U.P.B. Sci. Bull., Series A, Vol. 86, Iss. 4, 2024 ISSN 1223-7027

INERTIAL BREGMAN EXTRAGRADIENT-LIKE ALGORITHMS FOR
VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN
BANACH SPACES
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In this paper, we design an inertial Bregman extragradient-like algorithm with
linesearch process for solving two pseudomonotone variational inequalities (VIPs) and
the common fized point problem (CFPP) of a Bregman relatively asymptotically non-
expansive mapping and finitely many Bregman relatively nonerpansive mappings in p-
uniformly convexr and uniformly smooth Banach spaces, which are more general than
Hilbert spaces. Under mild conditions, we prove weak convergence of the suggested al-
gorithm to a common solution of two pseudomonotone VIPs and the CFPP.
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1. Introduction

Let C' be a nonempty, convex and closed subset of a real Hilbert space H. Let
A: H — H be an operator. Recall that the variational inequality problem (VIP) is to find
a point ¢t € C such that

(At,v—1t) >0, Vv e C. (1)

The solution set of the VIP is expressed as VI(C, A). The variational inequality problem
(VIP) has been and will continue to be one of the important problems in optimization
and nonlinear analysis. It contains, as special cases, such well-known problems in mathe-
matical programming as: systems of nonlinear equations, optimization problems, comple-
mentarity problems, fixed point problems and so on. Some related works, please refer to
[8-10, 12, 15, 18, 19, 25, 27-30, 32, 34-38, 42-44]. In the past few decades, the Korpelevich
extragradient rule ([16]) put forward in 1976 is one of the most popular approaches for ap-
proximating an element of VI(C, A). Korpelevich extragradient method and its variant have
been investigated extensively in the literature, see [2-6, 11, 14, 17, 24, 31, 39-41, 45]. Espe-
cially, Kraikaew and Saejung [17] proposed the Halpern subgradient extragradient algorithm
for solving the VIP. Thong and Hieu [31] put forth the inertial subgradient extragradient al-
gorithm for solving VIP. Ceng and Shang [5] introduced a hybrid inertial extragradient algo-
rithm with linesearch process for solving the VIP with Lipschitz continuous pseudomonotone
mapping A and the common fixed-point problem (CFPP) of asymptotically nonexpansive
mapping S and finitely many nonexpansive mappings {S;}X, in H. Reich et al. [24] put
forward two gradient-projection algorithms for solving the VIP for uniformly continuous
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pseudomonotone mapping. Eskandani et al. [11] proposed the hybrid projection rule with
line-search process for finding a common solution of the VIP and the FPP of S.

In this paper, we use the VIP and CFPP to represent a variational inequality prob-
lem and the common fixed point problem (CFPP) of a Bregman relatively asymptotically
nonexpansive mapping and finitely many Bregman relatively nonexpansive mappings in p-
uniformly convex and uniformly smooth Banach space E. We design an inertial Bregman
extragradient-like algorithm with linesearch process for solving the two pseudomonotone
VIPs and the CFPP in E. Under mild conditions, we prove weak convergence of the sug-
gested algorithm to a common solution of the two pseudomonotone VIPs and the CFPP.
Our results improve and extend the corresponding results announced by some others, e.g.,
Ceng and Shang [5], Eskandani et al. [11] and Reich et al. [24].

2. Preliminaries
Let (E,||-]|) be a real Banach space with the dual E*. Let p,q € (1, 00) and %—i—% =1.
The duality mapping J% : E — E* is defined by
Tp(t) = {y € B+ (,t) = ||t||” and ||| = [[t|"~"}, Vt € E.

