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CM COMPLEX ELLIPTIC CURVES AND ALGORITHMS
COMPLEXITY

Bogdan Cânepă1, Radu Gaba2, Vladimir Olteanu2

In this paper we develop faster computer programs in order to im-
prove the complexity orders of the algorithms of [2] by mean of which Cânepă
and Gaba classified the complex elliptic curves E for which there exist sub-
groups (not necessarily cyclic) C ≤ (E,+) of order n such that the elliptic
curves E/C and E are isomorphic; we also show why this isomorphism can
only occur for non-singular projective curves of genus 1. We compute the
complexity orders of the algorithms of [2] as well as of the new ones and
provide a thoroughly comparison of the results obtained when running them
on the same machine.
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1. Introduction

Let H be the upper half plane, H := {z ∈ C, Im(z) > 0} and let E be a
complex elliptic curve and C a subgroup (not necessarily cyclic) of order n <∞
of (E,+). That is, C is a subgroup of order n of E[n] := {P ∈ E : [n]P = O},
the n-torsion subgroup of E. The group E/C has a structure of Riemann
variety since C acts effectively and properly discontinuous on E, structure
which is compatible with the natural projection π : E → E/C. In addition
the isogeny π is unramified of degree n: degπ = |π−1(O)| = |C| = n (see [5],
Theorem 3.4). Denote by Y0(n) the open modular curve defined as the quotient
space Γ0(n)/H, in other words Y0(n) is the set of orbits {Γ0(n)τ : τ ∈ H},
where Γ0(n) is the ”Nebentypus” congruence subgroup of level n of SL2(Z),
acting on H from the left:

Γ0(n) = {
(
a b
c d

)
∈ SL2(Z)| c ≡ 0(modn)}.
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In this note we develop faster algorithms than the ones previously developped
by Cânepă and Gaba in [2] and provide a thoroughly comparison of the results
obtained when running them on the same machine after computing their com-
plexity orders. We also show why it is important to study the isomorphism
E ' E/C, that this isomorphism can only occur for non-singular projective
curves of genus 1 and we provide a new proof by mean of Hurwitz’s Theorem
for the known fact that E/C is a complex elliptic curve.

2. Preliminaries

In [1], Cânepă and Gaba studied the complex elliptic curves E for which
there exist cyclic subgroups C ≤ (E,+) of order n such that the elliptic curves
E and E/C are isomorphic, where n is a positive integer. In [2] they ex-
tended this result and studied the complex elliptic curves E for which there
exist subgroups (not necessarily cyclic) C ≤ (E,+) of order n such that the
elliptic curves E and E/C are isomorphic, where n is a positive integer. More
explicitly, in [1] Cânepă and Gaba proved the following:

Theorem 2.1. ( [1], Theorem 1.1)
Let E be a complex elliptic curve determined by the lattice 〈1, τ〉, τ ∈ H.

Then:
i) ∃C ≤ (E,+) finite cyclic subgroup such that E

C
' E ⇔ ∃u, v ∈ Q such

that τ 2 = uτ + v with ∆ = u2 + 4v < 0 (i.e. E admits complex multiplication);
ii) If τ satisfies the conditions of i) and u = u1

u2
, v = v1

v2
, u2 6= 0, v2 6=

0, u1, u2, v1, v2 ∈ Z,Gcd(u1, u2) = Gcd(v1, v2) = 1, d2 = Gcd(u2, v2), then:
∃C ≤ (E,+) cyclic subgroup of order n which satisfies E

C
' E ⇐⇒

∃(a, b′) ∈ Z2 with Gcd(a, b′) = 1 such that n = detM , where M is the matrix

M =

(
a A
b B

)
and (a,A, b, B) =

(
a, u2v1

d2
b′, u2v2

d2
b′, a+ u1v2

d2
b′
)

;

iii) The subgroup C from ii) is C=〈u11+u21τ
n
〉, where u11, u21 are obtained

in the following way: since detM = n and Gcd(a,A, b, B) = 1 (one deduces
easily this), the matrix M is arithmetically equivalent with the matrix:

M ∼
(

1 0
0 n

)
,

hence

∃U, V ∈ GL2(Z) such that M = U ·
(

1 0
0 n

)
· V.

