valid=false

Services Included in User dynamic view

Discservice.internal.citymall.com
:1024/Services/
AsamiResernvation

Requirement_|D=Disczervice.int
ernal.citymall.com:1024,
Services

Requirement_ID=Discservice.inter
nal.citymall.com: 1024/ Services)
Asamil ion#lsininterval

vati imity
Valid=true

Walid=true

Discservice.internal.citymall com
:1024/Services/Grill Reservation

Requirement_|D=Discservice.int
ernal.citymall.com:1024/
Services/

GrillReservation

.ﬁquirement_ll):Disrjervicah\
nal.citymall.com: 1024/ Services/
Ml vation#isininterval

oximity

Valid=true

Walid=true /

Services excluded from User dynamic view

Reservation services available outside interval 14:00 - 15:00

Fig. 3 Dynamic evaluation of requirements

Semantic matching algorithm time performance

Table 1

Semantic Matching Time (ms)

Nr. of requirements

Nr. of service instances

33 66 99
1 7,433 7,832 9,133
2 7,624 8,432 9,624
3 7,989 9,123 10,823
4 8,112 9,155 10,921




90 Alexandru Petculescu

8. Conclusion

As the mobile environments become more and more important in our daily
life, new technologies emerges in order to accommodate this need for mobility.

What | presented in this paper is a semantic service selection algorithm
that may be used in environments where providers and consumers know as little
as possible about one another and they need a way in which they may
communicate and discover one another.

As future improvements we have identified two directions that need
investigating and these are respectively:

e A heuristic-based technique that will improve matching response
time by evaluating only best matched services available and sacrificing
completeness.

e Take into account the security risks that arise in mobile scenarios
between unknown entities — a protection mechanism for protecting users and
controlling service access.

REFERENCES

[1] Anind K. Dey, Gregory Abowd, and Daniel Salber. “A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications.” Human Computer
Interaction (HCI) Journal, 2001.

[2] Anind K. Dey. “Understanding and using context.” Personal and Ubiquitous Computing, 2001.

[3] William N. Schilit. “A System Architecture for Context-Aware Mobile Computing.” PhD
thesis, Columbia University, 1995.

[4] Jini Technology. http://www jini.org/.

[5] Albrecht Schmidt and Kristof van Laerhoven. “How to build smart appliances.” IEEE Personal
Communications.

[6] Anand Ranganathan and Roy H. Campbell. “A middleware for context-aware agents in
ubiquitous computing environments.” In Endler and Schmidt

[7] Thomas R. Gruber. “A translation approach to portable ontology specifications.” Knowledge
Acquisition, 1993

[8] Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng Pung. “Ontology based context
modeling and reasoning using owl.” In PERCOMW, 2004

[9] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara. “Semantic
matching of web services capabilities.” In I. Horrocks and J. A. Hendler. The Semantic
Web - ISWC 2002, page 333 - 347.



