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WEIGHTED SEMIGROUP MEASURE ALGEBRA AS A

WAP-ALGEBRA

H.R. Ebrahimi Vishki1, B. Khodsiani2, A. Rejali3

A Banach algebra A for which the natural embedding from A into

WAP (A)∗ is bounded below is called a WAP-algebra. We study those conditions

under which the weighted semigroup measure algebra Mb(S, ω) is a WAP-algebra

or a dual Banach algebra. In particular, we show that the semigroup measure

algebra Mb(S) is a WAP-algebra (resp. dual Banach algebra) if and only if wap(S)

separates the points of S (resp. S is compactly cancellative semigroup). Some

older results, in the case where S is discrete, are also improved.
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1. Introduction and Preliminaries

The dual A∗ of a Banach algebra A can be turned into a Banach A-module

equipped with the natural module operations

⟨f · a, b⟩ = ⟨f, ab⟩ and ⟨a · f, b⟩ = ⟨f, ba⟩ (a, b ∈ A, f ∈ A∗).

A dual Banach algebra is a Banach algebra A enjoying a predual A∗ such

that A∗, as a Banach space is a closed A-submodule of A∗; or equivalently, the

multiplication on A is separately weak*-continuous. It should be remarked that the

predual of a dual Banach algebra need not be unique, in general (see [5, 10]); so we

usually point to the involved predual of a dual Banach algebra.

A functional f ∈ A∗ is said to be weakly almost periodic if {f · a : ∥a∥ ≤ 1}
is relatively weakly compact in A∗. We denote by WAP (A) the set of all weakly
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almost periodic elements of A∗. It is easy to verify that, WAP (A) is a (norm) closed

subspace of A∗.

It is known that the multiplication of a Banach algebra A has two natural

but, in general, different extensions (called Arens products) to the second dual A∗∗

each turning A∗∗ into a Banach algebra. When these products are equal, A is said

to be (Arens) regular. It can be verified that A is Arens regular if and only if

WAP (A) = A∗. Further information for the Arens regularity of Banach algebras

can be found in [5, 6].

WAP-algebras, as a generalization of the Arens regular algebras, have been

introduced and intensively studied in [9]. A Banach algebra A for which the natural

embedding x 7→ x̂ of A into WAP (A)∗, where x̂(f) = f(x) for f ∈ WAP (A),

is bounded below, is called a WAP-algebra. When A is either Arens regular or a

dual Banach algebra, then natural embedding of A intoWAP (A)∗ is an isometry [16,

Corollary 4.6]. It has also known that A is a WAP-algebra if and only if it admits an

isomorphic representation on a reflexive Banach space. Convolution group algebras

are the main examples of WAP-algebras; however; they are neither dual nor Arens

regular in general, see [17]. For more information about WAP-algebras one may

consult to the impressive paper [9].

The main aim of this paper is to investigate those conditions under which

the weighted measure algebra Mb(S, ω) is either a WAP-algebra or a dual Banach

algebra, where ω is a weight on a locally compact semigroup S.

First we recall some preliminaries about the (weighted) measure algebras. Let

S be a locally compact semitopological semigroup. Let Mb(S) be the space of all

complex regular Borel measures on S, which is known as a Banach algebra under the

convolution product ∗ defined by the equation ⟨µ∗ν, f⟩ =
∫
S

∫
S f(xy)dµ(x)dν(y) (f ∈

C0(S)). Our mean by a weight ω on S is a Borel measurable function ω : S → (0,∞)

such that ω(st) ≤ ω(s)ω(t), (s, t ∈ S). For µ ∈ Mb(S) we define (µω)(E) =∫
E ωdµ, (E ⊆ S is Borel set). If ω ≥ 1, then Mb(S, ω) = {µ ∈Mb(S) : µω ∈Mb(S)}
is known as a Banach algebra which is called the weighted semigroup measure

algebra (see [6, 12, 13, 14]). In the case where S is discrete we write ℓ1(S, ω)

instead of Mb(S, ω) and c0(S, 1/ω) instead of C0(S, 1/ω). Then the Banach alge-

bra ℓ1(S, ω) = {f : f =
∑

s∈S f(s)δs, ||f ||1,ω =
∑

s∈S |f(s)|ω(s) < ∞} (where,

δs ∈ ℓ1(S, ω) is the point mass at s) equipped with the convolution product is called

a weighted semigroup algebra. We also suppress 1 from the notation whenever

w = 1.

