U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 4, 2015 ISSN 1223-7027

SPARSE CODES DERIVED FROM GRAPHS

Shahrooz Janbaz', Zahra Taheri?, Ali Zaghian®

In this paper, we present a method to construct column weight two Low-
Density Parity-Check (LDPC') codes (namely, Cycle codes) from arbitrary graphs
and we obtain a new class of girth twelve LD PC' codes from complete graphs. Also,
we use the incidence matriz of bi-reqular bipartite graphs to construct new sparse
codes and we prove that some classes of these codes are self-orthogonal. The
weight distribution of the later codes are obtained. Also, a conjecture about the
covering radius of these codes are presented with some computational evidences.
This conjecture partially solved for special class of these codes and we posed an
interesting problem in the conclusion. At the end of this paper, the performances
of constructed codes are simulated on Additive White Gaussian Noise (AWGN )
channels.
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1. Introduction

Low-density parity-check (LD PC') codes, introduced by Gallager [1], are linear
block codes with sparse parity-check matrices and implementable decoders. These
codes provide near-capacity performance on a large set of data-transmission and
data-storage channels.

LDPC codes with column weight two have their minimum distance increasing
logarithmically with code size [1]. There are a lot of methods for construction of
LDPC codes based on graphs, finite geometry and design theory, one may see [2] and
the references therein. Recently, cage graph are used to construct column weight two
LDPC codes with wide range of girth[3]. Also, in [4] the authors constructed some
new cycle LDPC codes based on Tanner graphs of LDPC codes. One advantage
of column weight two LDPC' codes are their simple mathematical structure that
allow to compute the parameters of codes. Also, there are some methods such as
superposition on a larger finite field to obtain non-binary good LDPC codes from
column weight two LD PC codes. There are several applications for column weight
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two LDPC codes. For example, in [5],[6] and [7] column weight two codes are
investigated for disk storage because of their low complexity (few edge connection).
In this paper, graph theory is used to introduce some methods for constructing
column weight two LDPC codes. A new class of girth twelve LDPC' codes is
obtained from complete graphs. Also, we use the incidence matrix of a Tanner
graph to construct a new sparse code. The weight distribution and covering radius
of a class of later codes are computed and it is proved that some classes of these
codes are self-orthogonal. We conjectured about the covering radius of a class of
these codes and some evidences are given to confirm this conjecture. Finally, the
simulation results of the constructed codes on AWGN channels are given.

2. Preliminaries

Let Fo = {0,1} denotes the finite field with 2 elements. A binary regular

LDPC code is defined as the null space of a parity-check matrix H over Fy with the
following structural properties: 1) each row has constant weight p; 2) each column
has constant weight . This parity-check matrix, H, is said to be (p,7y)-regular and
the code given by the null space of H is called a (p,7)-regular LDPC code. An
LDPC code is said to be irregular if its parity-check matrix has multiple column
weights and /or multiple row weights.
The parity-check matrix H must be sparse, i.e, the number of 1s in H must be much
fewer than the total number of entries of H. Because of this property, LD PC' codes
are known as sparse codes. Let H be an m X n parity-check matrix of an LDPC
code C. We say that C is an [n, k, d]-code when n is the length of the code C, the
number of columns of H, k is the dimension of the code C, equal to n — rank(H),
and d = d;;, (C) is the minimum distance of the code C. It is known that if d is the
minimum distance of the code C, then each d — 1 columns of H are independent but
there is at least one set of d columns of H that is dependent.

The performance of an LDPC code with iterative decoding depends on the
number of structural properties of the code besides its minimum distance. One such
structural property is the girth of the code which is defined as the length of the
shortest cycle in the code’s Tanner graph. The cycles that affect code performance
the most are cycles of length 4. For codes whose Tanner graphs contain these
short cycles, messages exchanged in iterative decoding become correlated after two
iterations, and decoding either does not converge or converges slowly. Therefore,
cycles of length 4 must be prevented in code construction. This is the case in almost
every method of constructing LD PC codes that has been proposed.

In the sequel, we give some definitions and theorems that will be used in other
sections.

Definition 2.1. [8] A subset S of code bits forms a stopping set if each equation that
inwvolves the bits in S involves two or more of them. In the context of the Tanner
graph, S is a stopping set if all of its neighbours are connected to S at least twice.

