

WEIGHTED SEMIGROUP MEASURE ALGEBRA AS A WAP-ALGEBRA

H.R. Ebrahimi Vishki¹, B. Khodsiani², A. Rejali³

A Banach algebra \mathfrak{A} for which the natural embedding from \mathfrak{A} into $WAP(\mathfrak{A})^$ is bounded below is called a WAP-algebra. We study those conditions under which the weighted semigroup measure algebra $M_b(S, \omega)$ is a WAP-algebra or a dual Banach algebra. In particular, we show that the semigroup measure algebra $M_b(S)$ is a WAP-algebra (resp. dual Banach algebra) if and only if $wap(S)$ separates the points of S (resp. S is compactly cancellative semigroup). Some older results, in the case where S is discrete, are also improved.*

Keywords: WAP-algebra, dual Banach algebra, Arens regularity, weak almost periodicity.

MSC2010: 43A10, 43A20, 46H15, 46H25.

1. Introduction and Preliminaries

The dual \mathfrak{A}^* of a Banach algebra \mathfrak{A} can be turned into a Banach \mathfrak{A} -module equipped with the natural module operations

$$\langle f \cdot a, b \rangle = \langle f, ab \rangle \quad \text{and} \quad \langle a \cdot f, b \rangle = \langle f, ba \rangle \quad (a, b \in \mathfrak{A}, f \in \mathfrak{A}^*).$$

A dual Banach algebra is a Banach algebra \mathfrak{A} enjoying a predual \mathfrak{A}_* such that \mathfrak{A}_* , as a Banach space is a closed \mathfrak{A} -submodule of \mathfrak{A}^* ; or equivalently, the multiplication on \mathfrak{A} is separately weak*-continuous. It should be remarked that the predual of a dual Banach algebra need not be unique, in general (see [5, 10]); so we usually point to the involved predual of a dual Banach algebra.

A functional $f \in \mathfrak{A}^*$ is said to be weakly almost periodic if $\{f \cdot a : \|a\| \leq 1\}$ is relatively weakly compact in \mathfrak{A}^* . We denote by $WAP(\mathfrak{A})$ the set of all weakly

¹Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, IRAN, e-mail: vishki@um.ac.ir

² Corresponding author, Department of Mathematics, University of Isfahan, Isfahan, IRAN. e-mail: b_khodsiani@sci.ui.ac.ir

³Department of Mathematics, University of Isfahan, Isfahan, IRAN. e-mail: rejali@sci.ui.ac.ir

almost periodic elements of \mathfrak{A}^* . It is easy to verify that, $WAP(\mathfrak{A})$ is a (norm) closed subspace of \mathfrak{A}^* .

It is known that the multiplication of a Banach algebra \mathfrak{A} has two natural but, in general, different extensions (called Arens products) to the second dual \mathfrak{A}^{**} each turning \mathfrak{A}^{**} into a Banach algebra. When these products are equal, \mathfrak{A} is said to be (Arens) regular. It can be verified that \mathfrak{A} is Arens regular if and only if $WAP(\mathfrak{A}) = \mathfrak{A}^*$. Further information for the Arens regularity of Banach algebras can be found in [5, 6].

WAP-algebras, as a generalization of the Arens regular algebras, have been introduced and intensively studied in [9]. A Banach algebra \mathfrak{A} for which the natural embedding $x \mapsto \hat{x}$ of \mathfrak{A} into $WAP(\mathfrak{A})^*$, where $\hat{x}(f) = f(x)$ for $f \in WAP(\mathfrak{A})$, is bounded below, is called a WAP-algebra. When \mathfrak{A} is either Arens regular or a dual Banach algebra, then natural embedding of \mathfrak{A} into $WAP(\mathfrak{A})^*$ is an isometry [16, Corollary 4.6]. It has also been known that \mathfrak{A} is a WAP-algebra if and only if it admits an isomorphic representation on a reflexive Banach space. Convolution group algebras are the main examples of WAP-algebras; however, they are neither dual nor Arens regular in general, see [17]. For more information about WAP-algebras one may consult to the impressive paper [9].

The main aim of this paper is to investigate those conditions under which the weighted measure algebra $M_b(S, \omega)$ is either a WAP-algebra or a dual Banach algebra, where ω is a weight on a locally compact semigroup S .

First we recall some preliminaries about the (weighted) measure algebras. Let S be a locally compact semitopological semigroup. Let $M_b(S)$ be the space of all complex regular Borel measures on S , which is known as a Banach algebra under the convolution product $*$ defined by the equation $\langle \mu * \nu, f \rangle = \int_S \int_S f(xy) d\mu(x) d\nu(y)$ ($f \in C_0(S)$). Our mean by a weight ω on S is a Borel measurable function $\omega : S \rightarrow (0, \infty)$ such that $\omega(st) \leq \omega(s)\omega(t)$, ($s, t \in S$). For $\mu \in M_b(S)$ we define $(\mu\omega)(E) = \int_E \omega d\mu$, ($E \subseteq S$ is Borel set). If $\omega \geq 1$, then $M_b(S, \omega) = \{\mu \in M_b(S) : \mu\omega \in M_b(S)\}$ is known as a Banach algebra which is called the weighted semigroup measure algebra (see [6, 12, 13, 14]). In the case where S is discrete we write $\ell_1(S, \omega)$ instead of $M_b(S, \omega)$ and $c_0(S, 1/\omega)$ instead of $C_0(S, 1/\omega)$. Then the Banach algebra $\ell_1(S, \omega) = \{f : f = \sum_{s \in S} f(s)\delta_s, \quad \|f\|_{1, \omega} = \sum_{s \in S} |f(s)|\omega(s) < \infty\}$ (where, $\delta_s \in \ell_1(S, \omega)$ is the point mass at s) equipped with the convolution product is called a weighted semigroup algebra. We also suppress 1 from the notation whenever $w = 1$.