Let B(S) denote the space of all bounded Borel measurable functions on S.

Set B(S, 1/ω) = {f : S → C : f/ω ∈ B(S)}. Let f ∈ C(S, 1/ω) then f is called

ω-weakly almost periodic if the set { Rsf
ω(s)ω : s ∈ S} is relatively weakly compact

in C(S). The set of all ω-weakly almost periodic functions on S is denoted by
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wap(S, 1/ω). The space wap(S) of 1-weakly almost periodic functions on S is a

C∗−subalgebra of C(S) and its character space Swap, endowed with the Gelfand

topology, enjoys a (Arens type) multiplication that turns it into a compact semi-

topological semigroup. Many other properties of wap(S) and its inclusion relations

among other function algebras are completely explored in [3].

The paper is organized as follows. In section 2 we study the weighted measure

algebra Mb(S, ω) from the dual Banach algebra point of view. In this respect,

we shall show that, Mb(S, ω)is a dual Banach algebra with respect to the predual

C0(S, 1/ω) if and only if for all compact subsets F and K of S , the maps
χF−1K

ω and
χKF−1

ω vanishes at infinity. This extends an earliear result of Abolghasemi, Rejali,

and Ebrahimi Vishki [1]. We also conclude that, the measure algebraMb(S) is a dual

Banach algebra with respect to C0(S) if and only if S is a compactly cancellative

semigroup. The later result is an extension of a known result of Dales, Lau and

Strauss [7, Theorem 4.6] stating that, ℓ1(S) is a dual Banach algebra with respect

to c0(S) if and only if S is a weakly cancellative semigroup.

Section 3 is devoted to the study of Mb(S, ω) from the WAP -algebra point of

view. We shall prove that, Mb(S, ω) is a WAP-algebra if and only if the evaluation

map ϵ : S −→ X̃ is one to one, where X̃ = MM(wap(S, 1/ω)). The main result of

this section is that Mb(S) is WAP-algebra if and only if wap(S) separate the points

of S. We conclude the paper with some illuminating examples.

2. Semigroup Measure Algebras as Dual Banach Algebras

It is known that the (discrete) semigroup algebra ℓ1(S) is a dual Banach

algebra with respect to c0(S) if and only if S is a weakly cancellative semigroup, see

[7, Theorem 4.6].This result has been extended to the weighted semigroup algebras;

[1, 8]. In this section we extend the aforementioned results to the non-discrete

case. More precisely, we provide some necessary and sufficient conditions that the

measure algebraMb(S, ω) becomes a dual Banach algebra with respect to the predual

C0(S, 1/ω).

Let F and K be nonempty subsets of a semigroup S and s ∈ S. We set

s−1F = {t ∈ S : st ∈ F}, and Fs−1 = {t ∈ S : ts ∈ F}. We also write s−1t for

s−1{t}, FK−1 for ∪s∈KFs−1 and K−1F for ∪s∈Ks−1F .

A semigroup S is called left (respectively, right) zero semigroup if xy = x

(respectively, xy = y), for all x, y ∈ S. A semigroup S is called zero semigroup if

there exist z ∈ S such that xy = z for all x, y ∈ S. A semigroup S is said to be

left (respectively, right) weakly cancellative semigroup if s−1F (respectively, Fs−1)

is finite for each s ∈ S and each finite subset F of S. A semigroup S is said to

be weakly cancellative semigroup if it is both left and right weakly cancellative

semigroup.
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A semi-topological semigroup S is said to be compactly cancellative semigroup

if for every compact subsets F and K of S the sets F−1K and KF−1 are compact

set.