Definition 2.2. [9] Let C be a code over Fy of length n. We say that a vector in Fy
is p-covered by C if it has distance p or less from at least one codeword in C. In this
terminology the covering radius Cr(C) of C is the smallest integer p such that every
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vector in Fy is p-covered by C. Equivalently,

Cr(C) = maxmind(z,c),

z€Fy ceC
where d(x,c) denotes the distance between vectors x and c.

Definition 2.3. [10] If C is a linear code of length n over Fo with parity-check
matriz H, the dual code of C is denoted by C+ and is defined as

Ct={xeF}|x-y=0 foralyeC},

where X -y denotes the Euclidean inner product of two vectors x and y.
Also, for the parity-check matriz H, we have C = H*, where

H' = {x e Fy | Hx' = 0}.
We say that a code C is self-orthogonal if C C C, and that C is self-dual if C = C*.

Theorem 2.4. [10, Theorem 2.1] If G = [I; | A] is a generator matriz for binary
linear code C in standard form, then H = [A' | 1,_¢] is a parity-check matriz for C.

Suppose n and k are positive integers, then the number of k-combinations of
n elements is denoted by C(n, k). For any k, 0 < k < n, we have C(n, k) = ﬁlk),
and for k > n, it is defined to be zero. The weight distribution (or weight spectrum)
of a code of length n specifies the number of codewords of each possible weight
0,1,...,n.

Theorem 2.5. [10] Let C be an [n,k,d] code over Fy with weight distribution (A; |
0 < i < n) and let the weight distribution of C+ be (B; | 0 < i < n). Then for
0 <wv < n, we have Mac Williams equation as follows

Z C(n — j,v)A; =287 Z C(n—j,n—v)B;.
=0 =0

Theorem 2.6. [10] Let C be a binary linear code. Then

1) If C is self-orthogonal and has a generator matriz each of whose rows has
weight divisible by 4, then every codeword of C has weight divisible by 4.
2) If every codeword of C has weight divisible by 4, then C is self-orthogonal.

3. New Method to Construct LDPC codes

In this section we construct a new parity-check matrix of an LDPC' code by
using the incidence matrix of a graph. Our notations are standard and mainly taken
from [8] and [10].

Let G = (V, E) be a connected graph with the vertex set V' = {vy,va,..., v}
and the edge set E = {ej,ea,...,e,}. We denote the incidence matrix of the graph
G by I(G), that is an m x n binary matrix with row labels V' and column labels
E such that its ¢j-th entry is 1 iff the vertex v; be an endpoint of the edge e;. We
consider this matrix, I(G), as a parity-check matrix of an LDPC' code derived from
G. We denote the Tanner graph of this parity-check matrix by 7'(G), which has the
check nodes V' = {vy,...,v,} and the variable nodes E = {ej,e9,...,e,}. Note
that the Tanner graph of this parity-check matrix is bipartite with partitions V, E,
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where each vertex in F has degree 2. Also, we know that if G be a Tanner graph
with check nodes X = {x1,...,x5} and variable nodes Y = {y1,..., v}, then by our
method the resulting LD PC' code has the check nodes X UY and the variable nodes
E. Note that each bipartite graph can be seen as a Tanner graph of a parity-check
matrix.

In the following lemma, we will see some elementary properties of Tanner
graph T'(G), for the given graph G.

Lemma 3.1. Let G = (V,E) be a connected graph and D¢, degg(v) and g(Q)
denote the diameter of G, degree of vertex v and the girth of G, respectively. Then
the Tanner graph T(G) has the following properties

1) [V(T(G))| = [V(G)| + |E(G)],

2) |[E(T(G))| = 2|E(G)],

3) DT(G) =2Dq, |

4) degrc)(v) = { ;iegg(v) if v € V() ,

otherwise
5) 9(T(G)) =29(G).

Proof. By the definition of Tanner graph and incidence matrix of Gz, all vertices and
edges of G are the vertices of T(G), so the item (1) is clear. For proving (2), it
suffices to see that the total number of edges in T(G) are twice of the number of
edges of G, since each variable node of T'(G) has degree 2. Items (3) and (5) are
clear, since if we delete the variable nodes in T'(G), the corresponding edges of these
variable nodes still remain, the remaining graph is G. The item (4) is easy and is
left as an exercise. 0

For better understanding of the construction method, we give an example with
some details.

