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A COMBINATORIAL CHARACTERIZATION OF TERNARY
DIAGONAL ALGEBRAS

Wieslaw A. DUDEK!, Adam W. MARCZAK?

In this paper algebras with two binary diagonal fundamental opera-
tions are studied and conditions providing their term equivalence to ternary diag-
onal algebras are indicated. We show that the number of ternary term operations
alone determines the structure of the algebras.
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1. Introduction

Many important types of algebras can be defined by axiom systems contain-
ing only identities. For example, groups considered as algebras (G, -, !, ¢e) of type
(2,1,0) are defined by three simple identities, but groups also can be defined as
algebras with one binary operation satisfying one (rather complicated) identity (see
[13]). On the other hand, some varieties of algebras can by characterized by finite
or infinite sequences (pg, p1,p2,...), where p,, determines the number of all distinct
n-ary term operations depending on every variable defined over any nontrivial alge-
bra from such varieties (for details the reader is refereed to Section 2). Moreover,
these sequences are very useful also in some algebraic constructions (for example see
3], [4), (27], [28], [29)).

A diagonal semigroup (or a rectangular band) is an idempotent semigroup
(G, -) satisfying the identity zyz = zz. Equivalently, it can be characterized as a
semigroup satisfying the identity xyx = x (see [17]). Diagonal semigroups seem to
be firstly investigated by F.Klein-Barmen in [22], where distinct possible values of
the product aba for semigroup elements a and b were discussed. Nowadays they are
studied by many authors in various directions (see, e.g., [14], [18], [23], [35]) and
have many important applications (see, e.g., [32], [36]).

As a generalization to the case of an n-ary algebra (i.e., an algebra with one
n-ary fundamental operation for n > 1), J. Plonka introduced a notion of an n-ary
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diagonal algebra which is an idempotent n-ary algebra (A, f) satisfying the identity

f(f(xn, e ,:L'ln), ceny f(xnl, ey xnn)) = f(x11,$22, “eey .%,m)

(see [33]). Then, K. Urbanik proved that every diagonal algebra is term equivalent to
a binary algebra with finitely many fundamental operations (see [37]). In particular,
it follows from Urbanik’s construction that the clone of a ternary diagonal algebra
(A, f) is generated by two distinct diagonal semigroup operations, call them - and
o, such that the operation - does not coincide with o or its dual. That is to say,
the algebras (A, f) and (A, -, o) are term equivalent. Therefore only algebras of the
form (A, -, o) are here investigated.

The aim of this paper is to characterize the variety of ternary diagonal algebras
by their ternary clones. We show the number of ternary term operations alone
determines the structure of the algebras. The following four identities play a special
role in our considerations.

(zy) oz = a(y  2),

Our main result is given by the following statement.

Characterization Theorem. Let (A,-,0) be an algebra with two semigroup fun-
damental operations. Then the following conditions are equivalent:

(a) (A,-,0) is term equivalent to an essentially ternary diagonal algebra,
(b) p3<A7 Yy O) - 67
(¢) (A,-, o) satisfies exactly one of the identities (1) — (4).

Then the following classic combinatorial characterization of ternary diagonal alge-
bras (cf. [11]) is directly derivable from Characterization Theorem.

Corollary 1.1. The sequence a* = (0,1,6,6,0,0,...) is the minimal extension of the
sequence a = (0,1,6) and an arbitrary universal algebra 21 represents the sequence
a* if and only if A is term equivalent to an essentially ternary diagonal algebra.

Recall that each diagonal semigroup (A4, -) is isomorphic to some semigroup
(X xY, ) with multiplication defined by (z1, y1) - (z2, y2) = (x1, y2). If elements
(1, y1) and (x2, y2) are viewed as opposite vertices of a rectangle in X x Y, then
the products (x1, y1)-(z2, y2) and (z2, y2)- (21, y1) are the remaining vertices of this
rectangle, see e.g. [2]. Following this, we get a nice geometrical interpretation of our
result. Consider a binary algebra with two diagonal semigroup operations (A4, -, o)
whose reducts (A,-) and (A, o) are decomposed to (X1 x Y7,-) and (X3 X Y3,0),
respectively. It follows from Characterization Theorem that the algebra (A, -, o)
is term equivalent to a ternary diagonal algebra (A, f) if and only if these two
decompositions have a common refinement, that is (A,-,0) can be decomposed to
a product X x Y x Z with two binary operations satisfying exactly one of (1)—(4).
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In particular, for X; = X, Y1 =Y x Z, Xo = X XY and Yo, = Z we obtain
a decomposition corresponding to the identity (1). Then the binary operations -
and o can be described as follows:

(1,91, 21) - (22,y2,22) = (z1,y2,22) and (x1,y1,21) o (22, Y2, 22) = (21, Y1, 22).