The following lemma needs a routine argument.

Lemma 2.1. Let S be a topological semigroup. For every compact subsets F and

K of S the sets F−1K and KF−1 are closed.

In the next result we study Mb(S, ω) from the dual Banach algebra point of

view.

Theorem 2.1. Let S be a locally compact topological semigroup and ω be a con-

tinuous weight on S. Then the measure algebra Mb(S, ω) is a dual Banach algebra

with respect to the predual C0(S, 1/ω) if and only if for all compact subsets F and

K of S , the maps
χF−1K

ω and
χKF−1

ω vanishes at infinity.

Proof. Suppose that Mb(S, ω) is a dual Banach algebra with respect to

C0(S, 1/ω) and let ε > 0. Let K,F be nonempty compact subsets of S with a

net (xα) in {t ∈ F−1K : 1/ω(t) ≥ ε}. Let C+
00(S) denote the non-negative continu-

ous functions with compact support on S and set C+
00(S, 1/ω) = {f ∈ C0(S, 1/ω) :

f/ω ∈ C+
00(S)}. Since ω is continuous we may choose f ∈ C+

00(S, 1/ω) with f(K) = 1.

There exists a net (tα) ∈ F such that tαxα ∈ K and the compactness of F guaranties

the existence of a subnet (tγ) of (tα) such that tγ → t0 for some t0 in S. Indeed,

since for each s ∈ S,

lim
γ
(
δtγ .f

ω
)(s) = lim

γ

f(tγs)

ω(s)
=
f(t0s)

ω(s)
=
δt0 .f

ω
(s),

there exists a γ0 such that

{t ∈ ∪γ≥γ0t−1
γ K : 1/ω(t) ≥ ε} ⊆ ∪γ≥γ0{r ∈ S : (

δtγ .f

ω
)(r) ≥ ε}

⊆ {r ∈ S : (
δt0 .f

ω
)(r) ≥ ε

2
}.

Let H = {tγ : γ ≥ γ0} ∪ {t0}. Then

{t ∈ H−1K : 1/ω(t) ≥ ε} = {t ∈ ∪γ≥γ0t−1
γ K ∪ t−1

0 K : 1/ω(t) ≥ ε}

as a closed subset of {r ∈ S : (
δt0 .f
ω )(r) ≥ ε

2} is compact. It follows that the net (xγ)

in {t ∈ H−1K : 1/ω(t) ≥ ε} has a convergent subnet. Thus {t ∈ F−1K : 1/ω(t) ≥ ε}
is compact and that

χF−1K
ω vanishes at infinity. Similarly

χKF−1

ω vanishes at infinity.

The proof of sufficiency can be adopted from [1, Proposition 3.1]. Let f ∈
C0(S, 1/ω), µ ∈Mb(S, ω) and ε > 0 be arbitrary. Then there exist compact subsets

F and K of S such that | fω (s)| < ε for all s ̸∈ K and |(µω)|(S \ F ) < ε. Let
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s ̸∈ {t ∈ F−1K : ω(t) ≤ 1
ε}. Then

|µ.f
ω

(s)| = |
∫
S

f(ts)

ω(s)
dµ(t)| ≤ |

∫
F

f(ts)

ω(s)
dµ(t)|+ |

∫
S\F

f(ts)

ω(s)
dµ(t)|

≤
∫
F
|f(ts)
ω(ts)

|ω(t)d|µ|(t) +
∫
S\F

|f(ts)
ω(ts)

|ω(t)d|µ|(t)

≤ ε

∫
S
ω(t)d|µ|(t) + ∥f∥ω,∞

∫
S\F

ω(t)d|µ|(t) ≤ ε∥µ∥ω + ε∥f∥ω,∞.

