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DECISION OF AGGREGATE QUOTIENT OPTIMIZATION
BASED ON RESPONSE RANDOMNESS AND CORRELATION

Shixiang LU?, Xiaofeng FENG?, Guoyin LIN?®

The demand response has certain uncertainty. In order to truly reflect the
response of each uncertain user, this paper considers the correlation between
spatial and temporal responsiveness of uncertain user resources represented by air
conditioning. Firstly, the improved Latin hypercube sampling method is used to
scale and correlate the responsivity, and the samples reflecting the response
correlation are obtained. Secondly, the deterministic resources (DRs) are
introduced to establish the optimal decision model of the load aggregator, and
through random simulation and intelligence. The algorithm solves the decision-
making scheme when the profit is the highest. Finally, an example is given to
analyze the influence of the distribution parameters of DRs, correlation and
responsiveness on decision-making schemes and profits. Verification of ordering
DRs, signing negative related uncertain users, increasing the average of
responsiveness, reducing the variance of responsiveness has a significant increase
in profit.

Keywords: demand response; correlation; uncertainty; Latin hypercube sampling;
load aggregator

1. Introduction

In recent years, in order to fully utilize the resources of the user side, the
demand response has been well developed. However, the demand response has
certain uncertainty 4l Due to uncertainties such as communication delay,
component failure, weather conditions of next day, and unexpected events, the
actual response of the controllable users is random [l It is pointed out in
literature [7] that for a given price and incentive, the response of adjustable load is
an interval rather than a fixed value. However, these documents do not take into
account the temporal and spatial correlation between the responsiveness of
different users. Taking the user-side air conditioning load with good demand
response characteristics as an example [9], the air conditioning load is generally
low in the high temperature period in summer, and the air conditioning in the
same area will also face the same weather and emergencies.
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The literature [9] uses Monte Carlo method to randomly sample and
simulate the response, with the user responsiveness with uncertainty taken as the
random variable. However, considering the correlation between multiple
variables, the Monte Carlo method is no longer applicable. The Latin hypercube
sampling method can control the correlation of samples while sampling and
obtain a sample matrix reflecting the true correlation & 112 The literature [13-
14] point out that compared with the Monte Carlo method, the Latin hypercube
sampling method has high sampling efficiency, wide sample coverage and good
robustness.

As a major transaction subject in the demand response, the load aggregator
can integrate the scattered resources on the user side 151 For example, air-
conditioning aggregators can integrate scattered air-conditioning resources, sign
load reduction contracts with air-conditioning users and provide corresponding
economic compensation (71, However, due to the uncertainty of user response, the
load aggregator will face the risk of default compensation while signing a contract
with the system operator. Literature [18-19] propose that the introduction of
energy storage devices by load aggregators can reduce the risk of default.
However, after considering the response correlation, it remains studying about
how to determine the order quantity of deterministic user resources represented by
energy storage.

To this end, this paper uses air conditioning as the uncertainty resource on
the user side. Firstly, this paper analyzes the correlation of responsiveness in
space and time, using Latin hypercube sampling method to obtain samples
reflecting the correlation of response. Then, the deterministic resources (DRs) are
introduced, and the optimal decision model of the load aggregator is established.
The decision plan of the maximum profit is calculated by stochastic simulation
and intelligent algorithm. Finally, an example is given to analyze the impact of
DRs, correlation and responsiveness distribution parameters on decision-making
schemes and profits, which proves that adding DRs can increase the profit of the
load aggregator, improve the fluctuation of the overall response level, and reduce
the decision risk of the load aggregator.

2. Configurable capacity of cluster air conditioners

A. Air conditioning load modeling
Given proper simplification, the thermodynamic model of air conditioning
can be expressed as [20-24]

t+1 t+1 t+1 t
Tin =Tout—(Tout —Tin)e, s=1

(1)
Tl =Tl PR (Tt —7PR-T})e, s=0
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where Ti**, T! are the room temperature at time t+1 and t, respectively. T+ is the

out

outdoor temperature at time t+1. ¢ is the heat dissipation coefficient, and
e =exp(—Ah/RC). Ah is the time interval. C, R are the equivalent heat capacity and
thermal resistance, respectively. », P are the Energy efficiency ratio and rated
power of air conditioner, respectively. The product of # and P represents the rated
cooling capacity of the air conditioner. s is the switch state, while s=1 means the
switch is off, and s=0 means the switch is on.