Example 3.2. Let K3 be the complete graph with vertex set {vi,va,v3} and edge
set {e1,ea,es}. Then the graph K3, the incidence matriz I(K3), its Tanner graph
T(K3), and the incidence matriz of this Tanner graph I(T(K3)) are shown in the
following:
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We can generalize our previous example and obtain a family of well structured
LDPC codes. Let 1, = [1,1,...,1]1xn, 0, = [0,0,...,0]1x, and I,, be the n x n
identity matrix.

Theorem 3.3. Let n > 3 be a positive integer and K,, be the complete graph with
n vertices. Then we have

0m—1)n 1,
S e e
I(anl) Infl

Also, the LDPC code that is derived from I(K,), C, = I(K,)*, is the [C(n,2),C(n,2)—
n + 1, 3]-code.

Proof. The graph K, has n vertices and C(n,2) edges, so I(G) is an n x C(n,2)
matrix. Each column has weight 2 and each row has weight n — 1, since each
edge belongs to two vertices and each vertex belongs to n — 1 edges. So, I(K,,) is an
(2,n—1)-regular LDPC code. Now, suppose the vertex set of K,, be {vy,va,...,v,}.
It is easy to see that by deleting the vertex v, and its adjacent edges form K,
we obtain the complete graph K,,_;. Now, suppose we have the matrix I(K,_1).
We add new top row with label v, to I(K,_1) and new n — 1 columns for its
corresponding edges in K, at the end of I(K,_1). By this method, the structure
of I(K,) can be constructed recursively and is the same as presented in theorem.
The column weight of I(kK,) is 2, so its rank is n — 1. Therefore, C,, = I(K,)" is an
[C(n,2),C(n,2) —n+ 1,3]-code, since the girth of T(K,) is six and the minimum
distance of derived code is half the girth of its Tanner graph. This completes our
proof. O

As seen, the girth of the T'(K,,) is equal to six. We can repeat the above
construction to obtain twelve girth code. But before doing this, we need the next
theorem to obtain good structure for the new following codes. Note that for a matrix
A, we denote its transpose by A’.

Theorem 3.4. Let G be a Tanner graph of parity-check matrix H with the check
nodes {ay, az,...,an}, the variable nodes {b1,ba, ..., b;}, and the edge set {e1,ea,... ,en}.
Suppose I(QG) is the incidence matriz of the graph G. Then, there are two matrices

B and C such that I1(G) = [B C]" and BC' = H.

Proof. Let B and C be two matrices with check nodes {a1,...,a,} and {b1,..., b},
respectively. Suppose their common variable nodes are the edges of graph G. By
this notation, it is clear that I(G) = [B C]'. Also, B and C are m x n and k x n
matrices, respectively. So BC" and H have the same size. Let ¢;; be the ij-th entry
of the matrix I(G). We know that t;; = 1 iff a; is one of the endpoints of the edge
ej. But by our construction, the product of the i-th row of B and the j-th column
of C* is 1 iff a;b; is an edge of T(G) iff a; is one of the endpoint of edge e;. But it
is equivalent to the definition of parity-check matrix H and we have BC* = H. [

In the following, we consider I(T'(K,,)) and its Tanner graph which give us a
twelve girth LDPC' code. Also, we use Theorem 3.4 to find the structure of this
parity-check matrix.

By a suitable labelling of the vertices of T'(K,), based on notations in previous
theorem, we obtain a well structured parity-check matrix I(T(K,)). Actually, we
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have

(1)

1) - |

M,
M

|

where Mé =1,®1,_1 and M,% can be constructed recursively, as follows:

Let, see Example 3.2,

110000
001100
000011
ITE) =10 0101 0
100001
(001010 0|
So, we have
001010
M?=]110 00 0 1
010100

Let By, = [bij] be a (n —2) x 2C(n — 1,2) matrix where b;; = 1 when j =i(n —1).
For i, 1 <i <n— 2, let A; be the submatrix of M?2_; of size C(n —1,2) x (n — 2)
such that it begins from the column i(n — 2) 4+ 1. Then we have

0c(n-2,2),2(n—1)

AT Ao
2 _ .
Mn - Opn—2n—1 I, 2 0p—21 : ’
1 0 - 0 1
L 0n72,1 I,2 0n72,n71 Bn J
where
A — A; Oc(n-1,2)1
i 0
1,n—1

In the next theorem, we give some properties of the later constructed codes.