That is, µ.f ∈ C0(S, 1/ω) and so Mb(S, ω) is a dual Banach algebra with respect to

C0(S, 1/ω). �

As immediate consequences of Theorem 2.1 we have the next corollary.

Corollary 2.1. Let S be a locally compact topological semigroup.

(1) The measure algebra Mb(S) is a dual Banach algebra with respect to C0(S) if

and only if S is compactly cancellative.

(2) If Mb(S) is a dual Banach algebra with respect to C0(S) then Mb(S, ω) is a

dual Banach algebra with respect to C0(S, 1/ω).

Applying Theorem 2.1 for a discrete semigroup, we arrive at the next result.

Corollary 2.2 ([1, Theorem 2.2]). For a semigroup S, the weighted semigroup

algebra ℓ1(S, ω) is a dual Banach algebra with respect to the predual c0(S, 1/ω) if

and only if the maps
χt−1s
ω and

χst−1

ω are in c0(S) for all s, t ∈ S.

We have also the next result as an application of Theorem 2.1.

Corollary 2.3. Let S be either a left zero, a right zero or a zero locally compact

semigroup. Then there exists a weight ω on S such that Mb(S, ω) is a dual Banach

algebra with respect to C0(S, 1/ω) if and only if S is σ-compact.

Proof. Let K and F be compact subsets of S. It can be readily verified that in

either cases (being left zero, right zero or zero) the sets F−1K and KF−1 are either

empty or the whole S. For each m ∈ N we set Sm = {t ∈ F−1K : ω(t) ≤ m} =

{t ∈ S : ω(t) ≤ m}. Then S = ∪m∈NSm and so S is σ-compact. For the converse let

S = ∪n∈NSn as a disjoint union of compact sets and let z be a (left or right) zero

for S. Define ω(z) = 1 and ω(x) = 1 + n for x ∈ Sn then ω is a weight on S and

Mb(S, ω) is a dual Banach algebra. �

Examples 2.1. (1) The set S = R+ × R equipped with the multiplication

(x, y).(x′, y′) = (x+ x′, y′) ((x, y), (x′, y′) ∈ S)
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and the weight ω(x, y) = e−x(1 + |y|) is a weighted semigroup. Set F =

[a, b]× [c, d] and K = [e, f ]× [g, h]. Then F−1K = [e− b, f − a]× [g, h] and

KF−1 =

{
[e− b, f − a]× R if [c, d] ∩ [g, h] ̸= ∅
∅ if [c, d] ∩ [g, h] = ∅.

Thus Mb(S) is not a dual Banach algebra by Corollary 2.1 (1). However, for

all compact subsets F and K of S, the maps
χF−1K

ω and
χKF−1

ω vanishes at

infinity. SoMb(S, ω) is a dual Banach algebra with respect to C0(S, 1/ω). This

shows that the converse of Corollary 2.1 (2) may not be valid.

(2) For the semigroup S = [0,∞) endowed with the zero multiplication, neither

Mb(S) nor ℓ1(S) is a dual Banach algebra. In fact, S is neither compactly nor

weakly cancellative semigroup.

3. Semigroup Measure Algebras as WAP-Algebras

In this section we study some conditions under which the weighted measure

algebra Mb(S, ω) is a WAP-algebra. First, we provide some preliminaries.

Definition 3.1. Let F̃ be a linear subspace of B(S, 1/ω), and let F̃r denote the set

of all real-valued members of F̃. A mean on F̃ is a linear functional µ̃ on F̃ with

the property that infs∈S
f
ω (s) ≤ µ̃(f) ≤ sups∈S

f
ω (s) (f ∈ F̃r). The set of all means

on F̃ is denoted by M(F̃). If F̃ is also an algebra with the multiplication given by

f ⊙ g := (f.g)/ω (f, g ∈ F̃) and if µ̃ ∈M(F̃) satisfies µ̃(f ⊙ g) = µ̃(f)µ̃(g) (f, g ∈
F̃), then µ̃ is said to be multiplicative. The set of all multiplicative means on F̃ will

be denoted by MM(F̃).

