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In this paper, we design an inertial Bregman extragradient-like algorithm with

linesearch process for solving two pseudomonotone variational inequalities (VIPs) and

the common fixed point problem (CFPP) of a Bregman relatively asymptotically non-
expansive mapping and finitely many Bregman relatively nonexpansive mappings in p-

uniformly convex and uniformly smooth Banach spaces, which are more general than

Hilbert spaces. Under mild conditions, we prove weak convergence of the suggested al-
gorithm to a common solution of two pseudomonotone VIPs and the CFPP.
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1. Introduction

Let C be a nonempty, convex and closed subset of a real Hilbert space H. Let
A : H → H be an operator. Recall that the variational inequality problem (VIP) is to find
a point t ∈ C such that

⟨At, v − t⟩ ≥ 0, ∀v ∈ C. (1)

The solution set of the VIP is expressed as VI(C,A). The variational inequality problem
(VIP) has been and will continue to be one of the important problems in optimization
and nonlinear analysis. It contains, as special cases, such well-known problems in mathe-
matical programming as: systems of nonlinear equations, optimization problems, comple-
mentarity problems, fixed point problems and so on. Some related works, please refer to
[8–10, 12, 15, 18, 19, 25, 27–30, 32, 34–38, 42–44]. In the past few decades, the Korpelevich
extragradient rule ([16]) put forward in 1976 is one of the most popular approaches for ap-
proximating an element of VI(C,A). Korpelevich extragradient method and its variant have
been investigated extensively in the literature, see [2–6, 11, 14, 17, 24, 31, 39–41, 45]. Espe-
cially, Kraikaew and Saejung [17] proposed the Halpern subgradient extragradient algorithm
for solving the VIP. Thong and Hieu [31] put forth the inertial subgradient extragradient al-
gorithm for solving VIP. Ceng and Shang [5] introduced a hybrid inertial extragradient algo-
rithm with linesearch process for solving the VIP with Lipschitz continuous pseudomonotone
mapping A and the common fixed-point problem (CFPP) of asymptotically nonexpansive
mapping S and finitely many nonexpansive mappings {Si}Ni=1 in H. Reich et al. [24] put
forward two gradient-projection algorithms for solving the VIP for uniformly continuous
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pseudomonotone mapping. Eskandani et al. [11] proposed the hybrid projection rule with
line-search process for finding a common solution of the VIP and the FPP of S.

In this paper, we use the VIP and CFPP to represent a variational inequality prob-
lem and the common fixed point problem (CFPP) of a Bregman relatively asymptotically
nonexpansive mapping and finitely many Bregman relatively nonexpansive mappings in p-
uniformly convex and uniformly smooth Banach space E. We design an inertial Bregman
extragradient-like algorithm with linesearch process for solving the two pseudomonotone
VIPs and the CFPP in E. Under mild conditions, we prove weak convergence of the sug-
gested algorithm to a common solution of the two pseudomonotone VIPs and the CFPP.
Our results improve and extend the corresponding results announced by some others, e.g.,
Ceng and Shang [5], Eskandani et al. [11] and Reich et al. [24].

2. Preliminaries

Let (E, ∥·∥) be a real Banach space with the dual E∗. Let p, q ∈ (1,∞) and 1
p+

1
q = 1.

The duality mapping Jp
E : E → E∗ is defined by

Jp
E(t) = {ψ ∈ E∗ : ⟨ψ, t⟩ = ∥t∥p and ∥ψ∥ = ∥t∥p−1}, ∀t ∈ E.

Let f : E → R be a Gâteaux differentiable convex function. The Bregman distance w.r.t. f
is formulated as Df (t, x) := f(t)− f(x)− ⟨∇f(x), t− x⟩, ∀t, x ∈ E. Note that

Df (t, x) +Df (x, y) = Df (t, y)− ⟨∇f(x)−∇f(y), t− x⟩,

and

Dfp(t, x) = (∥x∥p − ∥t∥p)/q − ⟨Jp
E(x)− Jp

E(t), t⟩.

See [22] for more details on Bregman functions and distances.
In the smooth and p-uniformly convex Banach space E with 2 ≤ p <∞, there holds

the following relation between the metric and Bregman distance:

τ∥t− x∥p ≤ Dfp(t, x) ≤ ⟨Jp
E(t)− Jp

E(x), t− x⟩, (2)

where τ > 0 is some fixed number ([26]). From (2) it can be readily seen that for any
bounded sequence {tn} ⊂ E, the following holds:

tn → t ⇔ Dfp(tn, t) → 0, n→ ∞.

Let C be a nonempty closed convex subset of reflexive, smooth and strictly convex
Banach space E. The Bregman projection of t ∈ E onto C w.r.t. fp is the unique element
ΠCt ∈ C s.t. Dfp(ΠCt, t) = minx∈C Dfp(x, t). Bregman projections can be characterized by
the following inequality:

⟨Jp
E(t)− Jp

E(ΠCt), x−ΠCt⟩ ≤ 0, ∀x ∈ C, (3)

which is equivalent to

Dfp(x,ΠCt) +Dfp(ΠCt, t) ≤ Dfp(x, t), ∀x ∈ C. (4)

In case p = 2, the duality mapping Jp
E reduces to the normalized duality mapping and

is denoted by J . The function ϕ : E2 → R is specified as ϕ(t, x) = ∥t∥2 − 2⟨Jx, t⟩ +
∥x∥2, ∀t, x ∈ E, and ΠC(t) = argminx∈C ϕ(x, t), ∀t ∈ E. In terms of [11], the function
Vfp : E × E∗ → [0,∞) associated with fp is specified below