If (21,91, 21) and (2, y2, 22) are viewed as points of the 3-dimensional real space R3,
then the operation - represents the orthogonal projection of the point (2, y2, z2) onto
the plane x = x1, whereas the operation o can be viewed as the orthogonal projection
of the point (1,1, 21) onto the plane z = z9. Therefore the identity (1) states that
the superposition of these two projections is commutative.

The remaining identities, characterizing ternary diagonal algebras, correspond
to other groupings of the sets X, Y and Z and have similar geometrical interpreta-
tions.

2. Notation and terminology

An n-ary operation f of the set A is said to depend on the variable x;, if there
exist aq, ..., ay, b € A such that

f(al, ey Qi—15 Q4 Q44 1y - v vy an) 75 f(al, ceey ai_l,b, i1y« oy an).

If f depends on every its variable, then f is called essentially n-ary. Following this,
an n-ary diagonal algebra (A, f) with essentially n-ary fundamental operation f will
be called an essentially n-ary diagonal algebra.

For an universal algebra 2, let p,(2A) for n > 1 denote the number of all
distinct essentially n-ary term operations of 2 and let py(2() stands for the number
of all distinct constant unary term operations of 2. Then, the sequence

p(R) = (po(A), p1(A), ..., (), ...)

is called the p,-sequence of the algebra 2A (see [10]). We say that an algebra 2
represents a (finite or infinite) sequence (ag, ..., an, ...), if p,(A) = a, for every
n. Let a = (ag,a1, ... ,a;) be a finite sequence of non-negative integers. We say
that the sequence a has the minimal extension property if there exists an algebra 2
representing the sequence a such that for every algebra 98 representing a, we have
pn(B) > pp(A) for all n > k. Then the py,-sequence of A

a* = (a07a17 v 7ak7pk+1(m)7pk+2(m)a o )

is known as the minimal extension of the sequence a (for more details see [11]).
The theory of p,-sequences of universal algebras was founded by E. Marczewski
and his Wroctaw School back in the sixties. It began from E.Marczewski’s idea
of the characterization of algebras by their clones [31]. This — together with the
notion of a p,-sequence introduced by G.Grétzer [10] — originated a method of
identifying varieties of algebras with a numeric function p,, the function invariant
under the clone equivalence of algebras. As E. Marczewski expected, there are many
varieties of algebras uniquely determined by their p,-sequences (at least in some
classes of algebras), e.g., the variety of semilattices, distributive lattices or Boolean
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algebras (see [6], [25]). In the most spectacular case only one element of a p,-
sequence uniquely determines a variety of algebras (it is so, e.g., for the variety of
distributive lattices, some affine spaces or Steiner quasigroups, see [6], [7], [8], [24]).
The problem of characterization of these sequences, which uniquely identify some
varieties of algebras, is still open. But in many papers numbers implying algebraic
structures are indicated and p,,-sequences of algebras are studied from distinct points
of view (see, e.g., [1], [16], [26]). There are two main general problems in the theory
of pp-sequences. The first is to describe all sequences which can be represented as
pr-sequences of algebras of a certain kind (see, [3], [12], [16], [21]). The second is to
determine which properties of algebras can be deduced from their p,-sequences (see
4], [5), [20], [34]).

For a given algebra 20 = (A, F'), the smallest set containing all projections and
all elements of F' that is closed under superpositions of functions is called the set of
term operations of 2, or the clone of A (for details see [30]). Two algebras defined
on the same set are term equivalent if their clones are equal. Such algebras have the
same pp-sequences.