Let F̃ be a conjugate closed, linear subspace of B(S, 1/ω) such that ω ∈ F̃.

(i) For each s ∈ S define ϵ(s) ∈ M(F̃) by ϵ(s)(f) = (f/ω)(s) (f ∈ F̃). The

mapping ϵ : S −→ M(F̃) is called the evaluation mapping. If F̃ is also an

algebra, then ϵ(S) ⊆MM(F̃).

(ii) Let X̃ = M(F̃) (resp. X̃ = MM(F̃), if F̃ is a subalgebra) be endowed with

the relative weak* topology. For each f ∈ F̃ the function f̂ ∈ C(X̃) is defined

by f̂(µ̃) := µ̃(f) (µ̃ ∈ X̃).

Furthermore, we define
ˆ̃
F := {f̂ : f ∈ F̃}.

Remark 3.1. (i) The mapping f −→ f̂ : F̃ −→ C(X̃) is clearly linear and

multiplicative if F̃ is an algebra and X̃ = MM(F̃). Also it preserves complex
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conjugation, and is an isometry, since for any f ∈ F̃

||f̂ || = sup{|µ(f
ω
)| : µ ∈ X} ≤ sup{|µ(f

ω
)| : µ ∈ C(X)∗, ||µ|| ≤ 1}

= ||f
ω
|| = sup{|f

ω
(s)| : s ∈ S} = sup{|ϵ(s)(f)| : s ∈ S}

= sup{|f̂(ϵ(s))| : s ∈ S} ≤ ||f̂ ||,

where X = M(F) and F = {f/ω : f ∈ F̃}. Note that f̂(ϵ(s)) = ϵ(s)(f) =

( fω )(s)(f ∈ F̃ , s ∈ S). This identity may be written in terms of dual map

ϵ̃∗ : C(X̃) −→ C(S, ω) as ϵ∗(f̂) = f for f ∈ F̃ .

(ii) Let F̃ be a conjugate closed linear subspace of B(S, 1/ω), containing ω. Then

M(F̃) is convex and weak* compact, co(ϵ(S)) is weak* dense in M(F̃), F̃∗ is

the weak* closed linear span of ϵ(S), ϵ : S −→ M(F̃) is weak* continuous,

and if F̃ is also an algebra, then MM(F̃) is weak* compact and ϵ(S) is weak*

dense in MM(F̃).

(iii) Let F̃ be a C∗-subalgebra of B(S, 1/ω), containing ω. If X̃ denotes the space

MM(F̃) with the relative weak* topology, and if ϵ : S −→ X̃ denotes the

evaluation mapping, then the mapping f −→ f̂ : F̃ −→ C(X̃) is an isometric

isomorphism with the inverse ϵ∗ : C(X̃) −→ F̃.

Let F̃ = wap(S, 1/ω). Then F̃ is a C∗-subalgebra of WAP (Mb(S, ω)), see [11,

Theorem1.6, Theorem 3.3]. Set X̃ =MM(F̃). By the above remark wap(S, 1/ω) ∼=
C(X̃) and so

Mb(X̃) ∼= C(X̃)∗ ∼= wap(S, 1/ω)∗ ⊆WAP (Mb(S, ω))
∗.

Let ϵ : S −→ X̃ be the evaluation mapping. We also define

ϵ̄ :Mb(S, ω) −→Mb(X̃) by ⟨ϵ̄(µ), f⟩ =
∫
S
fωdµ

for f ∈ wap(S, 1/ω) ∼= C(X̃). Then for every Borel set B in X̃, we have ϵ̄(µ)(B) =

(µω)(ϵ−1(B)). In particular, ϵ̄( δx
ω(x)) = δϵ(x).