Vfp(t, t
∗) = ∥t∥p/p− ⟨t∗, t⟩+ ∥t∗∥q/q, ∀(t, t∗) ∈ E × E∗. (5)

So, Vfp(t, t
∗) = Dfp(t, J

q
E∗(t∗)) ∀(t, t∗) ∈ E×E∗. Moreover, by the subdifferential inequality,

we obtain

Vfp(t, t
∗) + ⟨x∗, Jq

E∗(t
∗)− t⟩ ≤ Vfp(t, t

∗ + x∗), ∀t ∈ E, t∗, x∗ ∈ E∗. (6)
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In addition, Vfp is convex in the second variable. Thus one has

Dfp(z, J
q
E∗(

n∑
i=1

ςiJ
p
E(ti))) ≤

n∑
i=1

ςiDfp(z, ti), ∀z ∈ E, {ti}ni=1 ⊂ E, (7)

where {ςi}ni=1 ⊂ [0, 1] and
∑n

i=1 ςi = 1.

Lemma 2.1 ([1]). Let E be a uniformly convex Banach space and {sn}, {xn} be two se-
quences in E such that the first one is bounded. If limn→∞Dfp(xn, sn) = 0, then limn→∞ ∥xn−
sn∥ = 0.

Let S : C → C be a mapping. Let Fix(S) indicate the fixed-point set of S. A
mapping S : C → C is referred to as being asymptotically nonexpansive if ∃{θm} ⊂ [0,∞)
s.t. limm→∞ θm = 0 and (θm + 1)∥t− v∥ ≥ ∥Smt− Smv∥, ∀t, v ∈ C, m ≥ 1. In particular,
in the case of θm = 0, ∀m ≥ 1, S is called a nonexpansive mapping. A point y† ∈ C is
referred to as an asymptotic fixed point of S if ∃{yn} ⊂ C s.t. yn ⇀ y† and (I − S)yn → 0.

We denote by F̂ix(S) the set of asymptotic fixed points of S. The terminology of asymptotic
fixed points was invented in Reich [23]. A mapping S : C → C is known as being Bregman

relatively asymptotically nonexpansive w.r.t. fp if Fix(S) = F̂ix(S) ̸= ∅, and ∃{θn} ⊂ [0,∞)
s.t. limn→∞ θn = 0 and (θn + 1)Dfp(y, x) ≥ Dfp(y, S

nx), ∀y ∈ Fix(S), x ∈ C, n ≥ 1. In
particular, if θn = 0 ∀n ≥ 1, then S reduces to a Bregman relatively nonexpansive mapping

w.r.t. fp, i.e., S is said to be Bregman relatively nonexpansive w.r.t. fp if Fix(S) = F̂ix(S) ̸=
∅ and Dfp(y, Sx) ≤ Dfp(y, x), ∀y ∈ Fix(S), x ∈ C. In addition, a mapping A : C → E∗ is
known as being
(i) monotone on C if ⟨Av −Ay, v − y⟩ ≥ 0, ∀v, y ∈ C;
(ii) pseudo-monotone if ⟨Ay, v − y⟩ ≥ 0 ⇒ ⟨Av, v − y⟩ ≥ 0, ∀v, y ∈ C;
(iii) L-Lipschitz continuous if ∃L > 0 s.t. ∥Av −Ay∥ ≤ L∥v − y∥,∀v, y ∈ C;
(iv) weakly sequentially continuous if ∀{tn} ⊂ C, the relation holds: tn ⇀ t⇒ Atn ⇀ At.

Lemma 2.2 ([11]). Let r > 0 be a constant and suppose that f : E → R is a uniformly
convex function on bounded subsets of a Banach space E. Then

f(

n∑
k=1

αktk) ≤
n∑

k=1

αkf(tk)− αiαjρr(∥ti − tj∥),

for all i, j ∈ {1, 2, ..., n}, {tk}nk=1 ⊂ B(0, r) and {αk}nk=1 ⊂ (0, 1) with
∑n

k=1 αk = 1, where
ρr is the gauge of uniform convexity of f .

Lemma 2.3 ([14]). Let E1 and E2 be two Banach spaces. Suppose that A : E1 → E2 is
uniformly continuous on bounded subsets of E1 and D is a bounded subset of E1. Then
A(D) is bounded.

Lemma 2.4 ([7]). Let ∅ ≠ C ⊂ E with C being closed and convex in a Banach space E and
suppose A : C → E∗ is pseudo-monotone and continuous. Then t† ∈ C is a solution to the
VIP ⟨At†, t− t†⟩ ≥ 0, ∀t ∈ C, if and only if ⟨At, t− t†⟩ ≥ 0, ∀t ∈ C.

Lemma 2.5. Let 2 ≤ p < ∞ and suppose that E is a smooth and p-uniformly convex
Banach space with the weakly sequentially continuous duality mapping Jp

E. Let {tn} ⊂ E
and ∅ ≠ Ω ⊂ E. If {Dfp(z, tn)} converges for each z ∈ Ω, and ωw(tn) ⊂ Ω. Then {tn}
converges weakly to a point in Ω.