The elements u11, u21 are the first column of the matrix

U =

(
u11 u12

u21 u22

)
.
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The reason of studying the above mentioned class of Heegner points via
Theorem 2.1 in [1] was, upon imposing certain conditions, to further answer
the below question: ”given a complex elliptic curve when can one find a cyclic
subgroup of order n of E such that (E,C) ' (E/C,E[n]/C)” and Cânepă and
Gaba classified in this new manner the fixed points of the action of the Fricke
involution

wn :=

(
0 −1
n 0

)
∈ GL2(Q+)

on the open modular curves Y0(n) (see Theorem 2.3 of [1]). Ogg (see [6],
Proposition 3) and Kenku (see [4], Theorem 2) computed this number of fixed
points and, for n > 3, this is ν(n) = h(−n) + h(−4n) if n ≡ 3(mod4) and
ν(n) = h(−4n) otherwise, where h(−n) is the class number of primitive qua-
dratic forms of discriminant −n and ν(2) = ν(3) = 2. The reader will also
obtain this number by using the second algorithm of [1]. Theorem 2.1 of [1]
deals with the cyclic subgroups C ≤ (E,+) of order n satisfying E ' E

C
.

In [1] Cânepă and Gaba also developped the algorithm which classifies these
points. In [2] they have studied this problem for the non-cyclic case as well.
Consequently, in [2], Cânepă and Gaba proved the following:

Theorem 2.2. ( [2], Theorem 2.1) Let E be a complex elliptic curve:
Then there exists a finite subgroup C of (E,+) such that C ∼= Z/D1Z×Z/D2Z,
D1|D2, D1 6= D2 and with the property that E

C
' E, if and only if τ satisfies the

equation τ 2 = uτ+v, u, v ∈ Q,∆ = u2 +4v < 0 and there exist (a, b′) ∈ Z2 with
Gcd(a, b′) = D1 such that, if we denote by a,A, b, B the numbers (a,A, b, B) =(
a, u2v1

d2
b′, u2v2

d2
b′, a+ u1v2

d2
b′
)

and by M the matrix

M =

(
a A
b B

)
we have the relation det(M) = D1 ·D2. We denoted by u = u1

u2
, v = v1

v2
, u2 6=

0, v2 6= 0, u1, u2, v1, v2 ∈ Z, Gcd(u1, u2) = Gcd(v1, v2) = 1, d2 = Gcd(u2, v2).
Moreover, the isomorphism E

C
' E comes from a morphism of varieties: φa,b′ :

E −→ E which has the following properties: deg(φa,b′) = D1 ·D2, it is a group
homomorphism, Ker(φ) = C and φ(z) = λz, where λ = a+ bτ .

In [2] Cânepă and Gaba also developped the algorithm which classifies
these points and implemented it in Magma. We briefly recall now this algo-
rithm developed in [2] for the classification of the complex elliptic curves E
which admit non-cyclic subgroups C ≤ (E,+) of order n such that the elliptic
curves E and E/C are isomorphic as well as the modified algorithm which
includes the cyclic case and their implementations in Magma. The complete
details can be found in [2] and we keep the same notations. However, we pro-
vide below sufficient details in order to make the exposure clear enough while
following [2]. It is known that the complex elliptic curves are of the form C

L
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for some L = Z + Zτ ⊂ C where τ ∈ G =
{
z = x + iy ∈ C : −1

2
≤ x <

1
2

and either |z| ≥ 1 if x ≤ 0 or |z| > 1 if x > 0
}
.

If E is an elliptic curve satisfying the condition i) of Theorem 2.2, one can
assume (up to an isomorphism) that E is of the form C

L
with L = Z+Zτ ⊂ C

and τ ∈ G. Clearly if τ 2 − uτ − v = 0, u, v ∈ Q,∆ = u2 + 4v < 0 and τ ∈ G,

then one further obtains τ =
u± i
√
|∆|

2
, −1 ≤ u < 1 and |∆| ≥ 3.

Now, since ∆ = u2 + 4v < 0 one has that v < 0. Without loss of generality,
one can assume v2 > 0, v1 < 0 and u2 > 0. Theorem 2.2, ii) yields:

n = aB − bA =
(
a+

u1v2

2d
b′
)2

− u2
2v

2
2∆

4d2
b′2 (∗) (1)

Moreover d = Gcd(u2, v2), ∆ =
u21
u22

+4v1
v2

and let u′2 := u2/d and v′2 := v2/d. Let

also v1 := −v1 and note that u2, v2, v1 > 0 and that ∆ ≤ −3. One multiplies
(∗) by 4 and obtain:

4n = (2a+ u1v
′
2b
′)2 + v′2b

′2(4v1du
′2
2 − v′2u2

1) (2)