Let $B(S)$ denote the space of all bounded Borel measurable functions on S . Set $B(S, 1/\omega) = \{f : S \rightarrow \mathbb{C} : f/\omega \in B(S)\}$. Let $f \in C(S, 1/\omega)$ then f is called ω -weakly almost periodic if the set $\{\frac{R_s f}{\omega(s)\omega} : s \in S\}$ is relatively weakly compact in $C(S)$. The set of all ω -weakly almost periodic functions on S is denoted by

$wap(S, 1/\omega)$. The space $wap(S)$ of 1-weakly almost periodic functions on S is a C^* -subalgebra of $C(S)$ and its character space S^{wap} , endowed with the Gelfand topology, enjoys a (Arens type) multiplication that turns it into a compact semi-topological semigroup. Many other properties of $wap(S)$ and its inclusion relations among other function algebras are completely explored in [3].

The paper is organized as follows. In section 2 we study the weighted measure algebra $M_b(S, \omega)$ from the dual Banach algebra point of view. In this respect, we shall show that, $M_b(S, \omega)$ is a dual Banach algebra with respect to the predual $C_0(S, 1/\omega)$ if and only if for all compact subsets F and K of S , the maps $\frac{\chi_{F^{-1}K}}{\omega}$ and $\frac{\chi_{KF^{-1}}}{\omega}$ vanishes at infinity. This extends an earlier result of Abolghasemi, Rejali, and Ebrahimi Vishki [1]. We also conclude that, the measure algebra $M_b(S)$ is a dual Banach algebra with respect to $C_0(S)$ if and only if S is a compactly cancellative semigroup. The later result is an extension of a known result of Dales, Lau and Strauss [7, Theorem 4.6] stating that, $\ell_1(S)$ is a dual Banach algebra with respect to $c_0(S)$ if and only if S is a weakly cancellative semigroup.

Section 3 is devoted to the study of $M_b(S, \omega)$ from the *WAP*-algebra point of view. We shall prove that, $M_b(S, \omega)$ is a *WAP*-algebra if and only if the evaluation map $\epsilon : S \rightarrow \tilde{X}$ is one to one, where $\tilde{X} = MM(wap(S, 1/\omega))$. The main result of this section is that $M_b(S)$ is *WAP*-algebra if and only if $wap(S)$ separate the points of S . We conclude the paper with some illuminating examples.

2. Semigroup Measure Algebras as Dual Banach Algebras

It is known that the (discrete) semigroup algebra $\ell_1(S)$ is a dual Banach algebra with respect to $c_0(S)$ if and only if S is a weakly cancellative semigroup, see [7, Theorem 4.6]. This result has been extended to the weighted semigroup algebras; [1, 8]. In this section we extend the aforementioned results to the non-discrete case. More precisely, we provide some necessary and sufficient conditions that the measure algebra $M_b(S, \omega)$ becomes a dual Banach algebra with respect to the predual $C_0(S, 1/\omega)$.

Let F and K be nonempty subsets of a semigroup S and $s \in S$. We set $s^{-1}F = \{t \in S : st \in F\}$, and $Fs^{-1} = \{t \in S : ts \in F\}$. We also write $s^{-1}t$ for $s^{-1}\{t\}$, FK^{-1} for $\cup_{s \in K} Fs^{-1}$ and $K^{-1}F$ for $\cup_{s \in K} s^{-1}F$.

A semigroup S is called left (respectively, right) zero semigroup if $xy = x$ (respectively, $xy = y$), for all $x, y \in S$. A semigroup S is called zero semigroup if there exist $z \in S$ such that $xy = z$ for all $x, y \in S$. A semigroup S is said to be left (respectively, right) weakly cancellative semigroup if $s^{-1}F$ (respectively, Fs^{-1}) is finite for each $s \in S$ and each finite subset F of S . A semigroup S is said to be weakly cancellative semigroup if it is both left and right weakly cancellative semigroup.

A semi-topological semigroup S is said to be compactly cancellative semigroup if for every compact subsets F and K of S the sets $F^{-1}K$ and KF^{-1} are compact set.

The following lemma needs a routine argument.

Lemma 2.1. Let S be a topological semigroup. For every compact subsets F and K of S the sets $F^{-1}K$ and KF^{-1} are closed.

In the next result we study $M_b(S, \omega)$ from the dual Banach algebra point of view.

Theorem 2.1. Let S be a locally compact topological semigroup and ω be a continuous weight on S . Then the measure algebra $M_b(S, \omega)$ is a dual Banach algebra with respect to the predual $C_0(S, 1/\omega)$ if and only if for all compact subsets F and K of S , the maps $\frac{\chi_{F^{-1}K}}{\omega}$ and $\frac{\chi_{KF^{-1}}}{\omega}$ vanishes at infinity.