Theorem 3.5. Let I(T(K,,)) be the parity-check matriz of code C,,. Then we have:
1) Cp is an [2C(n,2),C(n — 1,2) — 2,6]-code,
2) Cn = [IC(n—1,2)|MT2L—1(MrlL—1)t]'

Proof. 1t is clear that the number of columns in I(T(Ky)) is n(n — 1) = 2C(n, 2).
Also the number of its rows is n+ C(n, 2) with one dependent row, so the dimension
of Cp is 2C(n,2) —C(n+1,2) — 1 = C(n — 1,2) — 2. Also, the column weight of
I(T(Ky)) is two and its girth is 12. So duin(Cn) = £ = 6. This completes the proof
of part one of theorem. Now, by the structure of I(7T'(K,)) and some elementary
row and column operations, the second part of theorem is obvious. O

Recall that a stopping set S is a subset of variable nodes, such that all neigh-
bours of the variable nodes in S are connected to S at least twice. The size of the
stopping set S is the cardinality of S (for an equivalent definition see Definition 2.1).
In the following lemma, we determine the structure of the stopping sets of our codes.
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Note that, when we say the cycle (stopping set) distribution of a code is Y, ¢;a?,
it means that we have ¢; cycles (stopping sets) with length (size) 1.

Lemma 3.6. Let G be a Tanner graph with cycle distribution )y .-, coix®t. Then the
cycle and stopping set distribution of T(G), Tanner graph of I(G), are Y.<, coiz™
and 2122 co; ", respectively.

Proof. Suppose there exist an [-cycle in G. Since G is bipartite [ must be even.
From the definition of I(G), we obtain a 2l-cycle in its corresponding Tanner graph,
T(G), and it is one to one correspondence. Furthermore, since the degree of each
variable node in T(G) is 2, for every 2l-cycle in T'(G) there exists a stopping set
with size [, and vice versa. Thus we completed the proof. ]

Remark 3.7. By Lemma 3.6, one can easily obtain the cycle and the stopping set
distributions of the Tanner graph of I1(T(K,)).

Recall that the weight of a codeword in a code C is the number of non-zero
elements in this codeword. Let A, denote the number of codewords in C with the
weight w. In the following remark, we give some facts about the amount of A,,, for
some w, in the code C, = I(T(K,))*.

Remark 3.8. Let A, be the number of codewords with weight w in the code C,, =
I(T(K,))*. By a simple calculation, one can see that Ajn—1y = C(n,i), Az >
C(C(n,2),i) and Ap_142; > nC(C(n —1,2),1).

4. Incidence Matrix of the Tanner Graph as a Sparse Code

In the previous section, we introduced a method of construction of LDPC
codes from an arbitrary graph with the incidence matrix of an arbitrary graph.
We know that the subdivision of any connected graph G is a bipartite graph. By
this evidence, we are motivated to construct sparse codes from arbitrary bi-regular
bipartite graphs. As we know, all Tanner graphs of (p,~y)—regular LDPC' codes
are bi-regular bipartite graphs. It can be interesting that we modify the relation
between the LD PC' code from a Tanner graph and the resulting sparse code by its
incidence matrix. Note that, all bi-regular bipartite graph can be seen as a Tanner
graph of an LDPC' code and vice versa.

Let G be a Tanner graph of a (p,vy)—regular LDPC code. As it is done in
the previous section, we use the incidence matrix of G as a sparse matrix of the new
code and we denote it by I(G). In the following, we give two different examples
which show the interesting behaviours of our construction. The Tanner Graphs of
Gallager parity-check matrix and MacKay Neal parity-check matrix are bi-regular
and have the same degree sequences. But these two graphs are not isomorphic as
a graph theory point of view. The resulting codes by our construction also are not
equivalent.