3. Auxiliary results

We consider here clones of algebras (A4, -, o), which both reducts (A4,-) and

(A, o) are not term equivalent essentially diagonal semigroups. The following four
ternary operations seem to be especially important.

fl(x,y,z) :(Iy)OZ, fQ(LU,y,Z)ZLUO(yZ),

f3(.fC,y,Z) :(xoy)z, f4($,y,2’):l’(y02).
The proof of Characterization Theorem is based on the following three main state-
ments.
Proposition 3.1. If (A, -, o) satisfies one of the identities (1) and (2), then (A,*),
where xxy = (xy)oy, is a diagonal semigroup and (A, f1), where fi(x,y, z) = (zy)oz,
is a ternary diagonal algebra term equivalent to the algebra (A, -, o).

Proposition 3.2. If (A,-,0) satisfies one of the identities (3) and (4), then (A,x),
where zxy = yo(xy), is a diagonal semigroup and (A, f2), where fo(x,y, z) = zo(yz),
is a ternary diagonal algebra term equivalent to the algebra (A, -, o).

Proposition 3.3. For the algebra (A, -, o) we have

p2(A,-,0) > 6 and ps3(A,-,0) > 6.
The proofs of these three propositions are the key part of this section. But now, let
us begin with the following observation.

Lemma 3.1. If (A,-,0) is an algebra with two idempotent essentially binary ope-
rations such that xy is not equal to x oy nor y o x, then at least one of the term
operations fi1 and fo is essentially ternary. The same is true for the term operations

f3 and fi.
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Proof. First observe that fi(x,y,z) = (zy) oz depends on z and also on at least one
of the variables z,y. Clearly, none of f; and fs is equal to a variable. Assume that
both f; and fo are essentially binary (and not essentially ternary), i.e., assume that
fi(z,y,z) =z oz or fi(x,y,z) =yoz and also, independently, fo(z,y,z) =xo0y or
fo(x,y,2) = x oz Then xy = (zy) o (zy) = z o (xy) or zy = y o (xy) which yield
immediately xy = xox =z, xy = zoy, xy = yox or xy = yoy = ¥, a contradiction.
The dual statement for the term operations f3 and f4 can be proved analogously. [

Let g(z1,29,...,2,) = f(o(z1),0(x2),...,0(zy,)) for some fixed n-ary term
operation f and a permutation o of variables x1,xs,...,2,. Such defined term
operation g is denoted by f?. In the case f = f? we say that the permutation o
is admissible by the operation f. The set of all admissible permutations for a fixed
term operation f forms a group which is called the symmetry group of f.

In the further considerations we assume that the operations - and o are not
commutative.

Lemma 3.2. The symmetry groups of the term operations f1, fo, f3, fa have only
one element.

Proof. Assume that the term operation fi(x,y, z) = (zy)oz admits the transposition
(x,y), i.e., the identity (zy) o z = (yz) o z holds. Replacing in this identity = by
zy we get ((zy)y) o z = (y(zy)) o z. Since (A4,-) is a diagonal semigroup, the
last identity implies (zy) o z = y o z. Consequently, we have y o z = (zy) o z =
(yz) o z = x o z and finally, by idempotence of o, the identity x o z = y o 2z leads to
x oy =y, a contradiction. Using again idempotence of the operations - and o, we
infer that for every permutation o of variables x, y, z such that o(z) # z, the identity
fi(z,y,2) = fi(o(x),0(y),o(2)) implies z = o(z), a contradiction. Therefore the
symmetry group of the term operation f; contains only the identity permutation.
For the term operations fo, f3 and fs the proof is similar. O

If the symmetry group of an essentially n-ary term operation f of an algebra
2 has k elements, then the clone of 2 contains exactly %’ distinct essentially n-ary
term operations obtained from f by permuting of its variables. Therefore we have
the following.

Corollary 3.1. Every essentially ternary term operation f;, where i € {1, ..., 4},
induces six distinct essentially ternary term operations obtained by permuting of its
variables.

Lemma 3.3. If the term operations fi and fo both are essentially ternary, then
p3(A,-,0) > 12. The same is true for fs and fy.

Proof. According to Lemma 3.2, the symmetry groups of term operations fi and fo
have only one element. So, it suffices to prove that

(zy) oz & {xo(y2), wo(zy), yo(xz2), yo(zx), 2o (zy), 2o (yx)}.
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Then every of f; and fo, generates 6 essentially ternary term operations which are
pairwise distinct and, consequently, p3(A,-,0) > 12.

