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FINITE VOLUME SQUEEZE FLOW IN HIGHLY COMPRESSIBLE 
POROUS ANNULAR DISCS 

Petrică TURTOI1, Mircea D. PASCOVICI2 

This paper presents an original theoretical model for the axisymmetric 
squeeze flow of a Newtonian fluid imbibed in the central region of a highly 
compressible porous layer. The fluid flow is studied for three squeezing conditions: 
constant speed, constant force and given impulse. The experimental validation of the 
model is made for reticulated polyurethane foam imbibed in central region with 
glycerin and subjected to squeeze with constant speed. The applications of this 
innovative configuration can be in domains like automotive, sport equipment and 
ballistic protection. 
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1. Introduction 

The resistance to flow of a fluid through a porous medium is generated by 
viscous friction. This effect underlies the damping effect that occurs during 
compression of a porous material which has been imbibed with a fluid. The forces 
generated by squeezing the porous material can be neglected compared with 
hydrodynamic forces generated by the fluid flow through pores. 

Damping capacity for highly compressible porous layers (HCPL) imbibed 
with liquids has been investigated in theoretical and experimental studies [1-3]. 
The high potential of this mechanism for protection against mechanical shock has 
already been shown in [4-7]. Theoretical and experimental studies have 
considered squeeze process at constant speed, under constant force and by impact. 
There were analyzed both conformal (disc on plane [8] or cylinder on plane 
contact [5]) and nonconformal contacts (sphere on plane contact [3] or cylinder on 
cylinder contact [4]). Several studies have been made [9-11] to assess damping 
capacity of reticulated porous foam that have portion of material replaced with 
low-density foam imbibed with liquid. During compression the fluid migrate 
outwardly to the higher-density foam. To study the fluid flow through porous 
structure, Dowson [9] proposes a model with two flow regimes. The model was 
improved later by Vossen [11]. Both assumed that the porous structure buckle and 
collapse under compression forming a band of densified layers of cells. This band 
is assumed to appear in the center of the specimen and propagates symmetrically 
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towards the compression plates as the specimen is further compressed [11, 12]. 
Elasto-plastic damping capacity of dry layers was also analyzed [10, 12, 13]. The 
experimental study of Pampolini [13] showed that during compression, two 
regions with different porosity are generated. However the experimental study 
was made on relatively high thickness materials and the proposed model is quite 
complex. 

In this paper the squeeze process between two parallel flat discs is 
analyzed. The element of originality is that the fluid is found initially only in 
central reservoir; the surrounding annular porous ring is dry. Both the central 
reservoir and the annular disk are made from the same porous material. 

Experimental analysis is also original. The constant speed squeeze tests 
were made with polyurethane foam imbibed with glycerin or silicone oil. 

2. Analytical model 

A finite volume of Newtonian fluid imbibed in a central reservoir is 
squeezed out radially through a dry porous ring. 

The squeeze is produced by a flat, rigid and impermeable disc of radius Re 
(fig. 1). The HCPL is placed on a perfectly flat, rigid and impermeable surface. 
The two surfaces remain parallel during approach. 

 
 

 
The central circular volume with radius 0R  and thickness 0h  is filled with 

fluid imbibed in the porous layer. Initially, the volume between 0R  and eR  with 
thickness 0h  is an annular dry layer. During squeeze process the fluid flows 
radially from the central reservoir through the dry porous material. The layer of 
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Fig. 1 Geometry of the model for porous material ring with fluid reservoir squeezed at constant speed
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porous material imbibed at radius R and thickness h is subjected to squeeze. The 
theoretical model is axially symmetric (fig.1). 

The following assumptions are made: 
a. The fluid is Newtonian and the flow is laminar, isothermal and isoviscous; 
b. The elastic forces generated by the solid structure of the porous material 

under squeeze can be neglected if compared with lift forces [1,16]; 
c. Fluid pressure is constant across HCPL thickness and the flow in radial 

direction can be described using Darcy law [2,3,15]; 
d. Because the HCPL is considered very thin and the cross-section does not 

change significantly, in normal squeeze, the product between thickness h and 
compactness σ  can be considered constant: ct00 == hh σσ ; 

e. Permeability is considered related with porosity ε , and correspondingly, 
to the compactness σ , using Kozeny-Carman equation [14]; 

23 /)1( σσφ −= D  (1) 

f. The pores of the material are assumed to be completely filled with fluid; 
g. All the pores of the material are interconnected. 
h. The conservation of the squeezed finite volume gives: 
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2.1 Constant speed squeeze 

 At a given moment, the fluid is squeezed until it reaches the radius R. The 
flow conservation, in radial coordinates, gives:  
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After separation of variables and simplification, the differential equation 
of pressure variation is: 
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By integration with boundary conditions: p=0 at r=R, yields: 
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Integrating equation (5) on disk surface, the expression of force generated 
by squeeze of porous material with fluid reservoir is: 
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 In order to determine the dimensionless expression for force, based on the 
hypothesis (d), the compactness σ  can be written in terms of the dimensionless 
thickness 0/ hhH = .  