Example 4.1. Let G be the Tanner graph of length 12 (4, 3)-regular Gallager parity-
check matriz(2]. Then I(G) generates [36,20, 3]-code that is sparse. Also, the code
I(G)* is a [36,16,4]-code.
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Example 4.2. Let G be the Tanner graph of length 12 (4, 3)-reqular MacKay Neal
parity-check matriz[2]. Then I(G) generates [36, 20, 3]-code that is sparse. Also, the
code I(G)™* is a [36,16,4]-code.

As it can be seen, the parameters of these two codes are the same, but these
codes are not equivalent. It seems that non-isomorphic bipartite graphs with the
same degree sequences generate non-equivalent sparse codes.

In the following, we give a method to standardize our construction for better
seeing the properties of the matrix I(G).

Let G be a Tanner graph of (p,~vy)—regular LDPC code with check nodes
and variable nodes {ai,as,...,a;} and {b1,ba,...,b,}, respectively. Let for every
i, 1 < i <k, deg(a;) = p and for every j, 1 < j < n, deg(b;) = ~. It is easy to
see that kp = ny and I(G) has kp columns. Let the labels of the columns of I(G)
be e, ez, ..., e, and the labels of the rows of I(G) be ay,az,...,ax, by, b, ..., by.
We correspond to any check nodes a;, the edges €(;_1)p11,€i—1)p+25 - -+ 5 €(i=1)p+p-
Then we choose integers n1,ng,...,n, such that 1 <n; <ng < ... <n, < nyand
n; = n;—1+n. Now we consider the edges €my;s Cmyjy - - -5 €y where my; = ny+(j—1)
(mod n7), and relate these edges to vertex b;. Note that the obtained matrix is
unique up to isomorphism, since I(G) is independent from the choice of integers
N1, N5 ey Ty

The weight distribution of a code C is the set {< w, A, > | 0 < w < n},
where n is the length of the code C and (w, A,,) denotes the weight enumerator of
this code. It is known that in general determining the weight distribution of a code
is very difficult.

Remark 4.3. It is easy to see that [(G) = [Hy, Hol', where Hy = Iy ® 1,, Hy =
[A (1.1 ®1I,) B] and [B A] = I,.

Theorem 4.4. Let in Tanner graph G we have p = n (and so v = k). Then

I, =1(G) = [ 5’;2112 ] that is equivalent with
Lp-1)(k-1)
Lip1 @ 1L @I,
S R P

and the weight distribution of this code is given in Table 1.

Proof. By the above remark and some elementary row and column operations, one
can easily obtain the equivalent code of I} ,. Let the first row, next p — 1 rows, and
the last £ —1 rows of equivalent matrix of I, , are blocks By, B2 and Bs, respectively.
Since the blocks Bi, By and Bj3 are well-structured, we can obtain the weight of the
different combinations of rows by a simple calculation. For example if we choose i
rows from block Bs, and j rows from block Bs, then we have a vector with weight
i(k — 1) 4+ from block By and a vector with weight (p — 1)j + j from block B3 with
ij common ones. So the summation of these two vectors has weight ki+ pj —ij. But
by the multiplication principle, the number of such vectors is C(p — 1,7)C(k — 1, j).
With a similar method, we obtain the weight distribution of this code that is given
in Table 1. [l
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TABLE 1. Weight distribution of I, , when p = n, where 1 < i <
p—1,1<j<k-1

w A'w
(p—1(k—-1)+1 1

ki C(p—1,19)
(p—i—1)(k—1)+i+1 C(p—1,9)
(k—j—-Dp-1)+j+1 C(k—1,j)

ki+ pj —1ij Cp—1,9)C(k —1,j)
(k—j—1)(p—i—1)+i+j+1|Clp—1,)Ck—1,5)

Remark 4.5. Let C; = I,, ® 1,,, Co = 1, ® I, and let Cr(C) denote the covering
radius of the code C. One can see that these two codes are equivalent and so the
covering radius of these codes is n|'%|. Also we have Cr(Ci-) = Cr(Cy) =n [9].

I ® 1p
1. ® Ip
Then we have Cr(Iy,) < Min{k|5],p| %], (p — 1)(k — 1)}. Also, if p >k > 3 then
Cr(Ii,) < k[5].