Proof. First, we have τ∥z − tn∥p ≤ Dfp(z, tn), ∀z ∈ Ω by (2). Hence we know that {tn}
is bounded. So, from the reflexivity of E we get ωw(tn) ̸= ∅. Next let us show the weak
convergence of {tn} to a point in Ω. Indeed, let t̄, t̂ ∈ ωw(tn) with t̄ ̸= t̂. Then, ∃{tnk

} ⊂
{tn} and ∃{tmk

} ⊂ {tn} s.t. tnk
⇀ t̄ and tmk

⇀ t̂. By the weakly sequential continuity
of Jp

E one obtains that Jp
E(tnk

) ⇀ Jp
E t̄ and Jp

E(tmk
) ⇀ Jp

E t̂. It is readily known that
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Dfp(t̄, t̂) +Dfp(t̂, tn) = Dfp(t̄, tn)− ⟨Jp
E t̂− Jp

Etn, t̄− t̂⟩. So, utilizing the convergence of the

sequences {Dfp(t̄, tn)} and {Dfp(t̂, tn)}, we deduce that

−⟨Jp
E t̂− Jp

E t̄, t̄− t̂⟩ = lim
n→∞

[Dfp(t̄, t̂) +Dfp(t̂, tn)−Dfp(t̄, tn)]

= lim
k→∞

[−⟨Jp
E t̂− Jp

Etmk
, t̄− t̂⟩]

= −⟨Jp
E t̂− Jp

E t̂, t̄− t̂⟩ = 0,

which hence yields ⟨Jp
E t̄ − Jp

E t̂, t̄ − t̂⟩ = 0. From (2) we get 0 < τ∥t̄ − t̂∥p ≤ Dfp(t̄, t̂) ≤
⟨Jp

E t̄−J
p
E t̂, t̄− t̂⟩ = 0. This yields a contradiction. Accordingly, we get the weak convergence

of {tn} to a point in Ω. □

Lemma 2.6 ([13]). Let ∅ ≠ C ⊂ E with C being closed and convex in a Banach space E.
Suppose that K := {x ∈ C : h(x) ≤ 0} where h is a real-valued function on E. If K ̸= ∅ and h
is Lipschitz continuous on C with modulus θ > 0, then θdist(x,K) ≥ max{h(x), 0}, ∀x ∈ C,
where dist(x,K) stands for the distance of x to K.

Lemma 2.7 ([20]). Let {Γn} be a sequence of real numbers that does not decrease at infinity
in the sense that, ∃{Γnk

} ⊂ {Γn} s.t. Γnk
< Γnk+1, ∀k ≥ 1. Let the sequence {φ(n)}n≥n0

of integers be defined as φ(n) = max{k ≤ n : Γk < Γk+1}, with integer n0 ≥ 1 satisfying
{k ≤ n0 : Γk < Γk+1} ≠ ∅. Then, (i) φ(n0) ≤ φ(n0 + 1) ≤ · · · and φ(n) → ∞ and (ii)
Γφ(n) ≤ Γφ(n)+1 and Γn ≤ Γφ(n)+1, ∀n ≥ n0.

Lemma 2.8 ([33]). Let {an} ⊂ [0,∞) s.t. an+1 ≤ (1 − νn)an + νncn,∀n ≥ 1, where
{νn} and {cn} both are real sequences, s.t. (i) {νn} ⊂ [0, 1] and

∑∞
n=1 νn = ∞, and (ii)

lim supn→∞ cn ≤ 0 or
∑∞

n=1 |νncn| <∞. Then limn→∞ an = 0.

Lemma 2.9 ([21]). Let {an}, {bn} and {µn} be sequences of nonnegative real numbers s.t.
an+1 ≤ (1 + µn)an + bn ∀n ≥ 1. If

∑∞
n=1 µn < ∞ and

∑∞
n=1 bn < ∞, then limn→∞ an

exists.

3. Main results

Let E be a p(2 ≤ p <∞)-uniformly convex and uniformly smooth Banach space. Let
C be a nonempty closed convex subset of E. We are now in a position to state and analyze
our iterative algorithms for approximating a common solution of the two pseudomonotone
VIPs and the CFPP of Bregman relatively asymptotically nonexpansive mapping and finitely
many Bregman relatively nonexpansive mappings in E. Assume that the following conditions
hold:

(C1): S : C → C is a uniformly continuous and Bregman relatively asymptotically nonex-
pansive mapping with a sequence {θn}.

(C2): Si : C → C is a uniformly continuous and Bregman relatively nonexpansive mapping
for i = 1, ..., N .

(C3): For i = 1, 2, Ai : E → E∗ is uniformly continuous and pseudomonotone on C, s.t.
∥Ait

†∥ ≤ lim infn→∞ ∥Aitn∥ ∀{tn} ⊂ C with tn ⇀ t†.

(C4): S0 := S and Ω := (
⋂2

i=1 VI(C,Ai)) ∩ (
⋂N

i=0 Fix(Si)) ̸= ∅.

Algorithm 3.1. Given x0, x1 ∈ C arbitrarily and let ϵ > 0, µi > 0, λi ∈ (0, 1
µi
), li ∈ (0, 1)

for i = 1, 2. Choose {αn}, {βn} ⊂ (0, 1) and {ℓn} ⊂ (0,∞) s.t. lim infn→∞ αn(1− αn) > 0,
lim infn→∞ βn(1− βn) > 0 and

∑∞
n=1 ℓn <∞. Moreover, assume

∑∞
n=1 θn <∞, and given

the iterates xn−1 and xn (n ≥ 1), choose ϵn s.t. 0 ≤ ϵn ≤ ϵn, where

ϵn =

min{ϵ, ℓn
∥Jp

Exn − Jp
E(xn + Snxn − Snxn−1)∥

}, if Snxn ̸= Snxn−1,

ϵ, otherwise.
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Iterative steps: Calculate xn+1 as follows:
Step 1. Calculate gn = Jq