Proof. Suppose that $M_b(S, \omega)$ is a dual Banach algebra with respect to $C_0(S, 1/\omega)$ and let $\varepsilon > 0$. Let K, F be nonempty compact subsets of S with a net (x_α) in $\{t \in F^{-1}K : 1/\omega(t) \geq \varepsilon\}$. Let $C_{00}^+(S)$ denote the non-negative continuous functions with compact support on S and set $C_{00}^+(S, 1/\omega) = \{f \in C_0(S, 1/\omega) : f/\omega \in C_{00}^+(S)\}$. Since ω is continuous we may choose $f \in C_{00}^+(S, 1/\omega)$ with $f(K) = 1$. There exists a net $(t_\alpha) \in F$ such that $t_\alpha x_\alpha \in K$ and the compactness of F guarantees the existence of a subnet (t_γ) of (t_α) such that $t_\gamma \rightarrow t_0$ for some t_0 in S . Indeed, since for each $s \in S$,

$$\lim_{\gamma} \left(\frac{\delta_{t_\gamma} \cdot f}{\omega} \right)(s) = \lim_{\gamma} \frac{f(t_\gamma s)}{\omega(s)} = \frac{f(t_0 s)}{\omega(s)} = \frac{\delta_{t_0} \cdot f}{\omega}(s),$$

there exists a γ_0 such that

$$\begin{aligned} \{t \in \bigcup_{\gamma \geq \gamma_0} t_\gamma^{-1} K : 1/\omega(t) \geq \varepsilon\} &\subseteq \bigcup_{\gamma \geq \gamma_0} \{r \in S : \left(\frac{\delta_{t_\gamma} \cdot f}{\omega} \right)(r) \geq \varepsilon\} \\ &\subseteq \{r \in S : \left(\frac{\delta_{t_0} \cdot f}{\omega} \right)(r) \geq \frac{\varepsilon}{2}\}. \end{aligned}$$

Let $H = \{t_\gamma : \gamma \geq \gamma_0\} \cup \{t_0\}$. Then

$$\{t \in H^{-1}K : 1/\omega(t) \geq \varepsilon\} = \{t \in \bigcup_{\gamma \geq \gamma_0} t_\gamma^{-1} K \cup t_0^{-1} K : 1/\omega(t) \geq \varepsilon\}$$

as a closed subset of $\{r \in S : \left(\frac{\delta_{t_0} \cdot f}{\omega} \right)(r) \geq \frac{\varepsilon}{2}\}$ is compact. It follows that the net (x_γ) in $\{t \in H^{-1}K : 1/\omega(t) \geq \varepsilon\}$ has a convergent subnet. Thus $\{t \in F^{-1}K : 1/\omega(t) \geq \varepsilon\}$ is compact and that $\frac{\chi_{F^{-1}K}}{\omega}$ vanishes at infinity. Similarly $\frac{\chi_{KF^{-1}}}{\omega}$ vanishes at infinity.

The proof of sufficiency can be adopted from [1, Proposition 3.1]. Let $f \in C_0(S, 1/\omega)$, $\mu \in M_b(S, \omega)$ and $\varepsilon > 0$ be arbitrary. Then there exist compact subsets F and K of S such that $|\frac{f}{\omega}(s)| < \varepsilon$ for all $s \notin K$ and $|(\mu\omega)|(S \setminus F) < \varepsilon$. Let

$s \notin \{t \in F^{-1}K : \omega(t) \leq \frac{1}{\varepsilon}\}$. Then

$$\begin{aligned} \left| \frac{\mu \cdot f}{\omega}(s) \right| &= \left| \int_S \frac{f(ts)}{\omega(s)} d\mu(t) \right| \leq \left| \int_F \frac{f(ts)}{\omega(s)} d\mu(t) \right| + \left| \int_{S \setminus F} \frac{f(ts)}{\omega(s)} d\mu(t) \right| \\ &\leq \int_F \left| \frac{f(ts)}{\omega(ts)} \right| |\omega(t)| d|\mu|(t) + \int_{S \setminus F} \left| \frac{f(ts)}{\omega(ts)} \right| |\omega(t)| d|\mu|(t) \\ &\leq \varepsilon \int_S |\omega(t)| d|\mu|(t) + \|f\|_{\omega, \infty} \int_{S \setminus F} |\omega(t)| d|\mu|(t) \leq \varepsilon \|\mu\|_{\omega} + \varepsilon \|f\|_{\omega, \infty}. \end{aligned}$$

That is, $\mu \cdot f \in C_0(S, 1/\omega)$ and so $M_b(S, \omega)$ is a dual Banach algebra with respect to $C_0(S, 1/\omega)$. \square

As immediate consequences of Theorem 2.1 we have the next corollary.

Corollary 2.1. Let S be a locally compact topological semigroup.

- (1) The measure algebra $M_b(S)$ is a dual Banach algebra with respect to $C_0(S)$ if and only if S is compactly cancellative.
- (2) If $M_b(S)$ is a dual Banach algebra with respect to $C_0(S)$ then $M_b(S, \omega)$ is a dual Banach algebra with respect to $C_0(S, 1/\omega)$.

Applying Theorem 2.1 for a discrete semigroup, we arrive at the next result.

Corollary 2.2 ([1, Theorem 2.2]). For a semigroup S , the weighted semigroup algebra $\ell_1(S, \omega)$ is a dual Banach algebra with respect to the predual $c_0(S, 1/\omega)$ if and only if the maps $\frac{\chi_{t^{-1}s}}{\omega}$ and $\frac{\chi_{st^{-1}}}{\omega}$ are in $c_0(S)$ for all $s, t \in S$.

We have also the next result as an application of Theorem 2.1.