Corollary 4.6. Let I}, , = [ } and Cr(Iy,,) be the covering radius of Iy, ,.

Proof. By Definition 2.2, since Iy ® 1, and 1;, ® I, are subcodes of I}, ,, the result is
clear. Also, when p > k > 3, the minimum of the set in the above corollary is kLgJ
and this completes the proof. O

Theorem 4.7. Suppose (w, Ay,) denotes the weight enumerator, where A, is the
number of codewords with weight w. Let p =2, ny =1, and k > 2 in Theorem 4.4.
Then we have
Jo k-1
i) Ixo = I, @ I that its standard form is | Ipy1 - , where Jp, p
’ 1, ® 1 L L, ’
denotes a all one matriz with size m x n. Also Iy o is a 2k, k + 1, 2]-code.
ii) C(k) := I,Cl’2 is a [2k, k—1,4] doubly even weight self-orthogonal code. Moreover
C(k) = [12 ® Iy—1 Jp—1,2] with standard form [I_1 I—1 Jr—12].
iii) The covering radius of C(k), Cr(C(k)), is k and the weight distribution of C(k)
18

(4i,C(k —1,2i — 1) + C(k — 1,24)) = (4i, C(k,23)) for 0 <i < [&].

Proof. By Theorem 4.4 and Table 1, the structure and weight distribution of Ij o is
clear and the minimum distance of Ij 9 is 2. Now by Theorem 2.4, the structure of
C(k) is clear. By Theorem 2.5 or the structure of C(k), the weight distribution of C(k)
is (44, C'(k,2i)), so the minimum distance of C(k) is 4 and it is a doubly even weight
code. Moreover by Theorem 2.6, C(k) is self-orthogonal. Let for = [1010...10] be
a vector of length 2k. By induction on k, we prove the hypothesis about covering
radius of C(k). In the case k = 2, it is easy to see that the covering radius is 2. Now
suppose that Cr(C(k)) = k. For the code C(k + 1), we have fa4 1) = [foxr—21010].
By induction, the vector far_o has the distance k — 1 from code C(k — 1). But the
vector [1010] has the distance 2 with all the combinations of rows related to the last
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four columns of C(k + 1). So the covering radius of C(k+1) is k—1+2=k+1 and
it completes the proof. O

Conjecture 4.8. Let k,p € N and k,p > 2. Then we have Cr(IkLp) =k.

For some random integers k£ and p, the covering radius of I , are computed
with Magma Algebra System [11] and the results are summarized in Table 2. It can
be seen that the results confirm our conjecture.

TABLE 2. Covering radius of [ ,ﬂ- p for random parameters k and p

k| p|Cri| k| p|Cr
03|10 5|8]|5
12| 5 |12 10|15 | 10
13| 8 | 13| 12]12] 12
30115130 (25|35 25

5. Simulation Results

In this section, we simulate the bit error rate of constructed codes on AW GN
channel. The decoding algorithm is Belief propagation algorithm which is a type of
message passing algorithm. We simulated these codes by using the package of LDPC
analysis which is available in [12]. By Figure 1, we can see that the performance of
I(T(K,)) is better than the one of I(K,). Also the rate of I(K,) is better than the
one of I(T(K,)). We can explain this differences by the better girth and minimum
distances of I(T(K,,)) than I(K,). From the Figure 2, it is easily seen that when &
and p are close, the performance of I, , will be better, when dB is greater than 5.
We know that the girth and minimum distance of Ij, , are fixed for different values
of k and p. Therefore, we can explain these results with the increase of the rate of
Iy, when k and p are close.

6. Conclusion

In this paper, we introduced some new methods to construct column-weight
two LD PC codes based on graphs. Also, we determined some structural properties
of some classes of these new codes. We found a class of self-orthogonal codes that
are suitable for constructing a new class of quantum codes. We gave a conjecture
with some evidences about the covering radius of a class of these new codes. An
interesting question that can be studied further on is: If G; and G2 be two non-
isomorphic bipartite graphs with the same degree, is it true that I(G1) and I(G2)
are not equivalent?
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T(K}) for n = 20,53.
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FIGURE 2. Error performances of I, , = H(k, p) for some values of
k and p.
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