E∗((1−ϵn)Jp
Exn+ϵnJ

p
E(xn+Snxn−Snxn−1)), sn = Jq

E∗(βnJ
p
ESnxn+

(1 − βn)J
p
Egn), yn = ΠC(J

q
E∗(J

p
Esn − λ1A1sn)), eλ1

(sn) := sn − yn and tn = sn −
τneλ1

(sn), where τn := lkn
1 and kn is the smallest nonnegative integer k satisfying

⟨A1sn −A1(sn − lk1eλ1
(sn)), sn − yn⟩ ≤

µ1

2
Dfp(sn, yn). (8)

Step 2. Calculate vn = ΠCn∩Qn(sn), where Qn := {y ∈ C : Dfp(y, gn) ≤ Dfp(y, xn)+ϵn⟨J
p
Exn−

Jp
E(xn + Snxn − Snxn−1), y + Snxn−1 − Snxn − xn⟩}, Cn := {y ∈ C : hn(y) ≤ 0} and

hn(y) = ⟨A1tn, y − sn⟩+
τn
2λ1

Dfp(sn, yn). (9)

Step 3. Calculate ȳn = ΠC(J
q
E∗(J

p
Evn −λ2A2vn)), eλ2

(vn) := vn − ȳn and t̄n = vn − τ̄neλ2
(vn),

where τ̄n := ljn2 and jn is the smallest nonnegative integer j satisfying

⟨A2vn −A2(vn − lj2eλ2
(vn)), vn − ȳn⟩ ≤

µ2

2
Dfp(vn, ȳn). (10)

Step 4. Calculate wn = Jq
E∗(αnJ

p
Evn + (1 − αn)J

p
E(S

nvn)) and xn+1 = ΠC̄n∩Q̄n
(vn), where

Q̄n := {y ∈ C : Dfp(y, wn) ≤ (1 + θn)Dfp(y, vn)}, C̄n := {y ∈ C : h̄n(y) ≤ 0} and

h̄n(y) = ⟨A2t̄n, y − vn⟩+
τ̄n
2λ2

Dfp(vn, ȳn). (11)

Set n := n+ 1 and go to Step 1.

Lemma 3.1. Suppose that {xn} is the sequence constructed in Algorithm 3.1. Then the
following hold: 1

λ1
Dfp(sn, yn) ≤ ⟨A1sn, eλ1(sn)⟩ and 1

λ2
Dfp(vn, ȳn) ≤ ⟨A2vn, eλ2(vn)⟩.

Proof. Note that the former inequality is similar to the latter. So it suffices to show that
the latter holds. In fact, using the definition of ȳn and properties of ΠC , one has

0 ≥ ⟨Jp
Evn − λ2A2vn − Jp

E ȳn, y − ȳn⟩, ∀y ∈ C.

Setting y = vn in the last inequality, from (2) we get

λ2⟨A2vn, vn − ȳn⟩ ≥ ⟨Jp
Evn − Jp

E ȳn, vn − ȳn⟩ ≥ Dfp(vn, ȳn),

which completes the proof. □

Lemma 3.2. The Armijo-type search rules (8), (10) and the sequence {xn} constructed in
Algorithm 3.1 are well defined.

Proof. Note that the rule (8) is similar to the one (10). So it suffices to show that the latter
is valid. Using the uniform continuity of A2 on C, from l2 ∈ (0, 1) one gets limj→∞⟨A2vn −
A2(vn − lj2eλ2

(vn)), eλ2
(vn)⟩ = 0. In the case of eλ2

(vn) = 0, it is explicit that jn = 0. In
the case of eλ2(vn) ̸= 0, we obtain that ∃jn ≥ 0 s.t. (10) holds.

It is not difficult to verify that for each n ≥ 1, C̄n and Q̄n are convex and closed.

Let us show that Ω ⊂ C̄n ∩ Q̄n. Take a fixed z ∈ Ω = (
⋂2

i=1 VI(C,Ai)) ∩ (
⋂N

i=0 Fix(Si))
arbitrarily. Using Lemma 2.2 and the Bregman relatively asymptotical nonexpansivity of
S, we get

Dfp(z, wn) ≤ αnDfp(z, vn) + (1− αn)Dfp(z, S
nvn)− αn(1− αn)ρ

∗
bvn

∥JP
E vn − JP

ES
nvn∥

≤ (1 + θn)Dfp(z, vn)− αn(1− αn)ρ
∗
bvn

∥JP
E vn − JP

ES
nvn∥

≤ (1 + θn)Dfp(z, vn),
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which hence leads to z ∈ Q̄n. Meantime, from Lemma 2.4, we get ⟨A2t̄n, t̄n − z⟩ ≥ 0. Thus,

h̄n(z) = −⟨A2t̄n, vn − t̄n⟩ − ⟨A2t̄n, t̄n − z⟩+ τ̄n
2λ2

Dfp(vn, ȳn)

≤ −τ̄n⟨A2t̄n, eλ2
(vn)⟩+

τ̄n
2λ2

Dfp(vn, ȳn).
(12)

So it follows from (10) that µ2

2 Dfp(vn, ȳn) ≥ ⟨A2vn − A2t̄n, eλ2
(vn)⟩. By Lemma 3.1, we

have

(
1

λ2
− µ2

2
)Dfp(vn, ȳn) ≤ ⟨A2vn, eλ2(vn)⟩ −

µ2

2
Dfp(vn, ȳn) ≤ ⟨A2t̄n, eλ2(vn)⟩,

which together with (12), leads to h̄n(z) ≤ − τ̄n
2 ( 1

λ2
− µ2)Dfp(vn, ȳn) ≤ 0. Therefore, Ω ⊂

C̄n ∩ Q̄n. As a result, the sequence {xn} is well defined. □

Lemma 3.3. Suppose that {yn} and {ȳn} are the sequences generated by Algorithm 3.1. If
limn→∞ ∥sn − yn∥ = 0 and limn→∞ ∥vn − ȳn∥ = 0, then ωw(sn) ⊂ VI(C,A1) and ωw(vn) ⊂
VI(C,A2).