This further leads to the inequality 4n ≥ v′2b
′2 · 4v1du

′2
2 hence n ≥ v′2b

′2 ·
v1du

′2
2 . Further denote by ξ := 4v1du

′2
2 − v′2u

2
1 and note that ∆ ≤ −3 is

equivalent to
u21
d2u′22
− 4 v1

dv′2
≤ −3 and furthermore to u2

1v
′
2− 4dv1u

′2
2 ≤ −3d2u′22 v

′
2

that is −ξ ≤ −3d2u′22 v
′
2, i.e. ξ ≥ 3d2u′22 v

′
2 (∗∗). From (∗∗) and (2) one obtains

that 4n ≥ v′2b
′2 · 3d2u′22 v

′
2 hence 4n/3 ≥ v′22 b

′2 · d2u′22 . Let k :=
√

4n/3. One
further obtains that u′2 runs from 1 to the integer part of k, [k], v′2 from 1
to [k/u′2], b′ from 1 to [k/u′2/v

′
2] and d from 1 to [k/u′2/v

′
2/b
′]. Furthermore,

−1/2 ≤ Re(τ) < 1/2 is equivalent to −1/2 ≤ u1/(2u2) < 1/2 that is −u2 ≤
u1 < u2. As a Consequencey u1 runs from −du′2 to du′2 − 1. Let m := (2a +
u1v

′
2b
′)2. From (2) one gets that 4n+v′22 b

′2u2
1 = m+4v′2b

′2v1du
′2
2 ≥ 4v′2b

′2v1du
′2
2

hence v1 ≤ 4n+v′22 b
′2u21

4v′2b
′2du′22

. As a consequence, v1 will run from 1 to [
4n+v′22 b

′2u21
4v′2b

′2du′22
]. Note

that D1 = Gcd(a, b′) and D2 = n/Gcd(a, b′). Set the conditions Gcd(a, b′) >
1, Gcd(a, b′)|n, Gcd(a, b′) < n/Gcd(a, b′) and Gcd(a, b′) divides n/Gcd(a, b′).
Furthermore, Gcd(u1, u2) = 1 and Gcd(v1, v2) = 1. Finally, one have to make
sure the condition τ ∈ G is entirely fulfilled by setting: (u1 > 0 or v1 ≥ v2)
and (u1 ≤ 0 or v1 > v2). The first algorithm of [2] is therefore Algorithm 4.1
(see [2], page 10). Throughout the codes, the substitutions made are b := b′,
u2 := u2/d and v2 := v2/d, where d = Gcd(u2, v2) and b′, u2, v2 are defined
in Theorem 2.2. After modifying the first code by including the cyclic case,
that is, by using the notations of Theorem 2.2 and allowing the case D1 = 1
where D1 = Gcd(a, b′) [2] obtained the second agorithm namely Algorithm
4.2 (see [2], page 11). In the next section we will also compute their order of
complexity.
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3. Main Results

Let us show first why this isomorphism (E
C
' E) can only occur for

non-singular projective curves of genus 1:

Lemma 3.1. Let X be a non-singular projective curve of genus g(X) ≥ 2.
Then there is no non-trivial finite subgroup C of Aut(X) acting holomorphi-
cally and effectively on X such that X ' X

C
.

Proof. Assume that there exists a non-trivial finite subgroup C of Aut(X)
acting holomorphically and effectively on X such that X ' X

C
and denote by

n := |C|. Let π : X → X
C

be the canonical projection. Then deg(π) = n. By
using now Hurwitz’s Theorem ( [5], Theorem 4.16) we obtain that 2·g(X)−2 =
(2 · g(X/C)−2) ·deg(π) +

∑
p∈X(multpπ−1). Since multpπ ≥ 1 it follows that∑

p∈X(multpπ− 1) ≥ 0. Consequently 2 · g(X)− 2 ≥ (2 · g(X/C)− 2) · deg(π).

Denote by w := 2 ·g(X)−2 and remark that w ≥ 2 since g(X) ≥ 2. Now, since
X ' X

C
the inequality reads w ≥ w · n hence n ≤ 1 which is a contradiction

since C was non-trivial by assumption. This completes the proof.
�

We show now in a different way, using Hurwitz’s Theorem, that the
quotient of a complex elliptic curve E by a subgroup of it (not necessarily
cyclic) C ≤ (E,+) is also an elliptic curve:

Proposition 3.1. Let E be a complex elliptic curve and C ≤ (E,+) a subgroup
of it (not necessarily cyclic). Then E

C
is a complex elliptic curve.