Obviously, the assumption (zy) o z € {z o (zy), z o (yx)}, leads to the com-
mutativity of o, a contradiction. Let (zy) o z = x o (yz). Then zy = (zy) o (zy) =
zo(y(xy)) = zoy, which is impossible. If (zy) oz = xo(zy), then (zy)oz = ((zy)o
z)oz = (zo(zy))oz = woz and hence (zy)oz is not essentially ternary despite the as-
sumption. More general, if (zy)oz = o(2) o (o(z)o(y)) for an arbitrary permutation
o of the set {z,y, z}, then (zy)oz = ((zy)oz)oz = (o(z)o(a(m)a(y))) oz =o0(z)oz,
so (zy) o z is not essentially ternary despite the assumption.

The dual statement for the term operations f3 and f4 holds analogously. This
completes the proof. O

Lemma 3.4. The term operation xxy = fi(x,y, ) is not commutative and x *y &
{y, yx, x oy}. Moreover,

(a) rxy =2+ fi(z,y,2) =x02,
(b) x*y:xy<:>f2(:v,y,z)=xoy,

(¢c) zxy=yoxr < fi(z,y,z) =yoz.

Proof. All the statements are easy to prove using diagonality of the operations - and
o. ]

Lemma 3.5. py(A4,-,0) > 6.

Proof. Let x xy = fi(z,y,z). By Lemma 3.4, x xy & {y, yx, x o y}. Suppose that
xxy € {x, xy, yox}.

CASE 1. z*y = x. Then fi(x,y,2) = x o z which means that f; is not
essentially ternary. So, fo must be essentially ternary (Lemma 3.1). Let z ¢y =
fo(z,y,z) = xo(yx). Since fo is essentially ternary xey # x. In the case xey = y, by
diagonality of o, we obtain y = yoy = (zey)oy = (zo(yx))oy = woy, a contradiction.
Hence r oy & {x, y}. Also xey & {x oy, yox} because fo is essentially binary. If
rey = xy, then zo(xy) = zo(vey) = zo(xo(yx)) = zo(yx), which contradicts Lemma
3.2. Let now xey = yx. Then (yz)oz = (zey)oz = (zo(yx))oz=z0z = (xYy)oz,
by Lemma 3.4 (a). This also contradicts Lemma 3.2. So, zey & {zy, yx, xoy, yox}.
Assume that z ey = y @ z. Since (A;0) is an essentially diagonal semigroup, we get
r=xzox = (xo(yx))ox = (zey)ox = (yex)ox = (yo (zy))ox = you,
a contradiction. Therefore x e y is not commutative.

CASE 2. zxy = xy. Then fo(x,y,2) = x oy, by Lemma 3.4 (b), which
means that f is essentially ternary (Lemma 3.1). Consider the operation z xy =
fi(z,y,y) = (zy) oy. Obviously zxy & {z, y,z oy, yox}. If zxy = zy, then
zox = fo(z,2,y) = zo(xy) = zo (x*xy) = zo ((xy) oy) = 2 oy, which implies
zox = z, a contradiction. For zxy = yx we have fi(x,y,2) = (yxx)oz = fi(y,x, 2).
This contradicts Lemma 3.2. So, z*xy & {zy, yz, zoy, yox}. Assume xxy = y .
Since (4;0) is an essentially diagonal semigroup, we get y = yoy =yo ((zy)oy) =
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yo(zx*y)=yo(yxx)=yo((yzr)ox) =youz, acontradiction. Therefore x xy is
not commutative.

CASE 3. xxy = yoxz. Then, by Lemma 3.4 (¢), we have fi(x,y,2z) =yoz
which shows that f; is not essentially ternary. Hence f5 is essentially ternary. Let
r Oy = folr,z,y) = zo(xy). faxoy e {x,y}, then zox = zo0 (2zy) = z o0y,
a contradiction. If z @y = z oy, then fo(z,y,2) =xoyz =20 yz =zo (2(yz)) =
xoxz =x0z=1xQ®z = fo(x,x,2) which is impossible because fo is essentially
ternary. By the same reason z©y # yox. lf t®y = xy, then xoz = (zy)oz = yoz,
a contradiction. For x ® y = yz we obtain fa(z,x,y) = fa(z,y,x), which also is
impossible (Lemma 3.2). Hence z®y & {xy, yx, xoy, yox}. Assume xQy =yOwx.
Then z =z oz = (zo(yz))ocx=(xOy)or=(yOz)oxr = (yo(yz))ox =you,
a contradiction. Therefore x ® y is not commutative.