The next theorem is the main result of this section.

Theorem 3.1. For every weighted locally compact semi-topological semigroup (S, ω)

the following statements are equivalent:

(1) The map ϵ : S −→ X̃ is one to one, where X̃ =MM(wap(S, 1/ω));

(2) ϵ̄ :Mb(S, ω) −→Mb(X̃) is an isometric isomorphism;

(3) Mb(S, ω) is a WAP-algebra.

Proof. (1) ⇒ (2). Take µ ∈ Mb(S, ω), say µ = µ1 − µ2 + i(µ3 − µ4), where µj ∈
Mb(S, ω)

+ for each j = 1, 2, 3, 4. Set νj = ϵ̄(µj) ∈ Mb(X̃)+, and ν = ϵ̄(µ) =

ν1 − ν2 + i(ν3 − ν4). Take δ > 0. For each j, there exists a Borel set Bj in X̃ such

that νj(B) ≥ 0 for each Borel subset B of Bj with
∑4

j=1 νj(Bj) > ||ν|| − δ. In



20 H.R. Ebrahimi Vishki, B. Khodsiani, A. Rejali

fact, by the Hahn decomposition theorem for the signed measures λ1 = ν1 − ν2 and

λ2 = ν3−ν4, there exist four Borel sets P1, P2, N1 and N2 in X̃ such that P1∪N1 =

X̃, P1 ∩N1 = ∅, P2 ∪N2 = X̃, P2 ∩N2 = ∅, and ν1(E) = λ1(P1 ∩E), ν2(E) =

−λ1(N1∩E), ν3(E) = λ2(P2∩E), ν4(E) = −λ2(N2∩E), for every Borel set E of X̃.

That is, the measures ν1, ν2, ν3, ν4 are concentrated on P1, N1, P2, N2, respectively.

Set D1 := P1 ∩ N2, D2 := N1 ∩ P2, D3 := P2 ∩ P1, D4 := N2 ∩ N1. Then the

family {D1, D2, D3, D4} is a partition for X̃. Further, there exists a compact set K

for which ||ν|| − δ ≤
∑4

j=1 ||νj |Dj
|| − δ ≤

∑4
j=1 νj |Dj

(K) =
∑4

j=1 νj(Dj ∩ K). Set

Bj = Dj ∩K. Then the sets B1, B2, B3, B4 are pairwise disjoint.

For each j, set Cj = (ϵ)−1(Bj), a Borel set in S. Then (µjω)(Cj) = νj(Bj).

Since ϵ is injection, the sets C1, C2, C3, C4 are pairwise disjoint, and so ||µ||ω ≥∑4
j=1 |µω(Cj)| ≥

∑4
j=1(µjω)(Cj) =

∑4
j=1 νj(Bj) > ||ν|| − δ This holds for each δ >

0, so ||µ||ω ≥ ||ν||. A similar argument shows that ||µ||ω ≤ ||ν||. Thus ||µ||ω = ||ν||.
(2)⇒(1). Let P (S, ω) denote the subspace of all probability measures of

Mb(S, ω) and ext(P (S, ω)) the extreme points of unit ball of P (S, ω). Then ext(P (S, ω)) =

{ δx
ω(x) : x ∈ S} ∼= S and ext(P (X̃)) ∼= X̃, see [4, p.151]. By the injectivity of ϵ̄, it

maps the extreme points of the unit ball onto the extreme points of the unit ball,

thus ϵ : S −→ X̃ is one to one.

(2)⇒(3). Since X̃ is compact, Mb(X̃) is a dual Banach algebra with respect

to C(X̃), so it has an isometric representation ψ on a reflexive Banach space E, see

[9]. In the following commutative diagram,

Mb(S, ω)
ϵ̄
> Mb(X̃)

B(E)

ψ
∨

ϕ

>

If ϵ̄ is isometric, then so is ϕ. Thus Mb(S, ω) has an isometric representation on a

reflexive Banach space E if ϵ̄ is an isometric isomorphism. So Mb(S, ω) is a WAP-

algebra if ϵ̄ is an isometric isomorphism.