B. Configurable capacity of cluster air conditioner

A Temperature

hon hoff | !

Time
Fig. 1. Simulation model of air conditioning load

The air conditioner is the cyclic working load. When the air conditioner
temperature reaches the upper limit Tmax, the air conditioner is turned on. When
the lower limit Tmin is reached, the air conditioner is turned off. The working
process is shown in Fig. 1.

hotf = Nogeh = In(2min —Tout o
max — 'out (2)
Tmax T77PR—Tqyt )RC

han =Nonh=1n
on- o (Tmin +nPR=Tout

where hotrand hon are the closing and opening time in one control period h. notrand
Non are the proportion of closing time and opening time in the control period,
respectively. Tout is the outdoor temperature.
The load aggregator performs direct load control on the air conditioner.
When the power grid is at a peak, the air conditioner is regulated according to the
signed contract to achieve the purpose of peak clipping. Assuming a total number
of n air conditioners, the total schedulable capacity Can is
& Dot i
Cai=>,— R @)
iz N
where hofti, hi are the off time and control period of the i-th air conditioner. P is
the rated power of the i-th air conditioner.
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3. Uncertainty analysis of demand response considering correlation

A. Demand response uncertainty and correlation analysis

Due to uncertainties such as communication delay, component failure,
weather conditions of the next day, and unexpected events, users have certain
uncertainties in specific response while considering the actual response benefits
and reputation [1. It is defined that the responsiveness reflects the actual response
of the user, and the responsiveness represents the ratio of the actual response of
the user to the agreed response. Assuming that the user's responsiveness obeys the
standard normal distribution, the uncertainty of the responsiveness is simulated by
a large number of samples by Monte Carlo simulation. However, in the
scheduling, the response of multiple users is a random variable with certain
correlation. The correlation of responses can be analyzed from two perspectives,
time and space.

(1) Correlation in time. There are generally multiple types of controllable
loads managed by load aggregators. For example, air conditioners and water
heaters are commonly used controllable loads. The peak usage periods of air
conditioners and water heaters are different. In terms of time, the responsivity of
the two is irrelevant or even negatively correlated, but the response of similar
controlled loads in time is generally positive related. Taking air conditioning as an
example, the temperature is high at noon and afternoon in summer, and users are
reluctant to turn off the air conditioner. Correspondingly, the responsiveness of air
conditioners is generally low.

(2) Correlation in space. The same geographical area generally has the
same geographical environment, and even faces the same emergencies. For
example, in the face of the same extreme hot weather, the responsiveness of air-
conditioning users will be reduced, while the other side will have higher
responsiveness if faced with cool rain. When a region is facing a communication
failure at the same time, all air conditioning responses in that area will also be
affected. The commonly used Monte Carlo method cannot reflect the correlation
between the responsiveness of each variable. In order to reflect the correlation
between responsiveness, this paper uses the Latin hypercube sampling method to
perform random simulation.

B. Correlation analysis based on latin hypercube sampling method

The responsiveness of the air-conditioned user follows the standard
normal distribution and the corresponding cumulative distribution function can be
obtained. The principle of the Latin hypercube sampling method is to evenly
divide the ordinate [0, 1] of the cumulative distribution function into L intervals,
and sequentially extract a value from the inverse function transformation to obtain
the sampled values of the corresponding interval, as shown in formula (4)[4]
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_1,l-a
k1 =Fz, (T)’ I=12L ,L (4)

where ri; is the sampled value of the Ith interval of the kth variable. Zx is the
distribution function of the kth variable. F,' is the inverse function of the

cumulative distribution function. a is a random number on [0, 1].