Proof. Note that the former inclusion is similar to the latter. So it suffices to show that
the latter is valid. In fact, take a fixed z ∈ ωw(vn) arbitrarily. Then, ∃{vnk

} ⊂ {vn}, s.t.
vnk

⇀ z and limn→∞ ∥vnk
− ȳnk

∥ = 0. Hence, it is known that ȳnk
⇀ z. Since C is both

closed and convex, from {ȳn} ⊂ C and ȳnk
⇀ z we get z ∈ C.

Next, we deal with two aspects. If A2z = 0, then z ∈ VI(C,A2) because ⟨A2z, y−z⟩ ≥
0, ∀y ∈ C. If A2z ̸= 0, using the assumption on A2, instead of the weakly sequential
continuity of A2, we get 0 < ∥A2z∥ ≤ lim infk→∞ ∥A2vnk

∥. So, we might assume that
∥A2vnk

∥ ≠ 0 ∀k ≥ 1. From (3), we get ⟨Jp
Evnk

−λ2A2vnk
−Jp

E ȳnk
, y− ȳnk

⟩ ≤ 0,∀y ∈ C and
hence

1

λ2
⟨Jp

Evnk
− Jp

E ȳnk
, y − ȳnk

⟩+ ⟨A2vnk
, ȳnk

− vnk
⟩ ≤ ⟨A2vnk

, y − vnk
⟩, ∀y ∈ C. (13)

According to the uniform continuity of A2, one knows that {A2vnk
} is bounded by Lemma

2.3. Note that {ȳnk
} is bounded as well. So, using the uniform continuity of Jp

E on bounded
subsets of E, from (13) we have

lim inf
k→∞

⟨A2vnk
, y − vnk

⟩ ≥ 0, ∀y ∈ C. (14)

To show that z ∈ VI(C,A2), we now select a sequence {κk} ⊂ (0, 1) s.t. κk ↓ 0 as k → ∞.
For each k ≥ 1, we denote by mk the smallest positive integer such that

⟨A2vnj
, y − vnj

⟩+ κk ≥ 0, ∀j ≥ mk. (15)

Because {κk} is decreasing, it is easily known that {mk} is increasing. For convenience,
we still denote {A2vnmk

} by {A2vmk
}. Note that A2vmk

̸= 0 ∀k ≥ 1 (due to {A2vmk
} ⊂

{A2vnk
}). Then, putting ḡmk

=
A2vmk

∥A2vmk
∥

q
q−1

, one gets ⟨A2vmk
, Jq

E∗ ḡmk
⟩ = 1, ∀k ≥ 1. In

fact, it is evident that ⟨A2vmk
, Jq

E∗ ḡmk
⟩ = ( 1

∥A2vmk
∥

q
q−1

)q−1∥A2vmk
∥q = 1, ∀k ≥ 1. So, by

(15) one has ⟨A2vmk
, y+κkJ

q
E∗ ḡmk

−vmk
⟩ ≥ 0, ∀k ≥ 1. Again from the pseudomonotonicity

of A2 one has

⟨A2(y + κkJ
q
E∗ ḡmk

), y + κkJ
q
E∗ ḡmk

− vmk
⟩ ≥ 0, ∀y ∈ C. (16)

Let us show that limk→∞ κkJ
q
E∗ ḡmk

= 0. In fact, because {vmk
} ⊂ {vnk

} and κk ↓ 0 as k →
∞, it follows that 0 ≤ lim supk→∞ ∥κkJq

E∗ ḡmk
∥ = lim supk→∞

κk

∥A2vmk
∥ ≤ lim supk→∞ κk

lim infk→∞ ∥A2vnk
∥ =

0. Hence one gets κkJ
q
E∗ ḡmk

→ 0 as k → ∞. Thus, taking the limit as k → ∞ in
(3.9), by condition (C3) we have ⟨A2y, y − z⟩ ≥ 0, ∀y ∈ C. By Lemma 2.4 one obtains
z ∈ VI(C,A2). □



Variational inequalities and fixed point 55

Lemma 3.4. Let {yn} and {ȳn} be the sequences generated by Algorithm 3.1. Then, (i)
limn→∞ τnDfp(sn, yn) = 0 ⇒ limn→∞Dfp(sn, yn) = 0 and (ii) limn→∞ τ̄nDfp(vn, ȳn) =
0 ⇒ limn→∞Dfp(vn, ȳn) = 0.