Summarizing, in any case we have at least six essentially binary term opera-
tions. Therefore pa(A,-,0) > 6, as required. O

Lemma 3.6. If the algebra (A,-,0) satisfies the identity fi = f, then o(y) = 2
and o(z) =y, i.e., this algebra satisfies (2) and x o (yz) =z oy.

Proof. Indeed, in the case (zy) o z = (y o 2)x we also have (zy) oy = yr and,
consequently, (yz)oz = (zy) o z, which contradicts the statement of Lemma 3.2. In
the case (zy) o 2 = (2 o y)x we have (zy) oy = yx and as above (yx) o z = (xy) o z,
a contradiction. If (xy)oz = (zox)y, then (xy)ox = xy and hence zo(zy) = zox. But
then we have (zy)oz = ((zo (zy))y and, consequently, x oz = (zox)x. This implies
(zoz)y = ((z0x)x)y = (z0x)y, which contradicts Lemma 3.2. If (zy)oz = (zoy)z
or (zy) oz = (yox)z, then x o z = xz which is impossible because, by assumption,
algebras (A,-) and (A,o) are not term equivalent. Therefore, (zy) o z = (z 0 2)y
and hence also (zy) ox = zy, z o (xy) = z o x and consequently x o (yz) =z oy, as
required. ]

Lemma 3.7. If the algebra (A,-,0) satisfies the identity f1 = f, then o is the
identity permutation, i.e., this algebra satisfies (1) and o (yz) =z o z.

Proof. (A,-) and (A, o) are not term equivalent, thus (zy)oz & {z(zovy), z(yoz)}.
If (zy) oz = y(x o z), then (zy) oz = yx and (zy) o z = (yz) o z, a contradiction
with Lemma 3.2. If (zy) o 2 = y(z o x), then (zy) o x = yx and, consequently,
(yz) o z = (zy) o z, a contradiction. If (zy) o z = x(z o y), then as above we get
zo (zy) = zoy. But then (zy) o z = z(z o (zy)) and, consequently, z oz = z(z o x).
This implies y(x o z) = y(z o z), which contradicts Lemma 3.2. Therefore must be
(xy) o 2 = z(y o z). Then also (zy) oy = zy, z o (xy) = 2z o y and consequently
x o (yz) = x o z, as required. O

Analogously one can prove the following.

Lemma 3.8.
(a) If the algebra (A,-,0) satisfies the identity fo = f5, then o is the identity
permutation, i.e., this algebra satisfies (3) and (ry)oz=xzoz.
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(b) If the algebra (A,-,0) satisfies the identity fo = f, then o(z) = y and
o(y) =z, i.e., this algebra satisfies (4) and (xy) oz =1yo z.

Lemma 3.9. Ifp3(A, -, 0) = 6, then exactly one of operations f1, fa is an essentially
ternary diagonal operation and the algebra (A, -, 0) is term equivalent to this algebra
(A, fi) which is essentially ternary.

Proof. The term operations f1, fo, f3, f1 are all idempotent. By Corollary 3.1, every
essentially ternary operation f; induces six distinct ternary operations f,? obtained
by permuting of variables in f;. Lemmas 3.1 and 3.3 together with the assumption
p3(A, -, 0) = 6 show that exactly one of the operations fi, fo is essentially ternary.
So, if f1 is essentially ternary, then for some permutation o of variables x,y, z we
have either fi = f{ or fi = f. Similarly, if fs is essentially ternary, then either
fa=ff or fo = fZ. This, by Lemmas 3.6 and 3.7, means that in (4,-,0) exactly
one of the identities (1) — (4) is satisfied.

