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QUASI-F-POWER INCREASING SEQUENCES AND THEIR NEW

APPLICATIONS
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In this paper, a known result dealing with an application of quasi-
f-power increasing sequences has been proved under less and weaker conditions.
Some new results have also been obtained.
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1. Introduction

Let
∑

an be a given infinite series with partial sums (sn). We denote by tαn
nth Cesàro mean of order α, with α > −1, of the sequence (nan), that is tαn =

1
Aα

n

∑n
v=1A

α−1
n−vvav, where Aα

n =

(
n+ α
n

)
= (α+1)(α+2)....(α+n)

n! = O(nα), Aα
−n = 0,

for n > 0.
The series

∑
an is said to be sumable | C,α; δ |k, k ≥ 1, α > −1 and δ ≥ 0,

if (see [5])
∑∞

n=1 n
δk−1 | tαn |k< ∞. A positive sequence (bn) is said to be almost in-

creasing if there exists a positive increasing sequence (cn) and two positive constants
A and B such that Acn ≤ bn ≤ Bcn (see [1]). A positive sequence X = (Xn) is said
to be a quasi σ-power increasing sequence if there exists a constantK = K(σ,X) ≥ 1
such that KnσXn ≥ mσXm holds for all n ≥ m ≥ 1 (see [6]). It should be noted
that every almost increasing sequence is a quasi- σ-power increasing sequence for
any nonnegative σ, but the converse may not be true as can be seen by taking an
example, say Xn = n−σ for σ > 0. A sequence (λn) is said to be of bounded vari-
ation, denote by (λn) ∈ BV , if

∑∞
n=1 |∆λn| =

∑∞
n=1 | λn − λn+1 |< ∞. A positive

sequence X = (Xn) is said to be a quasi-f-power increasing sequence, if there exists
a constant K = K(X, f) ≥ 1 such that KfnXn ≥ fmXm, holds for n ≥ m ≥ 1,
where f = (fn) = [nσ(log n)γ , γ ≥ 0, 0 < σ < 1] (see [8]). It should be noted
that if we take γ=0 , then we get a quasi-σ-power increasing sequence. In [3], we
have proved the following theorem dealing with an application of a quasi- σ-power
increasing sequences.
Theorem A. Let (λn) ∈ BV and (Xn) be a quasi-f-power increasing sequence for
some σ (0 < σ < 1) . Suppose also that there exist sequences (βn) and (λn), such
that

| ∆λn |≤ βn, βn → 0 as n → ∞ (1)
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∞∑
n=1

n | ∆βn | Xn < ∞, | λn | Xn = O(1) as n → ∞. (2)

If the sequence (uαn) defined by (see [7])

uαn =

{
|tαn| , α = 1,

max1≤v≤n |tαv | , 0 < α < 1
(3)

satisfies the condition
m∑

n=1

nδk (u
α
n)

k

n
= O(Xm) as m → ∞, (4)

then the series
∑

anλn is sumable | C,α; δ |k, k ≥ 1 and 0 ≤ δ < α ≤ 1.

2. The main result.

The aim of this paper is to prove Theorem A under less and weaker conditions.
Now, we shall prove the following more general theorem.

Theorem . Let (Xn) be a quasi-f-power increasing sequence. If conditions from (1)
to (2) are satisfied and if

m∑
n=1

nδk (uαn)
k

n Xk−1
n

= O(Xm) as m → ∞, (5)

satisfies, then the series
∑

anλn is sumable | C,α; δ |k, k ≥ 1 and 0 ≤ δ < α ≤ 1.

Remark. It should be noted that condition (5) is the same as condition (4) when
k=1. When k > 1 condition (5) is weaker than condition (4). But the converse is
not true. As in [9] we can show that if (4) is satisfied , then get that

m∑
n=1

nδk (uαn)
k

n Xk−1
n

= O(
1

Xk−1
1

)

m∑
n=1

nδk (u
α
n)

k

n
= O(Xm).

If (5) is satisfied, then for k > 1 we obtain that
m∑

n=1

nδk (w
α
n)

k

n
=

m∑
n=1

(uαn)
k

n Xk−1
n

Xk−1
n = O(Xk−1

m )
m∑

n=1

nδk (uαn)
k

n Xk−1
n

= O(Xk
m) ̸= O(Xm).