Proof. Note that the claim (i) is similar to the one (ii). So it suffices to show that the second
is valid. To verify the second, we discuss two cases. In case lim infn→∞ τ̄n > 0, we might
assume that ∃τ̄ > 0 s.t. τ̄n ≥ τ̄ > 0, ∀n ≥ 1, which immediately leads to

Dfp(vn, ȳn) =
1

τ̄n
τ̄nDfp(vn, ȳn) ≤

1

τ̄
· τ̄nDfp(vn, ȳn). (17)

This together with limn→∞ τ̄nDfp(vn, ȳn) = 0, arrives at limn→∞Dfp(vn, ȳn) = 0.
In case lim infn→∞ τ̄n = 0, we assume that lim supn→∞Dfp(vn, ȳn) = ā > 0. Then we

deduce that ∃{mj} ⊂ {n} s.t. limj→∞ τ̄mj = 0 and limj→∞Dfp(vmj , ȳmj ) = ā > 0. We

define t̂mj = 1
l2
τ̄mj

ȳmj
+ (1 − 1

l2
τ̄mj

)vmj
, ∀j ≥ 1. Noticing limj→∞ τ̄mj

Dfp(vmj
, ȳmj

) = 0,

From (2) we get limj→∞ τ̄mj∥vmj − ȳmj∥p = 0 and hence

lim
j→∞

∥t̂mj − vmj∥p = lim
j→∞

τ̄p−1
mj

lp2
· τ̄mj∥vmj − ȳmj∥p = 0. (18)

Because A2 is uniformly continuous on bounded subsets of C, we obtain

lim
j→∞

∥A2vmj
−A2t̂mj

∥ = 0. (19)

From the step size rule (10) and the definition of t̂mj
, it follows that

⟨A2vmj
−A2t̂mj

, vmj
− ȳmj

⟩ > µ2

2
Dfp(vmj

, ȳmj
). (20)

Now, taking the limit as j → ∞, from (19) we have limj→∞Dfp(vmj
, ȳmj

) = 0. This arrives
at a contradiction. Therefore, limn→∞Dfp(vn, ȳn) = 0. □

Now, we are ready to show the weak convergence theorem.

Theorem 3.1. Let E be a p-uniformly convex and uniformly smooth Banach space with
the weakly sequentially continuous duality mapping Jp

E. If {xn} is the sequence generated by
Algorithm 3.1, then xn ⇀ z ∈ Ω ⇔ supn≥0 ∥xn∥ <∞ provided Sn+1vn − Snvn → 0.

Proof. Note that that the necessity of Theorem 3.1 is valid. So it suffices to show that the
sufficiency is valid. Assume that supn≥0 ∥xn∥ < ∞. Take a fixed z ∈ Ω arbitrarily. It is

clear that Snxn ̸= Snxn−1 ⇔ Jp
Exn ̸= Jp

E(xn + Snxn − Snxn−1). Using the definition of
ϵn, we get ϵn∥Jp

Exn − Jp
E(xn + Snxn − Snxn−1)∥ ≤ ℓn, ∀n ≥ 1. From (2), (7) and the three

point identity of Dfp we get

Dfp(z, gn) ≤ (1− ϵn)Dfp(z, xn) + ϵnDfp(z, xn + Snxn − Snxn−1)

≤ Dfp(z, xn) + ϵn⟨Jp
Exn − Jp

E(xn + Snxn − Snxn−1), z + Snxn−1 − Snxn − xn⟩
≤ Dfp(z, xn) + ℓnM,

where supn≥1 ∥z + Snxn−1 − Snxn − xn∥ ≤M for some M > 0. By Lemma 2.2 we have

Dfp(z, sn) = Vfp(z, βnJ
p
ESnxn + (1− βn)J

p
Egn)

≤ 1

p
∥z∥p − βn⟨Jp

ESnxn, z⟩ − (1− βn)⟨Jp
Egn, z⟩+

βn
q
∥Jp

ESnxn∥q

+
(1− βn)

q
∥Jp

Egn∥
q − βn(1− βn)ρ

∗
b∥J

p
ESnxn − Jp

Egn∥

= βnDfp(z, Snxn) + (1− βn)Dfp(z, gn)− βn(1− βn)ρ
∗
b∥J

p
ESnxn − Jp

Egn∥
≤ Dfp(z, xn) + ℓnM − βn(1− βn)ρ

∗
b∥J

p
ESnxn − Jp

Egn∥.
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Noticing vn = ΠCnsn, by (2) and (4) we get

Dfp(z, vn) ≤ Dfp(z, sn)−Dfp(vn, sn)

≤ Dfp(z, sn)− τ [dist(Cn, sn)]
p.

Because xn+1 = ΠC̄n∩Q̄n
vn, by (2) and (4) we have

Dfp(z, xn+1) ≤ Dfp(z, vn)−Dfp(xn+1, vn)

≤ Dfp(z, vn)− τ∥PC̄n
vn − vn∥p

= Dfp(z, vn)− τ [dist(C̄n, vn)]
p.

Combining (20) and the last two inequalities, we obtain

Dfp(z, xn+1) ≤ Dfp(z, vn)−Dfp(xn+1, vn)

≤ Dfp(z, xn) + ℓnM − βn(1− βn)ρ
∗
b∥J

p
ESnxn − Jp

Egn∥
− τ [dist(Cn, sn)]

p − τ [dist(C̄n, vn)]
p,

(21)

which hence leads to Dfp(z, xn+1) ≤ Dfp(z, xn) + ℓnM. Since
∑∞

n=1 ℓn < ∞, by Lemma
2.9 we deduce that limn→∞Dfp(z, xn) exists. In addition, by the boundedness of {xn},
we conclude that {gn}, {sn}, {vn}, {wn}, {yn}, {ȳn}, {tn}, {t̄n}, {Snxn} and {Snvn} are also
bounded. From (21) we obtain

Dfp(vn, sn) +Dfp(xn+1, vn) ≤ Dfp(z, xn) + ℓnM − βn(1− βn)ρ
∗
b∥J

p
ESnxn − Jp

Egn∥
−Dfp(z, xn+1),

which immediately yields

Dfp(vn, sn) +Dfp(xn+1, vn) + βn(1− βn)ρ
∗
b∥J

p
ESnxn − Jp

Egn∥
≤ Dfp(z, xn)−Dfp(z, xn+1) + ℓnM.