Let f : E — R be a Gateaux differentiable convex function. The Bregman distance w.r.t. f
is formulated as D (¢, x) := f(t) — f(z) — (Vf(z),t — ), Vt,x € E. Note that

D¢(t,x) + Dy(x,y) = Dys(t,y) — (Vf(z) = Vf(y),t — ),
and
Dy, (t,x) = (=" = [|t[|")/q = {(J(z) — T(t), 1)

See [22] for more details on Bregman functions and distances.
In the smooth and p-uniformly convex Banach space E with 2 < p < 0o, there holds
the following relation between the metric and Bregman distance:

7|t —a||? < Dy, (t,2) < (Jp(t) — Jp(2),t — @), (2)
where 7 > 0 is some fixed number ([26]). From (2) it can be readily seen that for any
bounded sequence {t,,} C F, the following holds:

tn =t & Dy (tn,t) = 0, n — oo.

Let C' be a nonempty closed convex subset of reflexive, smooth and strictly convex
Banach space E. The Bregman projection of t € E onto C' w.r.t. f, is the unique element
et € Cs.t. Dy, (Ilgt,t) = mingec Dy, (x,t). Bregman projections can be characterized by
the following inequality:

<J§(t) — Jg(ﬂct),m - Hct> <0, Vx e C, (3)
which is equivalent to
Dfp(.r,Hct) —|—Dfp(HCt,t) < Dfp(x,t), Vr € C. (4)

In case p = 2, the duality mapping J% reduces to the normalized duality mapping and
is denoted by J. The function ¢ : E? — R is specified as ¢(t,z) = ||t|> — 2(Jz,t) +
|z||?, Vt,z € E, and ¢ (t) = argmingec ¢(x,t), ¥Vt € E. In terms of [11], the function
Vi, : E x E* — [0,00) associated with f, is specified below

Vi (6 8) = 17 /p — () + 7] /a, V(t,%) € B x E*. (5)
So, Vi, (t,t*) = Dy, (t, J§.(t*)) V(t,t*) € Ex E*. Moreover, by the subdifferential inequality,
we obtain

Vi, () 4+ (@, JE.(t7) —t) < Vi (t,t" + ), VteE, t',z" € E*. (6)
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In addition, Vy, is convex in the second variable. Thus one has

Dy, (2, J5. (> sidb(t:) <> Dy, (2,t:), V2 € E{t;}}—, C E, (7)

=1 =1
where {¢;}7-, C [0,1] and > ;¢ = 1.

Lemma 2.1 ([1]). Let E be a uniformly convex Banach space and {s,}, {x,} be two se-
quences in I such that the first one is bounded. Iflim, o Dy, (Tn,sn) = 0, thenlimy, o [|[2n—
sn|l = 0.

Let S : C — C be a mapping. Let Fix(S) indicate the fixed-point set of S. A
mapping S : C — C is referred to as being asymptotically nonexpansive if 3{6,,} C [0, 00)
s.t. limy, o0 0, = 0 and (0,, + 1)||t — v|| > ||S™t — S™v||, Vt,v € C, m > 1. In particular,
in the case of #,, = 0, V¥m > 1, S is called a nonexpansive mapping. A point y' € C is
referred to as an asymptotic fixed point of S if I{y,} C C s.t. y, — y' and (I — )y, — 0.
We denote by ﬁ(S ) the set of asymptotic fixed points of S. The terminology of asymptotic
fixed points was invented in Reich [23]. A mapping S : C — C' is known as being Bregman
relatively asymptotically nonexpansive w.r.t. f, if Fix(S) = ﬁ(S) # (), and 3{6,,} C [0, 0)
s.t. limp, 500 0, = 0 and (0, + 1)Dy, (y,z) > Dy, (y,S™x), Yy € Fix(S),z € C, n > 1. In
particular, if ,, = 0 Vn > 1, then S reduces to a Bregman relatively nonexpansive mapping
w.I.t. fp,1.e., S is said to be Bregman relatively nonexpansive w.r.t. f, if Fix(S) = ﬁ(S) =+
0 and Dy, (y,Sx) < Dy, (y,z), Yy € Fix(S),z € C. In addition, a mapping A : C' — E* is
known as being

(i) monotone on C if (Av — Ay,v —y) >0, Vu,y € C;
(ii) pseudo-monotone if (Ay,v —y) > 0= (Av,v —y) >0, Yv,y € C;
(iii) L-Lipschitz continuous if 3L > 0 s.t. ||Av — Ay|| < L|jv — y||, Vv, y € C;
(iv) weakly sequentially continuous if V{¢,} C C, the relation holds: ¢, — t = At, — At.