Corollary 2.3. Let S be either a left zero, a right zero or a zero locally compact semigroup. Then there exists a weight ω on S such that $M_b(S, \omega)$ is a dual Banach algebra with respect to $C_0(S, 1/\omega)$ if and only if S is σ -compact.

Proof. Let K and F be compact subsets of S . It can be readily verified that in either cases (being left zero, right zero or zero) the sets $F^{-1}K$ and KF^{-1} are either empty or the whole S . For each $m \in \mathbb{N}$ we set $S_m = \{t \in F^{-1}K : \omega(t) \leq m\} = \{t \in S : \omega(t) \leq m\}$. Then $S = \bigcup_{m \in \mathbb{N}} S_m$ and so S is σ -compact. For the converse let $S = \bigcup_{n \in \mathbb{N}} S_n$ as a disjoint union of compact sets and let z be a (left or right) zero for S . Define $\omega(z) = 1$ and $\omega(x) = 1 + n$ for $x \in S_n$ then ω is a weight on S and $M_b(S, \omega)$ is a dual Banach algebra. \square

Examples 2.1. (1) The set $S = \mathbb{R}^+ \times \mathbb{R}$ equipped with the multiplication

$$(x, y) \cdot (x', y') = (x + x', y') \quad ((x, y), (x', y') \in S)$$

and the weight $\omega(x, y) = e^{-x}(1 + |y|)$ is a weighted semigroup. Set $F = [a, b] \times [c, d]$ and $K = [e, f] \times [g, h]$. Then $F^{-1}K = [e - b, f - a] \times [g, h]$ and $KF^{-1} = \begin{cases} [e - b, f - a] \times \mathbb{R} & \text{if } [c, d] \cap [g, h] \neq \emptyset \\ \emptyset & \text{if } [c, d] \cap [g, h] = \emptyset. \end{cases}$

Thus $M_b(S)$ is not a dual Banach algebra by Corollary 2.1 (1). However, for all compact subsets F and K of S , the maps $\frac{\chi_{F^{-1}K}}{\omega}$ and $\frac{\chi_{KF^{-1}}}{\omega}$ vanishes at infinity. So $M_b(S, \omega)$ is a dual Banach algebra with respect to $C_0(S, 1/\omega)$. This shows that the converse of Corollary 2.1 (2) may not be valid.

(2) For the semigroup $S = [0, \infty)$ endowed with the zero multiplication, neither $M_b(S)$ nor $\ell_1(S)$ is a dual Banach algebra. In fact, S is neither compactly nor weakly cancellative semigroup.

3. Semigroup Measure Algebras as WAP-Algebras

In this section we study some conditions under which the weighted measure algebra $M_b(S, \omega)$ is a WAP-algebra. First, we provide some preliminaries.

Definition 3.1. Let $\tilde{\mathcal{F}}$ be a linear subspace of $B(S, 1/\omega)$, and let $\tilde{\mathcal{F}}_r$ denote the set of all real-valued members of $\tilde{\mathcal{F}}$. A mean on $\tilde{\mathcal{F}}$ is a linear functional $\tilde{\mu}$ on $\tilde{\mathcal{F}}$ with the property that $\inf_{s \in S} \frac{f}{\omega}(s) \leq \tilde{\mu}(f) \leq \sup_{s \in S} \frac{f}{\omega}(s)$ ($f \in \tilde{\mathcal{F}}_r$). The set of all means on $\tilde{\mathcal{F}}$ is denoted by $M(\tilde{\mathcal{F}})$. If $\tilde{\mathcal{F}}$ is also an algebra with the multiplication given by $f \odot g := (f \cdot g)/\omega$ ($f, g \in \tilde{\mathcal{F}}$) and if $\tilde{\mu} \in M(\tilde{\mathcal{F}})$ satisfies $\tilde{\mu}(f \odot g) = \tilde{\mu}(f)\tilde{\mu}(g)$ ($f, g \in \tilde{\mathcal{F}}$), then $\tilde{\mu}$ is said to be multiplicative. The set of all multiplicative means on $\tilde{\mathcal{F}}$ will be denoted by $MM(\tilde{\mathcal{F}})$.

Let $\tilde{\mathcal{F}}$ be a conjugate closed, linear subspace of $B(S, 1/\omega)$ such that $\omega \in \tilde{\mathcal{F}}$.

- (i) For each $s \in S$ define $\epsilon(s) \in M(\tilde{\mathcal{F}})$ by $\epsilon(s)(f) = (f/\omega)(s)$ ($f \in \tilde{\mathcal{F}}$). The mapping $\epsilon : S \longrightarrow M(\tilde{\mathcal{F}})$ is called the evaluation mapping. If $\tilde{\mathcal{F}}$ is also an algebra, then $\epsilon(S) \subseteq MM(\tilde{\mathcal{F}})$.
- (ii) Let $\tilde{X} = M(\tilde{\mathcal{F}})$ (resp. $\tilde{X} = MM(\tilde{\mathcal{F}})$, if $\tilde{\mathcal{F}}$ is a subalgebra) be endowed with the relative weak* topology. For each $f \in \tilde{\mathcal{F}}$ the function $\hat{f} \in C(\tilde{X})$ is defined by $\hat{f}(\tilde{\mu}) := \tilde{\mu}(f)$ ($\tilde{\mu} \in \tilde{X}$).

Furthermore, we define $\hat{\tilde{\mathcal{F}}} := \{\hat{f} : f \in \tilde{\mathcal{F}}\}$.

