

QUASI-F-POWER INCREASING SEQUENCES AND THEIR NEW APPLICATIONS

Hüseyin Bor¹

In this paper, a known result dealing with an application of quasi-f-power increasing sequences has been proved under less and weaker conditions. Some new results have also been obtained.

Keywords: Increasing sequences, Cesàro mean, sequence spaces, infinite series.

MSC2010: 40D 15, 40F 05, 40G 05, 40 G99 , 46A 45.

1. Introduction

Let $\sum a_n$ be a given infinite series with partial sums (s_n) . We denote by t_n^α n th Cesàro mean of order α , with $\alpha > -1$, of the sequence (na_n) , that is $t_n^\alpha = \frac{1}{A_n^\alpha} \sum_{v=1}^n A_{n-v}^{\alpha-1} v a_v$, where $A_n^\alpha = \binom{n+\alpha}{n} = \frac{(\alpha+1)(\alpha+2)\dots(\alpha+n)}{n!} = O(n^\alpha)$, $A_{-n}^\alpha = 0$, for $n > 0$.

The series $\sum a_n$ is said to be sumable $|C, \alpha; \delta|_k$, $k \geq 1$, $\alpha > -1$ and $\delta \geq 0$, if (see [5]) $\sum_{n=1}^{\infty} n^{\delta k-1} |t_n^\alpha|^k < \infty$. A positive sequence (b_n) is said to be almost increasing if there exists a positive increasing sequence (c_n) and two positive constants A and B such that $Ac_n \leq b_n \leq Bc_n$ (see [1]). A positive sequence $X = (X_n)$ is said to be a quasi σ -power increasing sequence if there exists a constant $K = K(\sigma, X) \geq 1$ such that $Kn^\sigma X_n \geq m^\sigma X_m$ holds for all $n \geq m \geq 1$ (see [6]). It should be noted that every almost increasing sequence is a quasi- σ -power increasing sequence for any nonnegative σ , but the converse may not be true as can be seen by taking an example, say $X_n = n^{-\sigma}$ for $\sigma > 0$. A sequence (λ_n) is said to be of bounded variation, denote by $(\lambda_n) \in \mathcal{BV}$, if $\sum_{n=1}^{\infty} |\Delta \lambda_n| = \sum_{n=1}^{\infty} |\lambda_n - \lambda_{n+1}| < \infty$. A positive sequence $X = (X_n)$ is said to be a quasi-f-power increasing sequence, if there exists a constant $K = K(X, f) \geq 1$ such that $Kf_n X_n \geq f_m X_m$, holds for $n \geq m \geq 1$, where $f = (f_n) = [n^\sigma (\log n)^\gamma, \gamma \geq 0, 0 < \sigma < 1]$ (see [8]). It should be noted that if we take $\gamma=0$, then we get a quasi- σ -power increasing sequence. In [3], we have proved the following theorem dealing with an application of a quasi- σ -power increasing sequences.

Theorem A. Let $(\lambda_n) \in \mathcal{BV}$ and (X_n) be a quasi-f-power increasing sequence for some σ ($0 < \sigma < 1$) . Suppose also that there exist sequences (β_n) and (λ_n) , such that

$$|\Delta \lambda_n| \leq \beta_n, \quad \beta_n \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty \quad (1)$$

¹ P. O. Box 121 , 06502 Bahçelievler , Ankara , Turkey, e-mail: hbor33@gmail.com

$$\sum_{n=1}^{\infty} n |\Delta \beta_n| X_n < \infty, \quad |\lambda_n| X_n = O(1) \quad \text{as} \quad n \rightarrow \infty. \quad (2)$$

If the sequence (u_n^α) defined by (see [7])

$$u_n^\alpha = \begin{cases} |t_n^\alpha|, & \alpha = 1, \\ \max_{1 \leq v \leq n} |t_v^\alpha|, & 0 < \alpha < 1 \end{cases} \quad (3)$$

satisfies the condition

$$\sum_{n=1}^m n^{\delta k} \frac{(u_n^\alpha)^k}{n} = O(X_m) \quad \text{as} \quad m \rightarrow \infty, \quad (4)$$

then the series $\sum a_n \lambda_n$ is sumable $|C, \alpha; \delta|_k$, $k \geq 1$ and $0 \leq \delta < \alpha \leq 1$.

2. The main result.

The aim of this paper is to prove Theorem A under less and weaker conditions. Now, we shall prove the following more general theorem.