If (A, -, o) satisfies one of identities (1) and (2), then the operation f; is idem-
potent and essentially ternary. It is also diagonal. In fact, in the case when (1) is
satisfied we get

fi(fi(zr, 212, 213), f1(w21, 22, 723), f1(231, 232, ¥33))
= (((z11712) © 713) ((T212722) © T23) ) © ((z31732) © 33)
= (( CC113712 03713)( 33213322 03623)) o33
= ((z11212) 0 213) (((w21222) 0 w23) 0 233)
= ((z11212) 0 z13) ((z21222) © 233) = (211 (212 © 13) ) (221 (w22 © 33))
= z11(222 0 ¥33) = (11722) 0 w33 = f1(w11, T22, 33),
In the case of (2) we have
f1(fi(z11, 12, 213), f1(221, 222, T23), f1(231, 232, T33))

z11212) © 213) ((x21222) © 3323)) o ((ws1232) 0 x33)

((
(z11212) 0 213) ((T21222) © 9623)) o x33
(

x11 0 13)212) (221 © fL'Qg).’L'QQ)) o x33

= ((
((
((
((9311 o z13)(w12(z21 © 1‘23)1‘22)) o x33 = ((z11 0 213)(@12222)) © T33
= ((z11 0 z13)T22) 0 233 = ((w11222) 0 13) © T33 = (T11222) © T33

= f1(w11, T22, T33).

as required. For the identities (3) and (4) we consider the operation f,. The argu-
mentation is very similar, so we omit it.

Since every essentially ternary term operation f; easily induces both fun-
damental operations - and o, we get the term equivalence between (A,- o) and

(Aa fz) 0

Proof of Proposition 3.1. If at least one of the fundamental diagonal operations of
(A,-,0) is commutative, then |A| = 1. Thus the assumption that both (A4,-) and
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(A, o) are essentially diagonal semigroups, implies that both - and o are not com-
mutative.

It is not difficult to verify that z xy = (xy) oy = fi(x,y,y) is an essentially
binary diagonal operation. Since f; is defined as a combination of the fundamental
operations of (A,-,0) which are both idempotent, it is enough to note that xy =
fi(z,y,zy) and z oy = f1(z,x,y). The rest is a consequence of Lemma 3.9. O

Proof of Proposition 3.2. is dual to the proof of Proposition 3.1. O

Proof of Proposition 3.3. It follows from Lemmas 3.1 and 3.2 for essentially ternary
term operations and from Lemma 3.5 for essentially binary ones. n

4. The main results

This section is devoted predominantly to the proof of our main results. We
recall them for the convenience of the reader. Then we present some examples and
pose some problems.

Theorem 4.1. Let (A,-,0) be an algebra with two semigroup fundamental opera-
tions. Then the following conditions are equivalent:

(a) (A,-,0) is term equivalent to an essentially ternary diagonal algebra,
(b) p3(A7 * O) =0,
(¢) (A,-, o) satisfies exactly one of the identities (1) — (4).

Proof. (a) = (b) Assume that (A, -,0) is (up to the term equivalence) an essentially
ternary diagonal algebra. Then the number of distinct essentially ternary term
operations of (4, -,0) equals 6 (routine calculations are here omitted).

(b) = (c) Assume that p3(A,-,0) = 6. By Lemma 3.1, at least one of f; and
f2 is essentially ternary (the same is true for f3 and fy). If both f; and f, are
essentially ternary, then according to Lemma 3.3 the number of distinct essentially
ternary term operations of (4, -,0) is not less than 12 (the same we have for f3 and
f1). Therefore exactly one of fi; and fy (and also one of f3 and fy) is essentially
ternary. By Lemmas 3.6 — 3.8, one of the identities (1) — (4) holds.

(¢) = (a) If one of the identities (1) — (4) holds, then by Propositions 3.1 and
3.2, the algebra (A, -, 0) is term equivalent to an essentially ternary diagonal algebra,
completing the proof. ]

Corollary 4.1. The sequence a* = (0,1,6,6,0,0,...) is the minimal extension of the
sequence a = (0,1,6) and an arbitrary universal algebra 2 represents the sequence
a* if and only if A is term equivalent to an essentially ternary diagonal algebra.

Proof. (a) Consider the class of binary idempotent algebras (A4, -, o), such that (A, -)
and (A,o) are non-term equivalent essentially diagonal semigroups. Assume that
(A, -, o) represents the sequence a = (0,1,6). Then Proposition 3.3 implies that
p3(A,-,0) > 6. Moreover, by Characterization Theorem, p3(A4,-,0) = 6 if and only
if it is term equivalent to an essentially ternary diagonal algebra 2 (according to
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the following Example 4.1 such algebra really exists). By Characterization Theorem
again, 2 represents the sequence a* = (0,1,6,6,0,0,...). Thus we have p,(A4,-,0) >
pn(2l) for every nonnegative integer n. Therefore a* is the minimal extension of the
sequence a in this class.