The Spearman rank correlation coefficient is used to reflect the correlation,
and the method is applicable to any distributed random variable. Suppose there
are K variables, and each variable extracts N values. The correlation coefficient
matrix between variables is Prear, and the specific steps of correlation control are
detailed as follows.

(1) The sample is extracted according to equation (4) to obtain a K-row N-
column sample matrix Ro, and a random order matrix O of the same size is
generated. Find the correlation coefficient matrix of O, and use Cholesky
decomposition to find the lower triangular matrix Lo.

(2) According to the transformation equation O; = L510, each row of

samples in Ro is sorted according to the size of each corresponding row element in
O; to obtain Ri. The correlation of Ri is greatly reduced, and there is no
correlation between samples.

(3) In order to achieve the actual correlation coefficient matrix Preal
between variables, the Cholesky decomposition is used for Prea, and the lower

triangular matrix Lrea is obtained. Calculate Ogq = L;elapl.

(4) Sort each row of O according to Oreal t0 get Ofinai, and then sort Ro by
Ofinal 10 get Rfinal. Reinal IS the sample matrix whose correlation coefficient moment
IS Preal.

4. Decision model analysis of load aggregators

A. Demand response resource type analysis

In the electricity market environment, the load aggregator will sign the
reduced capacity and time with the user and provide corresponding economic
compensation. Load aggregators face high risks if they rely solely on resources
such as air conditioners with large response randomness. Therefore, DRs are
introduced, and demand response resources are divided into two types: uncertain
resources and DRs 28], The uncertainty resources such as air conditioners are large
in quantity, large in potential, and low in control costs, but relatively scattered and
random. The DRs such as the energy storage device has high responsivity and
strong anti-interference, but the capacity is small, and the regulation cost is high.
The two resources can complement each other very well.

(1) User-regulated costs which represent uncertain resources. These
regulation cost is the compensation cost, assuming that the load aggregator
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contracts with K users, and Funsure,i represents the cost of compensation for the i-th
user.

I:unsure,i =7i I:)unsure,iCunsure,i

K (5)
Funsure = Z l:unsure,i
i=1

where yi is the actual responsiveness of user i. Punsure,i IS the unit price of
compensation provided by the load aggregator when signing with user i. Cunsure,i IS
the regulatable capacity provided when the user i is contracted by uncertainty.
Funsure 1S the total regulatory cost of a deterministic user. The load aggregator only
compensates for the portion of the response.

(2) User regulation costs that represent DRs. The DRs purchased generally
have a small capacity, so the default is set as 1 user. The corresponding regulation
cost Fsure is composed of the order costFsure,1 and the compensation cost Fsure,2.
The regulation of DRs is costly, so it is necessary to purchase the right to use in
advance before responding. Even if the DRs are not regulated in the end, the
subscription cost Fsure,1 is required. The definition of Fsye2 is the same as the
uncertainty resource, which compensates for the actual response.

Fsure = Fsure.1 + Fsure, 2
I:sure,l = F)sure,lcsure (6)
Fsure,z = I:)sure,zcsure,z

where Psure,1 IS the order price. Psure2 is the compensation unit price. Csure iS the
capacity of the DRs ordered in total. Csure2 IS the capacity actually regulated. DRs
default to a full response to the maximum.

(3) Other cost. Other cost Fc mainly includes loss cost Fci: and
compensation cost Fc. Fc1 indicates that when the actual user response is greater
than the capacity signed by the load aggregator to the system operator, this part of
the capacity is lost because there is no contracted revenue. Fc2 means that when
the actual user total response is less than the capacity signed by the aggregator to
the system operator, it is necessary to bear the compensation caused by the breach
of contract.

{ Fc =rcl1= I:)set (Creal _Cset)’ Cset < Creal )

Fe =Fc.2 = Fe.2(Cset —Crear)s Cset > Creal

where Pset is the settlement unit price provided when the system operator signs the
contract with the load aggregator. Crea is the actual capacity provided by the final
load aggregator. Cset is the capacity agreed upon when the system operator signs
the contract with the load aggregator. P> is the unit price of compensation when
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the demand is not met.