(3)⇒(1). LetMb(S, ω) be a WAP-algebra. Since ℓ1(S, ω) is a norm closed sub-

algebra of Mb(S, ω), the weighted semigroup algebra ℓ1(S, ω) is a WAP-algebra. Us-

ing the double limit criterion, it is easy to check that wap(S, 1/ω) =WAP (ℓ1(S, ω))

(see also [11, Theorem 3.7]) where we treat ℓ∞(S, 1/ω) as an ℓ1(S, ω)-bimodule.

Then ϵ̄ : ℓ1(S, ω) −→ wap(S, 1/ω)∗ is an isometric isomorphism. Since wap(S, 1/ω)

is a C∗-algebra, as (2)⇒(1), ϵ : S −→ X̃ is one to one. �

Corollary 3.1. For a locally compact semi-topological semigroup S, Mb(S, ω) is a

WAP-algebra if and only if ℓ1(S, ω) is a WAP-algebra.

For ω = 1, it is clear that X̃ = Swap, and the map ϵ : S −→ Swap is one to

one if and only if wap(S) separates the points of S, see [3].
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Corollary 3.2. For a locally compact semi-topological semigroup S, the following

statements are equivalent:

(1) Mb(S) is a WAP-algebra;

(2) ℓ1(S) is a WAP-algebra;

(3) The evaluation map ϵ : S −→ Swap is one to one;

(4) wap(S) separates the points of S.

Illustrating our results, we conclude the paper with the following examples.

Examples 3.1.

(i) We examine the semigroup algebra ℓ1(S) for S = N equipped with various

multiplications. When S is equipped with the min multiplication, the semigroup

algebra ℓ1(S) is a WAP-algebra, while, is not neither Arens regular nor a dual

Banach algebra. If we furnish S with the max multiplication, then ℓ1(S) is a

dual Banach algebra (and so a WAP-algebra) which is not Arens regular. If

we change the multiplication of S to the zero multiplication then the resulted

semigroup algebra is Arens regular (so a WAP-algebra) which is not a dual

Banach algebra. This describes the interrelation between the concepts of being

Arens regular algebra, dual Banach algebra and WAP-algebra.

(ii) Let S be the set of all sequences with 0, 1 values. We equip S with pointwise

multiplication. We denote by en the characteristic of n. Let s = {xn} ∈ S, and

let Fw(S) be the set of all elements of S such that xi = 0 for only finitely index

i. It is easy to see that Fw(S) is countable. Let Fw(S) = {s1, s2, · · · }. Recall
that, each element g ∈ ℓ∞(S) has the presentation as g =

∑
s∈S g(s)χs, see

[6, p.65]. Suppose g =
∑

s∈S\Fw(S) g(s)χs be in wap(S), we show that g = 0.

Let s = {xn} ∈ S, and {k ∈ N : xk = 0} = {k1, k2, · · · } be an infinite set. Put

an = s+
∑n

j=1 ekj and bm = s+
∑∞

i=m eki . Then

anbm =

{ ∑n
j=m ekj + s if m ≤ n

s if m > n.

Thus

g(s) = lim
n

lim
m
g(anbm) = lim

m
lim
n
g(anbm) = lim

m
g(s+

∞∑
i=m

eki) = 0.

Indeed,

wap(S) = {f ∈ ℓ∞(S) : f =

∞∑
i=1

f(si)χsi , si ∈ Fw(S)} ⊕ C

It is also clear that Fw(S) is the subsemigroup of S withwap(Fw(S)) = ℓ∞(Fw(S)).