Remark 3.1. (i) The mapping $f \longrightarrow \hat{f} : \tilde{\mathcal{F}} \longrightarrow C(\tilde{X})$ is clearly linear and multiplicative if $\tilde{\mathcal{F}}$ is an algebra and $\tilde{X} = MM(\tilde{\mathcal{F}})$. Also it preserves complex

conjugation, and is an isometry, since for any $f \in \tilde{\mathcal{F}}$

$$\begin{aligned} \|\hat{f}\| &= \sup\{|\mu(\frac{f}{\omega})| : \mu \in X\} \leq \sup\{|\mu(\frac{f}{\omega})| : \mu \in C(X)^*, \|\mu\| \leq 1\} \\ &= \|\frac{f}{\omega}\| = \sup\{|\frac{f}{\omega}(s)| : s \in S\} = \sup\{|\epsilon(s)(f)| : s \in S\} \\ &= \sup\{|\hat{f}(\epsilon(s))| : s \in S\} \leq \|\hat{f}\|, \end{aligned}$$

where $X = M(\mathcal{F})$ and $\mathcal{F} = \{f/\omega : f \in \tilde{\mathcal{F}}\}$. Note that $\hat{f}(\epsilon(s)) = \epsilon(s)(f) = (\frac{f}{\omega})(s)(f \in \tilde{\mathcal{F}}, s \in S)$. This identity may be written in terms of dual map $\epsilon^* : C(\tilde{X}) \rightarrow C(S, \omega)$ as $\epsilon^*(\hat{f}) = f$ for $f \in \tilde{\mathcal{F}}$.

- (ii) Let $\tilde{\mathcal{F}}$ be a conjugate closed linear subspace of $B(S, 1/\omega)$, containing ω . Then $M(\tilde{\mathcal{F}})$ is convex and weak* compact, $\text{co}(\epsilon(S))$ is weak* dense in $M(\tilde{\mathcal{F}})$, $\tilde{\mathcal{F}}^*$ is the weak* closed linear span of $\epsilon(S)$, $\epsilon : S \rightarrow M(\tilde{\mathcal{F}})$ is weak* continuous, and if $\tilde{\mathcal{F}}$ is also an algebra, then $MM(\tilde{\mathcal{F}})$ is weak* compact and $\epsilon(S)$ is weak* dense in $MM(\tilde{\mathcal{F}})$.
- (iii) Let $\tilde{\mathcal{F}}$ be a C^* -subalgebra of $B(S, 1/\omega)$, containing ω . If \tilde{X} denotes the space $MM(\tilde{\mathcal{F}})$ with the relative weak* topology, and if $\epsilon : S \rightarrow \tilde{X}$ denotes the evaluation mapping, then the mapping $f \rightarrow \hat{f} : \tilde{\mathcal{F}} \rightarrow C(\tilde{X})$ is an isometric isomorphism with the inverse $\epsilon^* : C(\tilde{X}) \rightarrow \tilde{\mathcal{F}}$.

Let $\tilde{\mathcal{F}} = wap(S, 1/\omega)$. Then $\tilde{\mathcal{F}}$ is a C^* -subalgebra of $WAP(M_b(S, \omega))$, see [11, Theorem 1.6, Theorem 3.3]. Set $\tilde{X} = MM(\tilde{\mathcal{F}})$. By the above remark $wap(S, 1/\omega) \cong C(\tilde{X})$ and so

$$M_b(\tilde{X}) \cong C(\tilde{X})^* \cong wap(S, 1/\omega)^* \subseteq WAP(M_b(S, \omega))^*.$$

Let $\epsilon : S \rightarrow \tilde{X}$ be the evaluation mapping. We also define

$$\bar{\epsilon} : M_b(S, \omega) \rightarrow M_b(\tilde{X}) \quad \text{by} \quad \langle \bar{\epsilon}(\mu), f \rangle = \int_S f \omega d\mu$$

for $f \in wap(S, 1/\omega) \cong C(\tilde{X})$. Then for every Borel set B in \tilde{X} , we have $\bar{\epsilon}(\mu)(B) = (\mu\omega)(\epsilon^{-1}(B))$. In particular, $\bar{\epsilon}(\frac{\delta_x}{\omega(x)}) = \delta_{\epsilon(x)}$.

The next theorem is the main result of this section.

Theorem 3.1. For every weighted locally compact semi-topological semigroup (S, ω) the following statements are equivalent:

- (1) The map $\epsilon : S \rightarrow \tilde{X}$ is one to one, where $\tilde{X} = MM(wap(S, 1/\omega))$;
- (2) $\bar{\epsilon} : M_b(S, \omega) \rightarrow M_b(\tilde{X})$ is an isometric isomorphism;
- (3) $M_b(S, \omega)$ is a WAP-algebra.