The revenue of the load aggregator comes from the system operator and
the load aggregator who sign before the response: providing the corresponding
capacity reduction at the specified time and providing economic compensation at
a certain settlement price:

Feet = FoetCoet (8)
where Feset is the revenue of the load aggregator.

B. Decision-making optimization analysis of load aggregator

The optimal decision of the load aggregator is to determine the values of
the capacity Cset and Csure through the optimization algorithm, so that the load
aggregator has the largest profit. The profit function is represented by f.

I:set - I:unsure - I:sure,l - I:c,l’ Cset < Cunsure
f (Cset 1 Csure) = I:set - I:unsure - I:sure,l - I:sure,z’ Cunsure < Cset < CreaI (9)

I:set - I:unsure — Psure,l — I:sure,2 - I:c,2’ Cset > Creal

where Cngure 1S the total uncertainty users’ response.

In order to further introduce responsiveness, the profit function is
described in detail in sections.
K
(1) when Cget <D 7iCunsure,i » the actual profit is:
i=1
f (Cset ! Csure’7i) = PSGICSE'[ - Psure,lcsure -

K K
(10)
Z}/i Punsure,icunsure,i — Fset (Z ViCunsure,i —Ceet)
i=1 i=1
K K
(2) when Z7icunsure,i < Cget < ZViCunsure,i +Cqure , the actual profit is:
i=1 i=1
f (Cset J Csure | ?/i) = I:)setcset - I:l‘ure,lcsure -

K K (11)
z7i I:)unsure,icunsure,i - Psure,2 (Cset - ZViCunsure,i)
i=1 i=1
K
(3) when Cggt > Z 7iCunsure.i + Csure, the actual profit is:
i=1
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f (CsetvcsurevVi) = I:)setcset - I:’sure,lcsure - I:>sure,2Csure

K K (12)
—Z 7i Punsure,icunsure,i - c,z(Cset _ZViCunsure,i _Csure)
i=1 i=1

Due to the uncertainty of the responsiveness, the average value of the
profit obtained by the stochastic simulation is used as the optimization target, and
the profit is the optimization target. Therefore

E¢ =max{E[f (Cset, Csyre, 7i)1}
0 < Cset < Cunsure,max *+ Csure (13)
0 < Csure < Csure, max

where Es is the maximum value of the profit average. E[] is the average
function. Cunsuremax, Csure,max are the maximum capacity that can be adjusted by the
uncertainty resource and the maximum capacity that the DRs can order.

In this paper, the Latin hypercube sampling method is used to perform
random simulation to obtain responsive samples. Since the load aggregator's
optimization decision model needs to calculate the optimal value from the
selectable declared capacity and the order quantity to get the maximum profit of
the aggregator. Therefore, it is necessary to optimize the search by genetic
algorithm to get the optimal decision-making scheme and the highest profit. The
stochastic simulation is combined with the genetic algorithm, and the specific
steps are detailed below.

(1) Considering the correlation between the K variable responses, the final
sample matrix Rrsina iS generated using the Latin hypercube sampling method,
which represents the sampled values of the N responsiveness of the K uncertain
users. The N samples of each variable follows a normal distribution.

(2) Use genetic algorithm to generate a population, and the population is a
group represented by multiple groups (Ceet, Csure). Each group of chromosomes is
substituted into the profit function. Respectively calculating the profit value under
N responsivity samples, and the average value is the average profit for the group
(Cset, Csure)-

(3) Calculate the profit averages of multiple groups (Cset, Csure) in the
population separately, and replace the low profit average of the original
population with the high profit average through multiple cross-variation. Finally,
the maximum profit and the corresponding (Cset, Csure) are selected from the
improved population. (Cset, Csure) Can be set as the final decision-making solution
for the load aggregator.



Decision of aggregate quotient optimization based on response randomness and correlation 111

5. Case analysis

A.