Lemma 2.2 ([11]). Let r > 0 be a constant and suppose that f : E — R is a uniformly
convez function on bounded subsets of a Banach space E. Then

FOantr) <Y anf(ty) — asap, ([t = t5])),
k=1 k=1

for alli,j € {1,2,..,n}, {tx}7_; C B(0,7) and {oy}}_; C (0,1) with >_;_, oy = 1, where
pr is the gauge of uniform convezity of f.

Lemma 2.3 ([14]). Let Ey and Es be two Banach spaces. Suppose that A : Ey — Ej is
uniformly continuous on bounded subsets of E1 and D is a bounded subset of Ey. Then
A(D) is bounded.

Lemma 2.4 ([7]). Let ) # C C E with C being closed and convex in a Banach space E and
suppose A : C — E* is pseudo-monotone and continuous. Then t' € C is a solution to the
VIP (AtT,t — 1) >0, Vt € C, if and only if (At,t —tt) >0, Vt € C.

Lemma 2.5. Let 2 < p < oo and suppose that E is a smooth and p-uniformly convex
Banach space with the weakly sequentially continuous duality mapping Jy,. Let {t,} C E
and O # Q C E. If {Dy,(2,t,)} converges for each z € Q, and wy(t,) C Q. Then {t,}
converges weakly to a point in €.

Proof. First, we have 7|z — t,||P < Dy, (2,t,), Vz € Q by (2). Hence we know that {¢,}
is bounded. So, from the reflexivity of E we get w.,(t,) # 0. Next let us show the weak
convergence of {t,} to a point in Q. Indeed, let £, € wy(t,) with £ # £. Then, 3{t,,, } C
{t,} and It} C {tn} st. t,, — t and t,,, — t. By the weakly sequential continuity
of J% one obtains that Jh(t,,) — Jht and Jh(t,,) — Jht. It is readily known that
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Dy, (t,t) + Dy, (t,t,) = Dy, (£, t,) — (Jot — Jht,, t —1). So, utilizing the convergence of the
sequences {Dy, (£,t,)} and {Dy, (£,t,)}, we deduce that

—(JRt— TRt t—1) = lim [Dy, (£, )+ Dy, (t,t,) — Dy, (T, t,)]
= 1 _(JPf_ gP F_ P
Jm [—(J5t = Jgtm,, T —1)]
= —(Jht — Jhi,t— 1) =0,

which hence yields (Jht — Jht,t — &) = 0. From (2) we get 0 < 7|/t — {|[? < Dy, (£,{) <
(Jot—Jht, t—1t) = 0. This yields a contradiction. Accordingly, we get the weak convergence
of {t,} to a point in . O

Lemma 2.6 ([13]). Let ) # C C E with C being closed and convex in a Banach space E.
Suppose that K := {x € C : h(x) < 0} where h is a real-valued function on E. If K # () and h
is Lipschitz continuous on C with modulus 6 > 0, then 6dist(z, K) > max{h(z),0}, Va € C,
where dist(z, K) stands for the distance of x to K.

Lemma 2.7 ([20]). Let {T',} be a sequence of real numbers that does not decrease at infinity
in the sense that, T, } C {T'w} s.t. Ty, < Ty,41, Vk > 1. Let the sequence {¢o(n)}n>n,
of integers be defined as p(n) = max{k < n : Ty < Tri1}, with integer ng > 1 satisfying
{k <mng:Tp <Tpi1} #0. Then, (i) o(ng) < p(no+1) < -+ and p(n) — oo and (ii)
ng(n) < 1_‘gp(n)+l and I'y, < ]-—‘gp(n)+1a Vn > ng.