Since limn→∞ ℓn = 0, lim infn→∞ βn(1 − βn) > 0 and limn→∞Dfp(z, xn) exists, it fol-
lows that limn→∞Dfp(vn, sn) = 0, limn→∞Dfp(xn+1, vn) = 0, and limn→∞ ρ∗b∥J

p
ESnxn −

Jp
Egn∥ = 0, which hence yields limn→∞ ∥Jp

ESnxn−Jp
Egn∥ = 0. From sn = Jq

E∗(βnJ
p
ESnxn+

(1 − βn)J
p
Egn), it is readily known that limn→∞ ∥Jp

Esn − Jp
ESnxn∥ = 0. Noticing gn =

Jq
E∗((1 − ϵn)J

p
Exn + ϵnJ

p
E(xn + Snxn − Snxn−1)), we obtain from limn→∞ ℓn = 0 and the

definition of ϵn that

∥Jp
Egn − Jp

Exn∥ = ϵn∥Jp
E(xn + Snxn − Snxn−1)− Jp

Exn∥ ≤ ℓn → 0 (n→ ∞).

Hence, using (2) and uniform continuity of Jq
E∗ on bounded subsets of E∗, we conclude that

limn→∞ ∥gn − xn∥ = 0 and

lim
n→∞

∥vn − sn∥ = lim
n→∞

∥xn+1 − vn∥ = lim
n→∞

∥xn − Snxn∥ = lim
n→∞

∥sn − xn∥ = 0. (22)

Since {xn} is bounded and E is reflexive, we know that ωw(xn) ̸= ∅. In what follows, we
claim that ωw(xn) ⊂ Ω. Take a fixed z ∈ ωw(xn) arbitrarily. Then, ∃{xnk

} ⊂ {xn} s.t.
xnk

⇀ z. From (22) one gets vnk
⇀ z. Since {A1tn} is bounded, we know that ∃L1 > 0 s.t.

∥A1tn∥ ≤ L1. This ensures that for all x, y ∈ Cn,

|hn(x)− hn(y)| = |⟨A1tn, x− y⟩| ≤ ∥A1tn∥∥x− y∥ ≤ L1∥x− y∥,
which implies that hn(y) is L1-Lipschitz continuous on Cn. Using Lemma 2.6, we get

dist(Cn, sn) ≥
1

L1
hn(sn) =

τn
2λ1L1

Dfp(sn, yn). (23)

Noticing xn+1 ∈ Q̄n, from the definition of Qn and (21), we have

Dfp(xn+1, wn) ≤ (1 + θn)[Dfp(z, vn)−Dfp(z, xn+1)]

≤ (1 + θn)[Dfp(z, xn)−Dfp(z, xn+1) + ℓnM ].
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It follows that limn→∞ ∥xn+1 − wn∥ = 0. This together with (22), arrives at

lim
n→∞

∥vn − wn∥ = 0. (24)

On the other hand, using Lemma 2.2, we get

Dfp(z, wn) = Vfp(z, αnJ
p
Evn + (1− αn)J

p
ES

nvn)

≤ 1

p
∥z∥p − αn⟨Jp

Evn, z⟩ − (1− αn)⟨Jp
ES

nvn, z⟩+
αn

q
∥Jp

Evn∥
q

+
(1− αn)

q
∥Jp

ES
nvn∥q − αn(1− αn)ρ

∗
b∥J

p
Evn − Jp

ES
nvn∥

≤ αnDfp(z, vn) + (1− αn)(1 + θn)Dfp(z, vn)− αn(1− αn)ρ
∗
b∥J

p
Evn − Jp

ES
nvn∥

≤ (1 + θn)Dfp(z, vn)− αn(1− αn)ρ
∗
b∥J

p
Evn − Jp

ES
nvn∥.

Therefore,

αn(1− αn)ρ
∗
b∥J

p
Evn − Jp

ES
nvn∥ ≤ (1 + θn)Dfp(z, vn)−Dfp(z, wn)

≤ ⟨Jp
Ewn − Jp

Evn, z − vn⟩+ θnDfp(z, vn).

Taking the limit in the last inequality as n → ∞, and using uniform continuity of Jp
E on

bounded subsets of E, (24) and lim infn→∞ αn(1 − αn) > 0, we get limn→∞ ρ∗b∥J
p
Evn −

Jp
ES

nvn∥ = 0 and hence limn→∞ ∥Jp
Evn − Jp

ES
nvn∥ = 0. This together with uniform conti-

nuity of Jq
E∗ on bounded subsets of E∗ implies that

lim
n→∞

∥vn − Snvn∥ = 0. (25)

Now let us show that z ∈
⋂2

i=1 VI(C,Ai). Since {A2t̄n} is bounded, we know that
∃L2 > 0 s.t. ∥A2t̄n∥ ≤ L2. This ensures that for all x, y ∈ C̄n,

|h̄n(x)− h̄n(y)| = |⟨A2t̄n, x− y⟩| ≤ ∥A2t̄n∥∥x− y∥ ≤ L2∥x− y∥,

which guarantees that h̄n(y) is L2-Lipschitz continuous on C̄n. By Lemma 2.6, we get

dist(C̄n, vn) ≥
1

L2
h̄n(vn) =

τ̄n
2λ2L2

Dfp(vn, ȳn). (26)