More general, assume that an arbitrary universal algebra 2 represents the
sequence a. In particular we have po(2A) = 0 and p;(2A) = 1. Therefore A is idem-
potent. It follows that either its p,-sequence p(2l) is strictly increasing or 2 is term
equivalent to a diagonal algebra (A, f) (see [19], see also [37]). Then the assumption
p2(A) = 6 implies that (A, f) is an essentially ternary diagonal algebra. Thus we
have p, () > pn(A, f) for every n, and consequently, the p(A, f) = a* is the mini-
mal extension of the sequence a.

(b) If an arbitrary universal algebra 2 represents the sequence a*, by [37] again,
we infer 2 is an essentially ternary diagonal algebra. Conversely, consider an es-
sentially n-ary diagonal algebra (A, f). It is clear that, by the assumptions of the
idempotence and the diagonality of (A, f), every its term operation reduces to the

form f(zi,, ..., x;,) for some x;,, ..., x;, € {z1, ..., vn}. Note that every term
operation of this form depends on every its variable. Indeed, consider a term opera-
tion (x1, ..., xx) = f(ziy, ..., z;,), where {z;,, ..., x;, } = {z1, ..., xx} for some
k < n, and assume that iy = j for some s = 1, ..., k. Suppose that p(z1, ..., )
does not depend on the variable ;. Then we have
f(yla sy Ys—1, 80(1131, ceey :Ek)’ Ys+1y -+ yn)
— f(yla ceey Ys—1, ‘rja Ys+1y -+ yn)7

and therefore f(y1, ..., Ys—1,%j,Ys+1, - - -, Yn) does not depend on the variable z;,

a contradiction.
Note also that two arbitrary term operations of this form are distinct if
only their variables differ in any place. Indeed, take two term operations p; =

f(xiy, ..., x;,) and @ = f(l‘jl, ceey :an) such that z;, ..., x;, and z;,, ..., x;,
are variables from the set {z1, ..., x,} satisfying z;, # x;, for some s € {1, ..., n}.
Assume that @1 = 9. Then the following holds:
f(yla sy Ys—1, f(fril, vy Lijgy "'7xin)7 Ys+1y - -+ yn) =
:f(?/h ceey Ys—1, f(xjm ceey Lggy oo ey xjn)7y5+17 ) yn)
and hence
f(yla ceey Ys—15 Ligy Ys+1y - -+ y’n) = f(yla ceey Ys—1y Ljgy Ys+1y -0 oy yn)v

a contradiction.

Therefore the number of distinct essentially k-ary term operations of (A, f) for
any k < n can be counted as the number of distinct factorizations of the n-element
set onto k nonempty partitions. So, pi(A,f) = {Z} - k! for every 0 < k < n and
pr(A, f) = 0 for every k > n, where {Z} denote the Stirling numbers of the second
kind (cf. [11]). In particular, for n = 3 it follows that the algebra (A, f) represents
the sequence (0,1,6,6,0,0, ...). O
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Remark 4.1. Simple combinatorial arguments show that for every essentially n-ary
diagonal algebra ©,, we have po(D,) =0, p1(Dn) = 1, pm(Dy) = 0 for every m > n
and for every k such that 2 < k < n the following formula holds:

k—1

Pr(Dn) = K" - ; (I;)Pl(@n)~
In particular, for small & we have

p2(Dp) = (271 —1)-20=2" -2,

p3(Dp) = (3" —3) - (3)(2" —2) =3" +3 -3 2",

pa(Dy) =4"4+6-2"—4-3" —4
and also

Pn—1(Dy) = %n'(n - 1),

Pn(Dy) = n!
For n = 2 we get

p(®2)=(0,1,2,0,0,0,...),

so we obtain the well known fact for diagonal semigroups. Proper 3, 4 and 5-
dimensional diagonal algebras are characterized by the p,-sequences:

p(D3)=(0,1,6,6,0,0,0,...)
p(D4) = (0,1, 14, 36, 24, 0,0, 0, ...)
p(Ds) = (0, 1, 30, 150, 240, 120, 0, 0, 0, ...)

Thus the p,-sequences of essentially n-ary diagonal algebras are increasing at be-
ginnings and then decreasing. Since the p,-sequences of idempotent algebras are
strictly increasing (except some known varieties of algebras, for details see [19]), the
pr-sequences of essentially diagonal algebras are very unusual.