Theorem . Let (X_n) be a quasi-f-power increasing sequence. If conditions from (1) to (2) are satisfied and if

$$\sum_{n=1}^m n^{\delta k} \frac{(u_n^\alpha)^k}{n X_n^{k-1}} = O(X_m) \quad \text{as} \quad m \rightarrow \infty, \quad (5)$$

satisfies, then the series $\sum a_n \lambda_n$ is sumable $|C, \alpha; \delta|_k$, $k \geq 1$ and $0 \leq \delta < \alpha \leq 1$.

Remark. It should be noted that condition (5) is the same as condition (4) when $k=1$. When $k > 1$ condition (5) is weaker than condition (4). But the converse is not true. As in [9] we can show that if (4) is satisfied, then get that

$$\sum_{n=1}^m n^{\delta k} \frac{(u_n^\alpha)^k}{n X_n^{k-1}} = O\left(\frac{1}{X_1^{k-1}}\right) \sum_{n=1}^m n^{\delta k} \frac{(u_n^\alpha)^k}{n} = O(X_m).$$

If (5) is satisfied, then for $k > 1$ we obtain that

$$\sum_{n=1}^m n^{\delta k} \frac{(w_n^\alpha)^k}{n} = \sum_{n=1}^m \frac{(u_n^\alpha)^k}{n X_n^{k-1}} X_n^{k-1} = O(X_m^{k-1}) \sum_{n=1}^m n^{\delta k} \frac{(u_n^\alpha)^k}{n X_n^{k-1}} = O(X_m^k) \neq O(X_m).$$

Also it should be that the condition $(\lambda_n) \in \mathcal{BV}$ has been removed.

We need the following lemmas for the proof of our theorem.

Lemma 1 ([3]). Under the conditions on (X_n) , (β_n) and (λ_n) as expressed in the statement of the theorem, we have the following :

$$\sum_{n=1}^{\infty} \beta_n X_n < \infty \quad n X_n \beta_n = O(1).$$

Lemma 2 ([4]). If $0 < \alpha \leq 1$ and $1 \leq v \leq n$, then $|\sum_{p=0}^v A_{n-p}^{\alpha-1} a_p| \leq \max_{1 \leq m \leq v} |\sum_{p=0}^m A_{m-p}^{\alpha-1} a_p|$.

3. Proof of the theorem . Let (T_n^α) be the n th (C, α) , with $0 < \alpha \leq 1$, mean

of the sequence $(na_n\lambda_n)$. Then, we have $T_n^\alpha = \frac{1}{A_n^\alpha} \sum_{v=1}^n A_{n-v}^{\alpha-1} va_v \lambda_v$. Applying Abel's transformation first and then using Lemma 2, we have that

$$\begin{aligned} T_n^\alpha &= \frac{1}{A_n^\alpha} \sum_{v=1}^{n-1} \Delta \lambda_v \sum_{p=1}^v A_{n-p}^{\alpha-1} pa_p + \frac{\lambda_n}{A_n^\alpha} \sum_{v=1}^n A_{n-v}^{\alpha-1} va_v, \\ |T_n^\alpha| &\leq \frac{1}{A_n^\alpha} \sum_{v=1}^{n-1} |\Delta \lambda_v| \left| \sum_{p=1}^v A_{n-p}^{\alpha-1} pa_p \right| + \frac{|\lambda_n|}{A_n^\alpha} \left| \sum_{v=1}^n A_{n-v}^{\alpha-1} va_v \right| \\ &\leq \frac{1}{A_n^\alpha} \sum_{v=1}^{n-1} A_v^\alpha u_v^\alpha |\Delta \lambda_v| + |\lambda_n| u_n^\alpha \\ &= T_{n,1}^\alpha + T_{n,2}^\alpha. \end{aligned}$$

To complete the proof of the theorem, Minkowski's inequality, it is enough to show that $\sum_{n=1}^\infty n^{\delta k-1} |T_{n,r}^\alpha|^k < \infty$ for $r = 1, 2$. Whenever $k > 1$, we can apply Hölder's inequality with indices k and k' , where $\frac{1}{k} + \frac{1}{k'} = 1$, we get that