Simulation parameters

Assume that there are 5 uncertain users, each of which is composed of
multiple air conditioners. See Table 1 for the parameters of each user. The
schedulable capacity of the five users can be calculated according to equation (3)
as 12.6, 8.1, 4.8, 12.6, 12.6 MW, and Csyre;max IS 6 MW. The relevant data about
the load aggregator is shown in Table 2.

Table 1
The influence of different correlations on decision making and profit
User |PilkW I\g;n’;\bcer n |Distribution of R| Distribution of C |Distribution of y;
1 25 | 7000 (2.8 N(0.18,0.2?%) N(5.56, 1.0%) N(0.7, 0.06?)
2 2.0 | 6000 [3.0] N(0.17,0.23) N(5.60, 1.0%) N(0.7, 0.06?)
3 2.0 | 3500 [2.9] N(0.17,0.2%) N(5.90, 1.0%) N(0.8, 0.08?)
4 25 | 6500 (3.2 N(0.14,0.2?3) N(5.60, 1.0%) N(0.7, 0.08?)
5 2.8 | 6000 [2.9] N(0.16,0.2%) N(5.40, 1.0%) N(0.8, 0.06?)
Table 2
Price data and capacity data involved in the decision-making process
Pset/ Punsure/ Psure,ll Psure,zl Pc,zl
(MWD | ($-MWY | ($- MWD | (- MWD [($-MW
56 5 10 67 100

As shown in Table 1, the responsiveness yi of the five uncertain air
conditioner users follows a normal distribution. The correlation between the
responsiveness of the five users is

B.

I:)real =

1.0
0.4
0.3
0.5

0.8

0.4
1.0
0.5
0.3
0.6
The impact of DRs on decision outcomes and profits

0.3
0.5
1.0
0.4
0.4

0.8 ]
0.6
0.4
0.6

0.5
0.3
0.4
1.0

06 1.0

(14)

In order to analyze the impact of DRs on the decision and profit of the
load aggregator, the corresponding Cset, Csure and profit averages are obtained
using the settings in Section 4.1, as shown in Table 3.
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Table 3
The comparative analysis of adding and not adding DRs
Adding DRs | Cse MW | Csure/ MW E/$
Yes 39.57 3.80 1798.60
No 38.68 0.00 1767.40

As can be seen from Table 3, after adding certain resources, the profit
average is increased.

In order to analyze the impact of DRs on stability, the profit deviations of
the two in the actual response process are simulated. Substituting the
corresponding Cset and Csure, the responsiveness of the five air-conditioner users
randomly selects the samples satisfying the probability distribution. In order to
reflect the response more comprehensively, the average value of the 1,000 profit
is taken as the profit value of the actual response process, and the repetition is
100. Thus 100 actual profit values are got. The actual profit deviation is calculated
with (Ef —Ef)/E; x100%  where Et is the actual profit value obtained by

simulating the actual response. The comparison of the profit deviation of adding
and not adding DRs is shown in Fig. 2. The actual profit deviation obtained by
adding the DRs simulation is less than the non-addition of DRs, and it is
maintained at 1%, and the error is small. In general, the addition of DRs can
increase the profit while reducing the fluctuation of profits in the actual response
process.

25

2} I
15

1k

Actual profit deviation/%

0.5

! 1
0 10 20 30 40 50 60 70 80 90 100
Number

with DRs without DRs
Fig. 2. The comparative analysis of adding and not adding the profit deviation of DRs

C. The impact of relevance on decision outcomes and profits

The correlation between different uncertain users is different. In order to
study the impact of relevance on decision results and profit, it is assumed that the
correlation coefficients between the 5 users are the same, and the correlation
coefficient is set to -0.5~0.9. Correlation between users has experienced a
negative correlation to an irrelevant to positive correlation to a strong positive
correlation. Fig. 3 shows the impact of different correlations on decision making
and profit after adding DRs. It can be found from Fig. 3 that the profit at the time
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of negative correlation is greater than the profit at the time of positive correlation,
and as the positive correlation increases, the profit continues to decrease. The DRs
purchased at the same time have the opposite trend, from negative correlation to
positive correlation, and the capacity of DRs continues to rise. The reason is that
when there is a positive correlation between uncertain users, especially strong
positive correlation, it is easy to generate a large compensation cost with low
user's responsiveness. If the user's responsiveness is high, it will be generally
high, and it is easy to generate a large loss of cost.
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Fig. 3. The influence of different correlations on decision making and profit after adding DRs
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Fig. 4. The influence of different correlations on decision making and profit after not adding DRs