Example 4.1. Let (G, +) be an Abelian group of exponent 30. Then (G, f), where
f(z,y,z) = 6z + 15y + 10z is an essentially ternary diagonal algebra. Putting

vy = f(z,y,y), z*xy=f(y,z,y) and zoy= f(y,y,2)

we obtain three essentially binary operations induced by f. It is not difficult to
see that (G,), (G,*), (G,0) are essentially binary diagonal semigroups and ev-
ery of the algebras (G, -, *), (G,*,0), (G,-,0) is term equivalent to (G, f). More-
over, these algebras satisfy (1), (3) and (4), respectively. The identity (2) is sat-
isfied by the algebra (G,-, o), where xy = f(y,x,z) and z oy = f(x,z,y). Thus
p2(G, -, 0) = p3(G,-,0) = 6 and, consequently, p2(G, f) = p3(G, f) = 6. Since (G, f)
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is idempotent, po(G, f) = 0 and p1 (G, f) = 1. The diagonal law of f implies that ev-
ery n-ary term operation with n > 3 reduces to the fundamental operation f involv-
ing only 3 (not necessarily distinct) variables. Therefore p, (G, f) = 0 for every n > 3
and, consequently, the algebra (G, f) represents the sequence (0,1,6,6,0,0, ...).

Example 4.2. Let (G, +) be an Abelian group of exponent 6. Defining on this group
a ternary operation f(z,y,z) = z + 3y + 3z we obtain an idempotent essentially
ternary algebra (G, f) representing the sequence (0,1,2,3, ..., n,...) (see [34]).
Therefore it is not a ternary diagonal algebra. But the groupoid (G,-) with the
operation zy = f(z,z,y) is an essentially diagonal semigroup. It represents the
sequence (0,1,2,0,0, ...). The groupoid (G,o), where x oy = 2z + 5y, is not
a diagonal semigroup and it has exactly 4 distinct essentially binary term operations
xy, yx,roy and yox. Since (xoy) oy = xy, the algebra (G, -, 0) is term equivalent
to the idempotent groupoid (G, o) and hence it represents the sequence (0, 1,4). So,
it is not induced from (G, f).

Problem 1. Characterize all diagonal algebras obtained from Abelian groups and
also from groups.

Below we present a method of construction of essential ternary diagonal alge-
bras based on Cantor identities described in [9].

Example 4.3. Consider a variety V of algebras with one binary - and two unary
fundamental operations ', *, satisfying

(zy) =z, (zy)"=y and (2")(2') =2z

A model of these identities is a set A (empty, of one element or infinite) with a mul-

* and / are the two

tiplication which is a bijection between A x A and A. Then
components of the inverse to multiplication. These identities have been first con-
sidered by B. Jénsson and A.Tarski in [15] and recently in [9] under a name Cantor
identities, since G. Cantor may have been the first to recognize a bijection between
a set and its square.

Let 20 = (A,-/,*) be a proper algebra from the variety V. Then A is infinite

and free algebras with 1-element and n-element set of free generators are isomorphic

for every n > 1. Then there exists an n-ary term operation f = f(x1, ..., x,) with
n > 1 and unary term operations fi, ..., f, such that the algebra (A, f, fi, ..., fn)
satisfies

f(fi(z), ..., fu(z)) =2 and fi(f(z1, ..., 2n)) =m i=1,..., n.

Put § = d(x1, 22, ..., ) = f(fi(z1), fa(x2), ..., fu(zy)). Then the algebra (A,4)
is an essential n-dimensional diagonal algebra (for details and a generalization see
[9]). In particular, for n = 3 we get a method of construction of essential ternary
diagonal algebras.



A combinatorial characterization of ternary diagonal algebras 127

Varieties of diagonal algebras are uniquely determined by their p,-sequences.

Moreover, in the class of binary algebras (A, -,0) with two diagonal semigroup fun-

damental operations the number p3(A,-,0) = 6 alone indicates ternary diagonal
algebras.

Problem 2. Find another varieties uniquely defined by their p,-sequences. In

particular, consider varieties of algebras with two binary fundamental operations.

Problem 3. Is the variety of normalizations of distributive lattices uniquely deter-
mined by its pn-sequence?
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