Proof. (1) \Rightarrow (2). Take $\mu \in M_b(S, \omega)$, say $\mu = \mu_1 - \mu_2 + i(\mu_3 - \mu_4)$, where $\mu_j \in M_b(S, \omega)^+$ for each $j = 1, 2, 3, 4$. Set $\nu_j = \bar{\epsilon}(\mu_j) \in M_b(\tilde{X})^+$, and $\nu = \bar{\epsilon}(\mu) = \nu_1 - \nu_2 + i(\nu_3 - \nu_4)$. Take $\delta > 0$. For each j , there exists a Borel set B_j in \tilde{X} such that $\nu_j(B) \geq 0$ for each Borel subset B of B_j with $\sum_{j=1}^4 \nu_j(B_j) > \|\nu\| - \delta$. In

fact, by the Hahn decomposition theorem for the signed measures $\lambda_1 = \nu_1 - \nu_2$ and $\lambda_2 = \nu_3 - \nu_4$, there exist four Borel sets P_1, P_2, N_1 and N_2 in \tilde{X} such that $P_1 \cup N_1 = \tilde{X}$, $P_1 \cap N_1 = \emptyset$, $P_2 \cup N_2 = \tilde{X}$, $P_2 \cap N_2 = \emptyset$, and $\nu_1(E) = \lambda_1(P_1 \cap E)$, $\nu_2(E) = -\lambda_1(N_1 \cap E)$, $\nu_3(E) = \lambda_2(P_2 \cap E)$, $\nu_4(E) = -\lambda_2(N_2 \cap E)$, for every Borel set E of \tilde{X} . That is, the measures $\nu_1, \nu_2, \nu_3, \nu_4$ are concentrated on P_1, N_1, P_2, N_2 , respectively.

Set $D_1 := P_1 \cap N_2, D_2 := N_1 \cap P_2, D_3 := P_2 \cap P_1, D_4 := N_2 \cap N_1$. Then the family $\{D_1, D_2, D_3, D_4\}$ is a partition for \tilde{X} . Further, there exists a compact set K for which $\|\nu\| - \delta \leq \sum_{j=1}^4 \|\nu_j|_{D_j}\| - \delta \leq \sum_{j=1}^4 \nu_j|_{D_j}(K) = \sum_{j=1}^4 \nu_j(D_j \cap K)$. Set $B_j = D_j \cap K$. Then the sets B_1, B_2, B_3, B_4 are pairwise disjoint.

For each j , set $C_j = (\epsilon)^{-1}(B_j)$, a Borel set in S . Then $(\mu_j \omega)(C_j) = \nu_j(B_j)$. Since ϵ is injection, the sets C_1, C_2, C_3, C_4 are pairwise disjoint, and so $\|\mu\|_\omega \geq \sum_{j=1}^4 |\mu_j \omega(C_j)| \geq \sum_{j=1}^4 (\mu_j \omega)(C_j) = \sum_{j=1}^4 \nu_j(B_j) > \|\nu\| - \delta$. This holds for each $\delta > 0$, so $\|\mu\|_\omega \geq \|\nu\|$. A similar argument shows that $\|\mu\|_\omega \leq \|\nu\|$. Thus $\|\mu\|_\omega = \|\nu\|$.

(2) \Rightarrow (1). Let $P(S, \omega)$ denote the subspace of all probability measures of $M_b(S, \omega)$ and $ext(P(S, \omega))$ the extreme points of unit ball of $P(S, \omega)$. Then $ext(P(S, \omega)) = \{\frac{\delta_x}{\omega(x)} : x \in S\} \cong S$ and $ext(P(\tilde{X})) \cong \tilde{X}$, see [4, p.151]. By the injectivity of $\bar{\epsilon}$, it maps the extreme points of the unit ball onto the extreme points of the unit ball, thus $\epsilon : S \rightarrow \tilde{X}$ is one to one.

(2) \Rightarrow (3). Since \tilde{X} is compact, $M_b(\tilde{X})$ is a dual Banach algebra with respect to $C(\tilde{X})$, so it has an isometric representation ψ on a reflexive Banach space E , see [9]. In the following commutative diagram,

$$\begin{array}{ccc} M_b(S, \omega) & \xrightarrow{\bar{\epsilon}} & M_b(\tilde{X}) \\ \phi \downarrow & & \downarrow \psi \\ & & B(E) \end{array}$$

If $\bar{\epsilon}$ is isometric, then so is ϕ . Thus $M_b(S, \omega)$ has an isometric representation on a reflexive Banach space E if $\bar{\epsilon}$ is an isometric isomorphism. So $M_b(S, \omega)$ is a WAP-algebra if $\bar{\epsilon}$ is an isometric isomorphism.

(3) \Rightarrow (1). Let $M_b(S, \omega)$ be a WAP-algebra. Since $\ell_1(S, \omega)$ is a norm closed sub-algebra of $M_b(S, \omega)$, the weighted semigroup algebra $\ell_1(S, \omega)$ is a WAP-algebra. Using the double limit criterion, it is easy to check that $wap(S, 1/\omega) = WAP(\ell_1(S, \omega))$ (see also [11, Theorem 3.7]) where we treat $\ell^\infty(S, 1/\omega)$ as an $\ell_1(S, \omega)$ -bimodule. Then $\bar{\epsilon} : \ell_1(S, \omega) \rightarrow wap(S, 1/\omega)^*$ is an isometric isomorphism. Since $wap(S, 1/\omega)$ is a C^* -algebra, as (2) \Rightarrow (1), $\epsilon : S \rightarrow \tilde{X}$ is one to one. \square

Corollary 3.1. For a locally compact semi-topological semigroup S , $M_b(S, \omega)$ is a WAP-algebra if and only if $\ell_1(S, \omega)$ is a WAP-algebra.

For $\omega = 1$, it is clear that $\tilde{X} = S^{wap}$, and the map $\epsilon : S \rightarrow S^{wap}$ is one to one if and only if $wap(S)$ separates the points of S , see [3].

Corollary 3.2. For a locally compact semi-topological semigroup S , the following statements are equivalent:

- (1) $M_b(S)$ is a WAP-algebra;
- (2) $\ell_1(S)$ is a WAP-algebra;
- (3) The evaluation map $\epsilon : S \rightarrow S^{wap}$ is one to one;
- (4) $wap(S)$ separates the points of S .