Combining (21), (23) and (26), we have

Dfp(z, xn)−Dfp(z, xn+1) + ℓnM ≥ Dfp(z, sn)−Dfp(z, xn+1)

≥ τ [
τn

2λ1L1
Dfp(sn, yn)]

p + τ [
τ̄n

2λ2L2
Dfp(vn, ȳn)]

p.
(27)

Thus, limn→∞ τnDfp(sn, yn) = limn→∞ τ̄nDfp(vn, ȳn) = 0. By Lemma 3.4, we get limn→∞ ∥sn−
yn∥ = limn→∞ ∥vn − ȳn∥ = 0. Besides, combining (22) and xnk

⇀ z guarantees that
snk

⇀ z and vnk
⇀ z. By Lemma 3.3 we deduce that z ∈ ωw(sn) ⊂ VI(C,A1) and

z ∈ ωw(vn) ⊂ VI(C,A2). Consequently,

z ∈
2⋂

i=1

VI(C,Ai).

Next we claim that z ∈
⋂N

i=0 Fix(Si) with S0 := S. In fact, by (22) we immediately
get ∥xn+1−xn∥ ≤ ∥xn+1− vn∥+ ∥vn− sn∥+ ∥sn−xn∥ → 0 (n→ ∞). We first claim that
limn→∞ ∥vn − Svn∥ = 0 and limn→∞ ∥xn − Sixn∥ = 0 ∀i ∈ {1, 2, ..., N}. We first show that
limn→∞ ∥xn − Srxn∥ = 0 for r = 1, ..., N . Actually, according to the definition of Sn, we
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obtain that Sn ∈ {S1, ..., SN} ∀n ≥ 1, which hence leads to Sn+i ∈ {S1, ..., SN} ∀n ≥ 1, i =
1, · · · , N . Note that for i = 1, · · · , N ,

∥xn − Sn+ixn∥ ≤ ∥xn − xn+i∥+ ∥xn+i − Sn+ixn+i∥+ ∥Sn+ixn+i − Sn+ixn∥

≤ ∥xn − xn+i∥+ ∥xn+i − Sn+ixn+i∥+
N∑
j=1

∥Sjxn+i − Sjxn∥.

Noticing (22) and the uniform continuity of each Sj on C, we deduce that xn+i−Sn+ixn+i →
0 and Sjxn+i − Sjxn → 0 for i, j = 1, · · · , N . Thus, we get limn→∞ ∥xn − Sn+ixn∥ = 0 for
i = 1, · · · , N . This immediately implies that limn→∞ ∥xn − Srxn∥ = 0 for r = 1, · · · , N.
So it follows from xnk

⇀ z that z ∈ F̂ix(Sr) = Fix(Sr) for r = 1, · · · , N . Therefore,

z ∈
⋂N

i=1 Fix(Si). In addition, observe also that

∥vn − Svn∥ ≤ ∥vn − Snvn∥+ ∥Snvn − Sn+1vn∥+ ∥Sn+1vn − Svn∥. (28)

Noticing the uniform continuity of S on C, we conclude from (25) that Svn − Sn+1vn → 0.
Thus, using the assumption Snvn −Sn+1vn → 0, from (28) we get limn→∞ ∥vn −Svn∥ = 0.

Again from (22) and xnk
⇀ z, one has that vnk

⇀ z. Hence, we obtain z ∈ F̂ix(S) = Fix(S).

Consequently, z ∈
⋂N

i=0 Fix(Si), and hence z ∈ Ω = (
⋂2

i=1 VI(C,Ai))∩ (
⋂N

i=0 Fix(Si)). This
means that ωw(xn) ⊂ Ω. As a result, applying Lemma 2.5 we conclude that xn ⇀ z. This
completes the proof. □

4. Conclusion

The projection method is a powerful tool for solving VIP in Hilbert spaces. In this
paper, we investigate VIP in Banach spaces by using Bregman projection. We construct
an inertial Bregman extragradient-like algorithm with linesearch process for solving two
pseudomonotone variational inequalities and the common fixed point problem of a Bregman
relatively asymptotically nonexpansive mapping and finitely many Bregman relatively non-
expansive mappings in p-uniformly convex and uniformly smooth Banach spaces, which are
more general than Hilbert spaces. We demonstrate convergence analysis of the suggested
algorithm to a common solution of the considered problems under standard assumptions.
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[20] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and
nonstrictly convex minimization, Set-Valued Anal., 16(2008), 899-912.

[21] M. O. Osilike, S. C. Aniagbosor and B. G. Akuchu, Fixed points of asymptotically
demicontractive mappings in arbitrary Banach spaces, PanAm. Math. J., 12(2002),
77-88.

[22] D. Reem, S. Reich and A. De Pierro, Re-examination of Bregman functions and new
properties of their divergences, Optim., 68(2019), 279-348.

[23] S. Reich, A weak convergence theorem for the alternating method with Bregman dis-
tances. In: Theory and Applications of Nonlinear Operators, Marcel Dekker, New York,
pp. 313-318, 1996.

[24] S. Reich, D. V. Thong, Q. L. Dong, X. H. Li and V. T. Dung, New algorithms and
convergence theorems for solving variational inequalities with non-Lipschitz mappings,
Numer. Algorithms, 87(2021), 527-549.

[25] D. R. Sahu, A. Pitea and M. Verma, A new iteration technique for nonlinear operators
as concerns convex programming and feasibility problems, Numer. Algor., 83(2)(2020),
421-449.
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