So ℓ1(Fw(S)) is Arens regular. Let T consist of those sequences s = {xn} ∈ S
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such that xi = 0 for infinitely index i, then T is a subsemigroup of S and

wap(T ) = C. Since ϵ|T : T −→ Swap is not one to one, ℓ1(S) is not a WAP-

algebra. This shows that ℓ1(S) need not be a WAP-algebra.

(iii) If we equip S = R2 with the multiplication (x, y).(x′, y′) = (xx′, x′y + y′),

then Mb(S) is not a WAP-algebra. Indeed, every non-constant function f

over x-axis is not in wap(S). Let f(0, z1) ̸= f(0, z2) and {xm},{ym}, {βn} be

sequences with distinct elements satisfying the recursive equation

βnxm + ym =
mz1 + nz2
m+ n

.

Then

lim
n

lim
m
f((0, βn).(xm, ym)) = lim

n
lim
m
f(0, βnxm + ym)

= lim
n

lim
m
f(0,

mz1 + nz2
m+ n

) = f(0, z1),

and similarly

lim
m

lim
n
f((0, βn).(xm, ym)) = f(0, z2).

Thus the map ϵ : S −→ Swap is not one to one, so Mb(S) is not a WAP-

algebra.

(iv) Let S be the interval [12 , 1] with the multiplication x.y = max{1
2 , xy}, where xy

is the ordinary multiplication on R. Then for each s ∈ S \ {1
2}, x ∈ S, the

set x−1s is finite. But x−1 1
2 = [12 ,

1
2x ]. Let B = [12 ,

3
4). Then for every finite

subset F of B, ∩
x∈F

x−1 1

2
\

∩
x∈B\F

x−1 1

2
= [

2

3
,

1

2xF
],

where xF = maxF . By [15, Theorem 4], χ 1
2
̸∈ wap(S). So c0(S \ {1

2})⊕ C $
wap(S). It can be readily verified that ϵ : S −→ Swap is one to one, so ℓ1(S)

is a WAP-algebra but c0(S) ̸⊆ wap(S).

(v) Take T = (N ∪ {0}, .) with 0 as zero of T and the multiplication defined by

n.m =

{
n if n = m

0 otherwise.

Set S = T × T equipped with the pointwise product. Now let X = {(k, 0) : k ∈
T}, Y = {(0, k) : k ∈ T} and Z = X ∪ Y . We use the Ruppert criterion [15]

to show that χz ̸∈ wap(S), for each z ∈ Z. Let B = {(k, n) : k, n ∈ T}, then
(k, n)−1(k, 0) = {(k,m) : m ̸= n} = B \ {(k, n)}. Thus for each finite subsets
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F of B,(
∩{(k, n)−1(k, 0) : (k, n) ∈ F}

)
\ (∩{(k, n)−1(k, 0) : (k, n) ∈ B \ F})

=
(
∩{(k, 0)(k, n)−1 : (k, n) ∈ F}

)
\ (∩{(k, n)−1(k, 0) : (k, n) ∈ B \ F})

= (B \ F ) \ F = B \ F

and the last set is infinite. This means that χ(k,0) ̸∈ wap(S). Similarly χ(0,k) ̸∈
wap(S). Let f =

∑
n=0 f(0, n)χ(0,n)+

∑∞
m=1 f(m, 0)χ(m,0) be in wap(S).Then

for each fixed n and the sequence {(n, k)} in S, we have limk f(n, k) = limk

liml f(n, l.k) = liml limk f(n, l.k) = f(n, 0), which implies that f(n, 0) = 0.

Similarly f(0, n) = 0 and f(0, 0) = 0. Thus f = 0. Since wap(S) can not

separate the points of S so ℓ1(S) is not a WAP-algebra. Let ω(n,m) = 2n3m

for (n,m) ∈ S. Then ω is a weight on S such that ω ∈ wap(S, 1/ω). Then

the evaluation mapping ϵ : S −→ X̃ is one to one. This means that ℓ1(S, ω)

is a WAP-algebra while ℓ1(S) is not !
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