Fig. 4 shows the impact of correlation on decision making and profitability
without adding DRs. As can be seen from Fig. 4, different correlations have the
same impact on the decision-making scheme that does not include DRs and profit.
In the same situation, the average profit of adding certain resources is always
greater than the non-addition of DRs. And while the correlation changing from
negative correlation to positive correlation, the profit without adding certain

resources will drop more. This is also consistent with the conclusions in Section
4.2.
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D. Impact of responsiveness distribution parameters on decision results and
profits

Each responsiveness distribution follows a normal distribution, but
changes in the mean and standard deviation of the distribution also affect the
outcome and profit of the decision. Table 4 shows the average values of the
responsiveness distribution for all users set by Section 4.1, in units of 0.05, from
reducing 0.10 to increasing 0.15, respectively. As can be seen from Table 4, as the
mean increases, the average profit increases significantly, with a 42% increase. As
the mean value of the responsiveness distribution increases, the response level
increases and the order quantity of DRs also decreases.

Table 4
The influence of the mean response distribution on decision making and profit
with DRs without DRs
Parameter
increment | Cg,o/M

W Cse[/MW Ef/$ Cse[/MW Ef/$

-0.10 4.170 34.50 |1540.3| 33.56 |1509.8
-0.05 4.040 37.14 11669.0| 36.11 |1638.5

+0 3.798 39.57 |1798.6| 38.68 |1767.4
+0.05 4.070 42.23 [1927.9| 41.18 |1897.4
+0.10 3.800 44.64 12057.5| 43.68 |2026.8
+0.15 3.980 47.20 |2186.3| 46.23 |2156.1

Table 5
The influence of standard deviation of responsiveness distribution on decision making and
profit
Parameter with DRs without DRs
increment
CSUTE/ Cset/M

MW W E/$ |Cse/ MW | Ei/$
-0.03 38.49 | 2.140 | 1843.9 | 37.98 | 1827.1
-0.02 38.72 | 2.650 | 1829.1 | 38.19 | 1807.5
-0.01 39.18 | 3.360 | 1814.0 | 38.41 | 1787.8
+0 39.57| 3.798 | 1798.6 | 38.68 | 1767.4
+0.01 40.07 | 4.680 | 1784.1 | 38.85 | 1749.6
+0.02 40.21 | 4.900 | 1768.6 | 39.04 | 1728.1
+0.03 [40.50| 5.720 | 1753.9 | 39.28 | 1708.3

Table 5 shows the variance of the variability distribution for all users set
by Section 4.1, in units of 0.01, from reducing 0.03 to increasing 0.03. It can be
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seen from Table 5 that as the variance becomes larger, the volatility of the
response increases, and the profit also decreases. To compensate for the volatility
of the response, the DRs for ordering are also increasing.

6. Conclusion

(1) Adding DRs can increase the profit of the load aggregator, improve the
fluctuation of the overall response level, and reduce the decision risk of the load
aggregator.

(2) The correlation between uncertain users has a great influence on the
decision and profit of the load aggregator. As the correlation changes from
negatively correlated to uncorrelated to strong positive correlation, the DRs of the
order are increasing and the profits are declining. Therefore, in order to improve
profits, the load aggregator should sign different types of controllable users in
different regions to achieve complementary responsiveness.

(3) As the average value of the responsiveness distribution increases, the
profit increases substantially, and the order quantity of DRs also decreases. At the
same time, as the standard deviation increases, the volatility of the response
increases, and the profit continues to decline.
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