$$\begin{aligned} \sum_{n=2}^{m+1} n^{\delta k-1} |T_{n,1}^\alpha|^k &\leq \sum_{n=2}^{m+1} n^{\delta k-1} (A_n^\alpha)^{-k} \left\{ \sum_{v=1}^{n-1} (A_v^\alpha)^k (u_v^\alpha)^k |\Delta \lambda_v|^k \right\} \\ &\quad \times \left\{ \sum_{v=1}^{n-1} 1 \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} n^{\delta k-2+k-\alpha k} \left\{ \sum_{v=1}^{n-1} v^{\alpha k} (u_v^\alpha)^k \beta_v^k \right\} \\ &= O(1) \sum_{v=1}^m v^{\alpha k} (u_v^\alpha)^k \beta_v^k \sum_{n=v+1}^{m+1} \frac{1}{n^{2+(\alpha-\delta-1)k}} \\ &= O(1) \sum_{v=1}^m v^{\alpha k} (u_v^\alpha)^k \beta_v^k \int_v^\infty \frac{dx}{x^{2+(\alpha-\delta-1)k}} \\ &= O(1) \sum_{v=1}^m (u_v^\alpha)^k \beta_v \beta_v^{k-1} v^{\delta k+k-1} \\ &= O(1) \sum_{v=1}^m (u_v^\alpha)^k \beta_v \left(\frac{1}{v X_v} \right)^{k-1} v^{\delta k+k-1} \\ &= O(1) \sum_{v=1}^m v \beta_v v^{\delta k} \frac{(u_v^\alpha)^k}{v X_v^{k-1}} \\ &= O(1) \sum_{v=1}^{m-1} \Delta(v \beta_v) \sum_{r=1}^v r^{\delta k} \frac{(u_r^\alpha)^k}{r X_r^{k-1}} \\ &\quad + O(1) m \beta_m \sum_{v=1}^m v^{\delta k} \frac{(u_v^\alpha)^k}{v X_v^{k-1}} \end{aligned}$$

$$\begin{aligned}
&= O(1) \sum_{v=1}^{m-1} |\Delta(v\beta_v)| X_v + O(1)m\beta_m X_m \\
&= O(1) \sum_{v=1}^{m-1} |(v+1)\Delta\beta_v - \beta_v| X_v + O(1)m\beta_m X_m \\
&= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} \beta_v X_v + O(1)m\beta_m X_m = O(1) \quad \text{as } m \rightarrow \infty,
\end{aligned}$$

by virtue of Lemma 1 and under the hypotheses of the theorem . Finally, we have that

$$\begin{aligned}
\sum_{n=1}^m n^{\delta k-1} |T_{n,2}^\alpha|^k &= \sum_{n=1}^m |\lambda_n|^{k-1} |\lambda_n| n^{\delta k} \frac{(u_n^\alpha)^k}{n} \\
&= O(1) \sum_{n=1}^m |\lambda_n| n^{\delta k} \frac{(u_n^\alpha)^k}{n X_n^{k-1}} \\
&= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_n| \sum_{v=1}^n v^{\delta k} \frac{(u_v^\alpha)^k}{v X_v^{k-1}} \\
&\quad + O(1) |\lambda_m| \sum_{n=1}^m n^{\delta k} \frac{(u_n^\alpha)^k}{n X_n^{k-1}} \\
&= O(1) \sum_{n=1}^{m-1} |\Delta \lambda_n| X_n + O(1) |\lambda_m| X_m \\
&= O(1) \sum_{n=1}^{m-1} \beta_n X_n + O(1) |\lambda_m| X_m = O(1) \quad \text{as } m \rightarrow \infty,
\end{aligned}$$

by virtue of the hypotheses of the theorem and Lemma 1. This completes the proof of the theorem . It should be noted that, if we take $\delta = 0$ (resp. $\alpha = 1$), then we get a new result for $|C, \alpha|_k$ (resp. $|C, 1; \delta|_k$) summability. Also, if we take $\gamma = 0$, then we get another new result.

REFERENCES

- [1] *N.K. Bari and S.B. Stečkin* , Best approximation and differential properties of two conjugate functions (in Russian), *Trudy.Moskov. Mat. Obšč.*, **5** (1956) 483-522.
- [2] *H. Bor*, An application of almost increasing sequences, *Math. Inequal. Appl.*, **5** (2002) 79-83.
- [3] *H. Bor*, A new application of generalized power increasing sequences, *Filomat*, **26** (2012) 631-635 .
- [4] *L. S. Bosanquet*, A mean value theorem, *J. London Math. Soc.*, **16** (1941) 146-148.
- [5] *T. M. Flett*, Some more theorems concerning the absolute summability of Fourier series, *Proc. London Math. Soc.*, **8** (1958) 357-387.
- [6] *L. Leindler*, A new application of quasi power increasing sequences, *Publ. Math. Debrecen*, **58** (2001) 791-796.
- [7] *T. Pati*, The summability factors of infinite series, *Duke Math. J.* **21** (1954) 271-284.
- [8] *W. T. Sulaiman*, Extension on absolute summability factors of infinite series, *J. Math. Anal. Appl.*, **322** (2006) 1224-1230.
- [9] *W. T. Sulaiman*, On a new application of almost increasing sequences , *Bull. Math. Anal. Appl.*, **4(3)** (2012), 29-33.