H/0σσ =  (7) 

 From equations (2) and (7), the dimensionless radius 0/ RRR = can be 
written as: 
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 Using the dimensionless notation H and equation (7), the Kozeny-Carman 
equation (1) for the permeability φ , can be written as: 
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 Finally, combining equations (6), (8) and (9) we get the dimensionless 
force as a function of dimensionless thickness, H: 
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In fig. 2 is presented the variation of dimensionless force written as 
function of H, for different values of HCPL compactness. One can see that the 
dimensionless force increases with the compactness for a given dimensionless 
thickness. 

 
Fig. 2 Dimensionless force F  vs. dimensionless thickness H  
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 2.2 Constant force squeeze 

This model allows determination of squeeze time until a defined thickness 
(compression level) is obtained. The squeeze speed can be written as: 

tHhV d/d0−=  (11) 

If eq. (11) is introduced in eq. (6) and the permeability and thickness are 
written also dimensionless, yields: 
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where the dimensionless time τ  is defined as 
4
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tFD
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After integration of equation (12) we get: 
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Using the initial condition 1=H  at 0=τ , the equation for the 
dimensionless time τ  is obtained: 
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 The variation of the dimensionless thickness H as function of 
dimensionless time τ  is shown in fig. 3. One can see that the time of squeeze 
increases with the increase of compactness, respectively the decrease of porosity.  
This is not evident from equation (14), but it is obvious that more time is needed 
to compress with constant force a material with higher compactness. 
 When limitHH = , the squeezed fluid reaches the outer margin and 

0/ RRR e= . Further, this theoretical model no longer applies. This limiting 
thickness, limitH , can be determined as: 
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 The limit of the squeeze process represented with dashed lines in fig. 3, is 
obtained when 2=R . If squeezed below the limit, the fluid flows outside the 
porous ring until porous material becomes solid. 
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Fig. 3 Variation of dimensionless thickness H  vs. dimensionless timeτ  

2.3 Impact squeeze  

 Since the impact protection system based on porous ring with reservoir of 
liquid is a feasible solution, the model was extended for the case of squeeze under 
impact. The model allows determination of damping capacity for a ring of porous 
material under impact with a body with known mass M and impact speed of V0.  
For squeeze under impact the impulse equation is: 

tFVM dd ⋅−=  (16) 

 Also, according with Bowden and Tabor model [3], assuming small 
displacements, it is possible to use the force determined for squeeze with constant 
speed into eq. (16). Rewriting eq. (10) in dimensional form results: 
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 Introducing eq. (17), in eq. (16) and rearranging, results: 
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After integration, yields: 
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 For the initial condition H=1 at t=0, the expression of the speed results: 
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 Finally, introducing eq. (20) in eq. (17) results the force generated during 
squeeze motion, produced by impact: 
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 Using dimensionless parameters for the force )/( 4
00 ηRFDhF =  and 

impulse )/( 4
00 ηRMDVM = , eq. (21) becomes: 
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3. Experimental results 

In order to validate the theoretical model a series of experiments at 
constant speed using UMT-2 CETR universal tribometer were made. The test rig 
(fig. 4) has two main components: control unit (computer and data acquisition 
board) and the testing unit (sensor, mobile carriage with indenter, container). The 
measurement of the force generated during squeeze is made simultaneous with 
time, displacement and squeeze speed. The precision of carriage vertical 
displacement is 1 μm and its velocity can be varied between 0.001 -10 mm/s. The 
force sensor DFH-20 mounted on the mobile carriage is capable to measure up to 
200 N with a resolution of 0.02 N. The moving (upper) part is a 66 mm diameter 
steel disc of 5 mm thickness. 

The experiments were made for rings of porous material with an outer 
diameter of 66 mm, and a central reservoir with diameter of 33 mm represented by 
the same porous material disc imbibed with liquid (see fig. 4). Each disc reservoir 
was imbibed with fluid prior to each test and placed in the central part of the dry 
ring. 
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Two fluids were used in experiments: glycerin ( sPa ⋅= 6.0η ) and silicone 
oil ( sPa ⋅= 11η ). Glycerin was chosen because its behavior is very similar with 
a Newtonian fluid. However, it has an important shortcoming when used for 
damping or protection systems: in the presence of liquid water or vapors the 
viscosity of glycerin diminishes as a result of its hydrophilic behavior. Silicon oil 
is considered to be an ideal candidate because of its stability for various 
conditions of use. However, the non-Newtonian behavior of the silicon oil made it 
inappropriate for validation of the theoretical model. 