Proof. C is a (not necessarily cyclic) subgroup of order n < ∞ of (E,+).
That is, C is a subgroup of order n of E[n] := {P ∈ E : [n]P = O}, the
n-torsion subgroup of E. As specified in the introduction it is known that
since C acts effectively and properly discontinuous on E, the group E/C has a
structure of Riemann variety, which is compatible with the natural projection
π : E → E/C and that the isogeny π is unramified of degree n: degπ =
|π−1(O)| = |C| = n (see [5], Theorem 3.4). Since the genus of E is 1, g(E) = 1,
E being an elliptic curve, it follows that g(E/C) ≤ 1 hence g(E/C) ∈ {0, 1}. If
g(E/C) would be 0 then E/C ' P1

C. From Hurwitz’s Theorem ( [5], Theorem
4.16) applied to π : E → P1

C we obtain that 2 · g(E) − 2 = (2 · g(P1
C) − 2) ·

deg(π)+
∑‘

p∈E(multpπ−1) where
∑‘ is taken over all ramification points p ∈ E.

Consequently, the later becomes 2 · g(E)− 2 = (2 · g(P1
C)− 2) · deg(π) = −2 ·n

and moreover since g(E) = 1, the equality is equivalent to 0 = −2 · n which
is absurd. It follows that the remaining case holds namely g(E/C) = 1 and
hence E

C
is a complex elliptic curve.

�

We compute now the complexity orders of the algorithms of [2].

Theorem 3.1. The order of complexity of Algorithm 4.1 (C noncyclic) is
O(n2

√
n · log2n).
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Proof. Since O(Floor(k)) = O(k), line 3 is O(k) iterations. However, since∑k
u2=1(k/u2) → k · ln(k), lines 3 and 4 combined are O(k · log(k)) iterations

(recall that
∑k

u=1(1/u)− ln(k)→ γ ≈ 0.57 hence O(
∑k

u=1(1/u)) = O(ln(k))) .
Since Gcd is O(log(k)) time, line 5 is O(log(k)) iterations. Line 6 is O(k) time

since (k/u2/v2)max = k (note that k/u2/v2 = k
u2·v2 ). Since

∑k
b=1(k/b)→ kln(k)

, lines 6 and 7 combined are O(k · log(k)) iterations. Moroever, dmax = k for
u2 = 1 hence line 8 is O(2 · k) iterations, that is, O(k) iterations. Recall
that n = 3k2/4. Using the same reasoning as before, we will show that lines
8 and 9 combined cost is O(k2) iterations. For this, remark that (v1)max =
(4 · n + v2

2 · u2
1 · b2)/(4 · v2 · b2 · d · u2

2) = 3k2/(4 · v2 · b2 · d · u2
2) + v2

2 · u2
1 ·

b2/(4 · v2 · b2 · d · u2
2) = 3k2/(4 · v2 · b2 · d · u2

2) + v2 · u2
1/(4 · d · u2

2). Now,∑d·u2−1
u1=−d·u2 v1 ≤

∑d·u2−1
u1=−d·u2(v1)max = 2d · u2 · 3k2/(4 · v2 · b2 · d · u2

2) + 2d · u2 · v2 ·
u2

1/(4 ·d ·u2
2) = 6k2/(4 ·v2 ·b2 ·u2)+v2 ·u2

1/(2 ·u2). Note that 6k2/(4 ·v2 ·b2 ·u2) ≤
6k2/4 and v2 · u2

1/2 · u2 ≤ k2/2 since (u2
1)max = d2 · u2

2 for u1 = −d · u2 and
since d ≤ k/(u2 · v2 · b) hence one obtains v2 · u2

1/2 · u2 ≤ v2 · u2 · d2/2 ≤
k2/(2b) ≤ k2/2. Consequently

∑d·u2−1
u1=−d·u2 v1 ≤ 6k2/4 + k2/2 = 2k2 hence lines

8 and 9 combined are O(k2) iterations. Note that O(if c1 then c2 else c3) is
O(c1) + Max(O(c2), O(c3)), which is Max(O(c1), O(c2), O(c3)). Consequently,
line 10 is O(1), line 11 is O(1). IsSquare function is O(sqrt) and since from
line 11 we have that m ≤ 3k2, line 12 is O(sqrt(k2)) = O(k). Line 13 is O(1).
Line 14 is O(1) since IsEven is O(1), line 15 is O(1). Note that from line 15
one obtains a < k · sqrt(3)/2 < k. Since b ≤ k2 we have that Gcd(a, b) < k.
Finally, one obtains that line 16 is O(log(k)) and that line 17 is also O(log(k)).
The remaining lines are O(1). Summarizing, the order of complexity of the
algorithm is O(k · log(k)(log(k) + (k · log(k) · k2 · (k + log(k) + log(k))))) =
O(k · log(k)(log(k) + (k3log(k) · (k + log(k)))) = O(k4log2(k) · (k + log(k)))) =
O(k5log2(k)) = O(n2

√
n · log2(

√
n)) = O(n2

√
n · log2n). �

Theorem 3.2. The order of complexity of the Algorithm 4.2 (C noncyclic or
cyclic) is O(n2

√
n · log2n).