Also it should be that the condition (λn) ∈ BV has been removed.
We need the following lemmas for the proof of our theorem.

Lemma 1 ([3]). Under the conditions on (Xn), (βn) and (λn) as expressed
in the statement of the theorem , we have the following :

∞∑
n=1

βnXn < ∞ nXnβn = O(1).

Lemma 2 ([4]). If 0 < α ≤ 1 and 1 ≤ v ≤ n, then |
∑v

p=0A
α−1
n−pap |≤

max1≤m≤v |
∑m

p=0A
α−1
m−pap | .

3. Proof of the theorem . Let (Tα
n ) be the nth (C,α), with 0 < α ≤ 1,

mean
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of the sequence (nanλn). Then, we have T
α
n = 1

Aα
n

∑n
v=1A

α−1
n−vvavλv. Applying Abel’s

transformation first and then using Lemma 2, we have that

Tα
n =

1

Aα
n

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−ppap +

λn

Aα
n

n∑
v=1

Aα−1
n−vvav,

| Tα
n | ≤ 1

Aα
n

n−1∑
v=1

| ∆λv ||
v∑

p=1

Aα−1
n−ppap | +

| λn |
Aα

n

|
n∑

v=1

Aα−1
n−vvav |

≤ 1

Aα
n

n−1∑
v=1

Aα
vu

α
v | ∆λv | + | λn | uαn

= Tα
n,1 + Tα

n,2 .

To complete the proof of the theorem, Minkowski’s inequality, it is enough to show
that

∑∞
n=1 n

δk−1 | Tα
n,r |k< ∞ for r = 1, 2. Whenever k > 1, we can apply

Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1, we get that

m+1∑
n=2

nδk−1 | Tα
n,1 |k ≤

m+1∑
n=2

nδk−1(Aα
n)

−k{
n−1∑
v=1

(Aα
v )

k(uαv )
k | ∆λv |k}

× {
n−1∑
v=1

1}k−1

= O(1)
m+1∑
n=2

nδk−2+k−αk{
n−1∑
v=1

vαk(uαv )
kβk

v}

= O(1)

m∑
v=1

vαk(uαv )
kβk

v

m+1∑
n=v+1

1

n2+(α−δ−1)k

= O(1)

m∑
v=1

vαk(uαv )
kβk

v

∫ ∞

v

dx

x2+(α−δ−1)k

= O(1)

m∑
v=1

(uαv )
kβvβ

k−1
v vδk+k−1

= O(1)
m∑
v=1

(uαv )
kβv

(
1

vXv

)k−1

vδk+k−1

= O(1)
m∑
v=1

vβvv
δk (uαv )

k

vXk−1
v

= O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

rδk
(uαr )

k

rXk−1
r

+ O(1)mβm

m∑
v=1

vδk
(uαv )

k

vXk−1
v
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= O(1)

m−1∑
v=1

| ∆(vβv) | Xv +O(1)mβmXm

= O(1)

m−1∑
v=1

| (v + 1)∆βv − βv | Xv +O(1)mβmXm

= O(1)
m−1∑
v=1

v | ∆βv | Xv +O(1)
m−1∑
v=1

βvXv +O(1)mβmXm = O(1) as m → ∞,

by virtue of Lemma 1 and under the hypotheses of the theorem . Finally, we have
that

m∑
n=1

nδk−1 | Tα
n,2 |k =

m∑
n=1

| λn |k−1| λn | nδk (u
α
n)

k

n

= O(1)
m∑

n=1

| λn | nδk (uαn)
k

nXk−1
n

= O(1)

m−1∑
n=1

∆ | λn |
n∑

v=1

vδk
(uαv )

k

vXk−1
v

+ O(1) | λm |
m∑

n=1

nδk (uαn)
k

nXk−1
n

= O(1)

m−1∑
n=1

| ∆λn | Xn +O(1) | λm | Xm

= O(1)
m−1∑
n=1

βnXn +O(1) | λm | Xm = O(1) as m → ∞,

by virtue of the hypotheses of the theorem and Lemma 1. This completes the proof
of the theorem . It should be noted that, if we take δ = 0 (resp. α = 1), then we
get a new result for | C,α |k (resp. | C, 1; δ |k) summability. Also, if we take γ = 0,
then we get another new result.
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