Illustrating our results, we conclude the paper with the following examples.

Examples 3.1.

- (i) We examine the semigroup algebra $\ell_1(S)$ for $S = \mathbb{N}$ equipped with various multiplications. When S is equipped with the min multiplication, the semigroup algebra $\ell_1(S)$ is a WAP-algebra, while, is not neither Arens regular nor a dual Banach algebra. If we furnish S with the max multiplication, then $\ell_1(S)$ is a dual Banach algebra (and so a WAP-algebra) which is not Arens regular. If we change the multiplication of S to the zero multiplication then the resulted semigroup algebra is Arens regular (so a WAP-algebra) which is not a dual Banach algebra. This describes the interrelation between the concepts of being Arens regular algebra, dual Banach algebra and WAP-algebra.
- (ii) Let S be the set of all sequences with 0, 1 values. We equip S with pointwise multiplication. We denote by e_n the characteristic of n . Let $s = \{x_n\} \in S$, and let $F_w(S)$ be the set of all elements of S such that $x_i = 0$ for only finitely index i . It is easy to see that $F_w(S)$ is countable. Let $F_w(S) = \{s_1, s_2, \dots\}$. Recall that, each element $g \in \ell^\infty(S)$ has the presentation as $g = \sum_{s \in S} g(s)\chi_s$, see [6, p.65]. Suppose $g = \sum_{s \in S \setminus F_w(S)} g(s)\chi_s$ be in $wap(S)$, we show that $g = 0$. Let $s = \{x_n\} \in S$, and $\{k \in \mathbb{N} : x_k = 0\} = \{k_1, k_2, \dots\}$ be an infinite set. Put $a_n = s + \sum_{j=1}^n e_{k_j}$ and $b_m = s + \sum_{i=m}^\infty e_{k_i}$. Then

$$a_n b_m = \begin{cases} \sum_{j=m}^n e_{k_j} + s & \text{if } m \leq n \\ s & \text{if } m > n. \end{cases}$$

Thus

$$g(s) = \lim_n \lim_m g(a_n b_m) = \lim_m \lim_n g(a_n b_m) = \lim_m g(s + \sum_{i=m}^\infty e_{k_i}) = 0.$$

Indeed,

$$wap(S) = \{f \in \ell^\infty(S) : f = \sum_{i=1}^\infty f(s_i)\chi_{s_i}, \quad s_i \in F_w(S)\} \oplus \mathbb{C}$$

It is also clear that $F_w(S)$ is the subsemigroup of S with $wap(F_w(S)) = \ell_\infty(F_w(S))$. So $\ell_1(F_w(S))$ is Arens regular. Let T consist of those sequences $s = \{x_n\} \in S$

such that $x_i = 0$ for infinitely index i , then T is a subsemigroup of S and $\text{wap}(T) = \mathbb{C}$. Since $\epsilon|_T : T \rightarrow S^{\text{wap}}$ is not one to one, $\ell_1(S)$ is not a WAP-algebra. This shows that $\ell_1(S)$ need not be a WAP-algebra.

(iii) If we equip $S = \mathbb{R}^2$ with the multiplication $(x, y).(x', y') = (xx', x'y + y')$, then $M_b(S)$ is not a WAP-algebra. Indeed, every non-constant function f over x -axis is not in $\text{wap}(S)$. Let $f(0, z_1) \neq f(0, z_2)$ and $\{x_m\}, \{y_m\}, \{\beta_n\}$ be sequences with distinct elements satisfying the recursive equation

$$\beta_n x_m + y_m = \frac{mz_1 + nz_2}{m+n}.$$

Then

$$\begin{aligned} \lim_n \lim_m f((0, \beta_n).(x_m, y_m)) &= \lim_n \lim_m f(0, \beta_n x_m + y_m) \\ &= \lim_n \lim_m f(0, \frac{mz_1 + nz_2}{m+n}) = f(0, z_1), \end{aligned}$$

and similarly

$$\lim_m \lim_n f((0, \beta_n).(x_m, y_m)) = f(0, z_2).$$

Thus the map $\epsilon : S \rightarrow S^{\text{wap}}$ is not one to one, so $M_b(S)$ is not a WAP-algebra.

(iv) Let S be the interval $[\frac{1}{2}, 1]$ with the multiplication $x.y = \max\{\frac{1}{2}, xy\}$, where xy is the ordinary multiplication on \mathbb{R} . Then for each $s \in S \setminus \{\frac{1}{2}\}$, $x \in S$, the set $x^{-1}s$ is finite. But $x^{-1}\frac{1}{2} = [\frac{1}{2}, \frac{1}{2x}]$. Let $B = [\frac{1}{2}, \frac{3}{4}]$. Then for every finite subset F of B ,

$$\bigcap_{x \in F} x^{-1}\frac{1}{2} \setminus \bigcap_{x \in B \setminus F} x^{-1}\frac{1}{2} = [\frac{2}{3}, \frac{1}{2x_F}],$$

where $x_F = \max F$. By [15, Theorem 4], $\chi_{\frac{1}{2}} \notin \text{wap}(S)$. So $c_0(S \setminus \{\frac{1}{2}\}) \oplus \mathbb{C} \subsetneq \text{wap}(S)$. It can be readily verified that $\epsilon : S \rightarrow S^{\text{wap}}$ is one to one, so $\ell_1(S)$ is a WAP-algebra but $c_0(S) \not\subseteq \text{wap}(S)$.