The selected porous material is a reticulated polyurethane foam 
FILTREN® TM 25133 (codification: F133). F133 have an open cellular structure 
and is usually used as filtering material. Its properties are: density 20-24 kg/m3 
compression resistance 2.5-4.5 kPa, ultimate elongation 100%, tensile strength 80 
kPa. The average pore size varies between 1.06 and 1.6 mm. Porosity 
measurements were carried out and the average value was: 95.00 =ε . The initial 
thickness of the ring as well for the inner reservoir disc radius were 0h =4.5 mm. 
Fig. 5 shows a porous ring of porous material F133 with reservoir of glycerin 
imbibed before (Fig. 5a) and after squeeze (Fig. 5b) with constant speed. With 
blue line is marked the limit to which the ring material was imbibed. 

Fig. 4 The experimental test rig
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a)        b) 

Fig. 5 The ring of porous material F133 with reservoir of fluid imbibed before squeeze - a) and 
after squeeze with constant speed – b) 

 
Fig. 6 Squeeze force vs. porous material thickness for reservoir with silicon oil 

In fig. 6 and fig. 7 are presented the experimental results with various 
squeeze speed v = 2, 4 and 8 mm/s and a ring reservoir filled with glycerin and 
silicone oil, respectively. A rapid increase of the force can be observed in the first 
part of the squeeze motion (for thickness variation between 4.5 mm and 3.5 mm). 
This behavior attributed to the solid matrix response to compression. Analyzing 
further these results, it can be observed that the force increases with the increase 
of speed from 2 mm/s up to 4 mm/s and 8 mm/s.  
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Fig. 7 Force measured on squeeze for reservoir with glycerin 

Comparing the forces measured at the same speed (fig. 8), for glycerin and 
silicone oil it can be seen that the squeeze force is considerably higher for the 
more viscous fluid (silicone oil). 

 
Fig. 8 Comparison between forces measured for squeeze speed v=8 mm/s 
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Fig. 9 Fluid squeeze force for glycerin calculated from the experimental data 

4. Validation of theoretical model for constant speed squeeze 
According to the proposed model, the force generated by constant speed 

squeeze can be expressed in terms of the instantaneous thickness of the porous 
layer by replacing equation (9) in equation (6): 
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The values for the parameters used in equation (23) are presented in 
Table1. 

Table 1 
Parameter Value Parameter Value 

D 1.3·10-10 m2 R0 16.5 mm 
σ0 0.05 η 0.6 Pa s 
h0 4.5 mm

Because no other method was available, for the determination of 
parameter D, this was calculated using the experimental data and assuming valid 
the proposed model. Three values of D (each corresponding to a value of the 
speed, u) were calculated by fitting the experimental force with that predicted by 
the model. The average of these is presented in table 1. 

The experimental data for force variation with the layer thickness is 
compared with the predicted values of the force, calculated with eq. (23) and the 
results are plotted in fig. 10. 
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Fig. 10 Experimental vs. analytical results for glycerin at speed 2 mm/s 

 

 
Fig. 11 Experimental vs. analytical results for glycerin at speed 4 mm/s 

 
Fig. 12 Experimental vs. analytical results for glycerin at speed 8 mm/s 
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The analytical results are in quite good correlation with the experimental 
results. It can be concluded that the analytical model is valid. The differences 
between the experimental data and theoretical results are acceptable. The sources 
of errors are multiple. The permeability  of the material is defined using 
Kozeny-Carman equation. The accuracy of this equation is influenced by the 
parameter D, which was obtained by fitting the experimental data for force with 
the predicted force.  

The accuracy of the measured values for the initial layer thickness and 
material porosity can also be a source of the differences between the values of 
experimental and analytical force. 

A boundary can be found between the imbibed disc reservoir and the 
annular foam disc. It includes cross-section gaps or blocked pores as result of 
cutting process.  
List of notations 
C     constant of integration; 
D     material parameter from Kozeny-Carman equation; 
F     force;   h      thickness;    M     mass;    p      pressure; 
r       radial coordinate;  R      external limit of fluid reservoir; 
Re     external radius of the porous ring; t     time;   V      speed. 

Indices 
0      at initial moment. 

Greek alphabet notations  Dimensionless notations 

ε       porosity;   )4
0/(0 VRDFhF η=     force; 

η      dynamic viscosity;   0/ hhH =                     thickness; 

σ      compactness;   2
0/2 RRR =                  radius; 

      permeability.  )4
0/(0 ηRMDVM =      impulse; 

    4
0/ RtFD ητ =             time. 

7. Conclusions 
An original theoretical model for a given volume of Newtonian fluid 

imbibed in central area (reservoir) squeezed through a surrounding porous ring 
was developed. The theoretical model was developed for three cases of squeeze: 
with constant speed, constant force and for a given impulse. 

The theoretical model was validated using the experimental data for 
squeeze with constant speed of reticulated polyurethane foam imbibed with 
glycerin. 

The observed differences are mainly related to the fact that the analytical 
model considers a continuous HCPL without a border between central region (the 
reservoir) and the dry porous ring. In the experimental model this boundary exists. 
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Further experiments should be performed for multiple materials and fluids. 
The influence on performance of the central reservoir dimension must be also 
evaluated. 
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