Proof. Compared to the first algorithm, the difference is given by Line 16 in
which we also allow the cases when Gcd(a, b) = 1. Consequently Line 16 is
still O(log(k)) iterations.

�

We now improve the two algorithms. We reimplement them in C++
and introduce two helper classes. The source code is available upon request.
The first class, called GCDs, computes Gcds using dynamic programming. It
holds a (k + 1) × (n + 1) matrix that stores all Gcds as they are computed.
Exhaustively computing the Gcds for all pairs (i, j) where i ≤ k and j ≤ n is
done in O(k∗n) time, and the lookup cost is O(1) once a Gcd has already been
computed. Hence, the amortized cost of all GCDs :: gcd calls is O(k ∗ n) =
O(k3). The second class is called Squares, and features a single method called
sqrtIfSquare, which returns the square root of a number if said number is
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a perfect square, or −1 otherwise. The class holds a vector of size 4 ∗ n + 1,
which is initialized with −1; then, for each i such that i2 < 4 ∗ n + 1, we
populate the vector at index i2 with i. Instantiating the Squares class is done
in O(4 ∗ n + 1) = O(k2) time. All calls to sqrtIfSquare are vector lookups,
and hence are in O(1). We obtain the following:

Theorem 3.3. The order of complexity of the improved version of Algorithm
4.1 (case C noncyclic) is O(n2 · log2n).

Proof. The algorithm is essentially the same as its non-optimized version, aside
from the fact that Gcd and IsSquare are replaced with GCDs :: gcd and
Squares :: sqrtIfSquare, which lend themselves to amortized analysis: we
front-load the costs, and then treat all calls as being O(1). All operations
pertaining to GCDs are in O(k3), and all operations pertaining to Squares
are in O(k2). Similarly to Algorithm 2.1, line 2 is in O(k). Lines 3 and 4
are O(k · log(k)) iterations. Lines 6 and 7 are also O(k · log(k)) iterations.
Lines 8 and 9 are O(k2) iterations. In summary, the order of complexity is
O(k3) + O(k2) + O(k) + O(k · log(k)) · O(k · log(k)) · O(k2) = O(k4 · log2k) =
O(n2 · log2n).

�

Similarly we obtain the Theorem 3.4:

Theorem 3.4. The order of complexity of the improved version of Algorithm
4.2 (general case, C noncyclic or cyclic) is O(n2 · log2n).

Proof. Algorithm 4.2 is derived from Algorithm 4.1 by deleting a check from
the innermost loop, thus allowing solutions where Gcd(a, b) = 1. The check is
in O(1), hence the order of complexity will be the same as that of the optimized
version of Algorithm 4.1. This completes the proof.

�

4. Examples

For large n we provide several examples of the numbers of classes of CM
elliptic curves E which admit subgroups C of order n such that E ∼= E/C
in both cases (non-cycle as well as general). The examples are gathered in
Table 1 and Table 2. The value set will also contain the set provided in [2]
for comparison purpose. The computations were done using Magma 2.19-9
and C++ on the same Lenovo i3-3110M laptop at 2.40 GHz and 4 GB RAM.
For each n we have also recorded the CPU time it took to complete these
calculations with the old codes (written in Magma) as well as with the new
ones (written in C++).

5. Conclusions

This work improves the complexity orders of the algorithms of [2] by
mean of the new codes implemented in C++ which can be further used in
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n the non-cyclic case old CPU time new CPU time
150 10 0.093s 0.001s
297 43 0.156s 0.002s
1571 0 2.465s 0.015s
2012 524 3.104s 0.028s
2017 0 2.948s 0.029s
2022 0 3.588s 0.030s
4536 3733 10.982s 0.079s
12825 2884 54.382s 0.337s
15736 6731 76.051s 0.463s

Table 1. number of classes of CM elliptic curves: computations
for various n

n the general case old CPU time new CPU time
150 348 0.102s 0.002s
297 440 0.172s 0.003s
1571 1605 3.011s 0.015s
2012 3563 3.323s 0.025s
2017 2023 3.276s 0.029s
2022 4055 4.385s 0.033s
4536 13585 11.840s 0.095s
12825 23581 58.734s 0.361s
15736 33570 81.136s 0.501s

Table 2. number of classes of CM elliptic curves: computations
for various n

the theory of complex elliptic curves. In addition, it emphasizes the utility of
the elliptic curve quotients as well as isomorphisms classes E ' E/C while
providing several applications of Hurwitz’s Theorem.
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