(v) Take $T = (\mathbb{N} \cup \{0\}, .)$ with 0 as zero of T and the multiplication defined by

$$n.m = \begin{cases} n & \text{if } n = m \\ 0 & \text{otherwise.} \end{cases}$$

Set $S = T \times T$ equipped with the pointwise product. Now let $X = \{(k, 0) : k \in T\}$, $Y = \{(0, k) : k \in T\}$ and $Z = X \cup Y$. We use the Ruppert criterion [15] to show that $\chi_z \notin \text{wap}(S)$, for each $z \in Z$. Let $B = \{(k, n) : k, n \in T\}$, then $(k, n)^{-1}(k, 0) = \{(k, m) : m \neq n\} = B \setminus \{(k, n)\}$. Thus for each finite subsets

F of B,

$$\begin{aligned}
 (\cap\{(k, n)^{-1}(k, 0) : (k, n) \in F\}) &\setminus (\cap\{(k, n)^{-1}(k, 0) : (k, n) \in B \setminus F\}) \\
 &= (\cap\{(k, 0)(k, n)^{-1} : (k, n) \in F\}) \\
 &\setminus (\cap\{(k, n)^{-1}(k, 0) : (k, n) \in B \setminus F\}) \\
 &= (B \setminus F) \setminus F = B \setminus F
 \end{aligned}$$

and the last set is infinite. This means that $\chi_{(k,0)} \notin wap(S)$. Similarly $\chi_{(0,k)} \notin wap(S)$. Let $f = \sum_{n=0}^{\infty} f(0, n)\chi_{(0,n)} + \sum_{m=1}^{\infty} f(m, 0)\chi_{(m,0)}$ be in $wap(S)$. Then for each fixed n and the sequence $\{(n, k)\}$ in S , we have $\lim_k f(n, k) = \lim_k \lim_l f(n, l, k) = \lim_l \lim_k f(n, l, k) = f(n, 0)$, which implies that $f(n, 0) = 0$. Similarly $f(0, n) = 0$ and $f(0, 0) = 0$. Thus $f = 0$. Since $wap(S)$ can not separate the points of S so $\ell_1(S)$ is not a WAP-algebra. Let $\omega(n, m) = 2^n 3^m$ for $(n, m) \in S$. Then ω is a weight on S such that $\omega \in wap(S, 1/\omega)$. Then the evaluation mapping $\epsilon : S \rightarrow \tilde{X}$ is one to one. This means that $\ell_1(S, \omega)$ is a WAP-algebra while $\ell_1(S)$ is not !

Acknowledgment

Some helpful suggestions of the referee are gratefully acknowledged. The first author was supported by a grant from Ferdowsi University of Mashhad (No. MP94341VIS). The second and third authors were supported by the Center of Excellence for Mathematics at Isfahan University.

REFERENCES

- [1] *M. Abolghasemi, A. Rejali and H.R. Ebrahimi Vishki*, Weighted semigroup algebras as dual Banach algebras, arXiv:0808.1404 [math.FA].
- [2] *J.W. Baker and A. Rejali*, On the Arens regularity of weighted convolution algebras, J. London Math. Soc. (2) **40**, 535-546, (1989).
- [3] *J.F. Berglund, H.D. Junghenn and P. Milnes*, Analysis on Semigroups, Wiley, New York, 1989.
- [4] *J.B. Conway*, A Course in Functional Analysis, Springer-Verlag, Berlin, 1985.
- [5] *H.G. Dales*, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.
- [6] *H.G. Dales and A.T.-M. Lau*, The Second Dual of Beurling Algebras, Mem. Amer. Math. Soc. **177** (2005), no. 836.

[7] *H.G. Dales, A.T.-M. Lau, and D. Strauss*, Banach algebras on semigroups and on their compactification, *Mem. Amer. Math. Soc.* **205** (2010), 1-165.

[8] *M. Daws*, Connes-amenability of bidual and weighted semigroup algebras, *Math. Scand.* **99**, no. 2 (2006), 217-246.

[9] *M. Daws*, Dual Banach algebras: Representation and injectivity, *Studia Math.* **178** (2007), 231-275.

[10] *M. Daws, H.L. Pham and S. White*, Conditions implying the uniqueness of the weak*-topology on certain group algebras, *Houston J. Math.* **35**, no. 1 (2009), 253-276.

[11] *M. Lashkarizadeh Bami*, Function algebras on weighted topological semigroups, *Math. Japon.* **47**, no. 2 (1998), 217-227.

[12] *A. Rejali*, The analogue of weighted group algebra for semitopological semigroups, *J. Sci. I.R. Iran* **6**, no. 2 (1995), 113-120.

[13] *A. Rejali*, The Arens regularity of weighted semigroup algebras, *Sci. Math. Jpn.* **60**, no.1 (2004), 129-137.

[14] *A. Rejali and H.R.E. Vishki*, Weighted convolution measure algebras characterized by convolution algebras, *J. Sci. I. Iran* **18**, (4) (2007), 345-349 .

[15] *W.A.F. Ruppert*, On weakly almost periodic sets, *Semigroup Forum* **32**, no.3 (1985), 267-281.

[16] *V.Runde*, Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule, *Math. Scand.* **95**, (2004), 124-144.

[17] *N.J. Young*, Periodicity of functionals and representations of normed algebras on reflexive spaces, *Proc. Edinburgh Math. Soc.* (2) **20**, (1976/77), 99-120.