Lemma 2.8 ([33]). Let {an} C [0,00) s.t. ant1 < (1 — vp)an + Vncn,¥n > 1, where
{vn} and {c,} both are real sequences, s.t. (i) {vn,} C [0,1] and > o, v, = 0o, and (ii)
limsup,, o ¢n <0 or Y 00 | |[Vney| < 0o. Then lim,_,o a,, = 0.

Lemma 2.9 ([21]). Let {an}, {bn} and {u,} be sequences of nonnegative real numbers s.t.
ant1 < (T4 pp)an + by Yo > 10 If 300 i < 00 and Y2 1 b, < oo, then lim, o ap
erists.

3. Main results

Let E be a p(2 < p < oo)-uniformly convex and uniformly smooth Banach space. Let
C' be a nonempty closed convex subset of . We are now in a position to state and analyze
our iterative algorithms for approximating a common solution of the two pseudomonotone
VIPs and the CFPP of Bregman relatively asymptotically nonexpansive mapping and finitely
many Bregman relatively nonexpansive mappings in E. Assume that the following conditions
hold:
(C1): S : C — C is a uniformly continuous and Bregman relatively asymptotically nonex-
pansive mapping with a sequence {6,,}.
(C2): S; : C — C is a uniformly continuous and Bregman relatively nonexpansive mapping
fori=1,...,N.
(C3): For i = 1,2, A; : E — E* is uniformly continuous and pseudomonotone on C, s.t.
|| Aitt]| < liminf, o || Aitn|l Y{t,} C C with ¢, — t.
(C4): Sp:= S and Q := (N7, VI(C, 4;)) N (NI, Fix(S;)) # 0.

Algorithm 3.1. Given zg,z1 € C arbitrarily and let e > 0, pu; >0, \; € (0, p%)’ l; €(0,1)
fori=1,2. Choose {an},{Bn} C (0,1) and {€,} C (0,00) s.t. liminf, o0 an(l — ) > 0,
liminf, o0 8,(1 = B,) >0 and Y_,° | £, < co. Moreover, assume Y -, 6, < 0o, and given
the iterates 1 and x, (n > 1), choose €, s.t. 0 < e, <&, where

Ly
min{e, s if Spn # SpTn_1,
e = M T T T o & Swn = Sy ) e 7 S
€, otherwise.
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Iterative steps: Calculate x, 1 as follows:
Step 1. Calculate g, = JE. (1= €,) J oty + € (20 + Snn — Snn-1)), $n = Jpu (BnJmSpxn +
(1- ﬁn)']ggn); Yn = HC(']Z?* (Jgsn — MA15,)), ex,(8n) = 8p — Y and t, = s, —
Tnex, (Sn), where T, := l]f" and k,, is the smallest nonnegative integer k satisfying

<A15n - Al(sn - l]fe)\l (Sn))7 Sn — yn> < %Dfp(snvyn) (8)

Step 2. Calculate v, = Ilg,nq, (Sn), where Qyn == {y € C : Dy, (y,9n) < Dy, (y, xn)+en(Jpan—
Jo(zn 4+ Snp — SpZn-1),y + Snn_1 — Spxn — xn)}, Cp :={y € C : hy(y) <0} and
Tn

= A —
b (y) < 1ln, Y 5n>+2)\1

Dfp(snayn)- 9)

Step 3. Calculate Gy, = I (Jf. (Jhvn — A2 Aovy,)), ex,(Vn) = vy — Yp and t,, = v, — Tnex, (vn),
where T, := 13" and j, is the smallest nonnegative integer j satisfying

<A2vn — Az (vy — l%.e)\,z (Un))v”n — Un) < %Dfp (VU Un)- (10)
Step 4. Calculate wy, = Jh.(anJpvn + (1 — an)Jp(S™0,)) and zpy1 = Ilg g, (vn), where

Qn = {y cC: Dfp(yawn) < (1 +en)ljfp(y7vn)}; én = {y cC: }_Ln(y) < 0} and

_ Tn

hn(?J) = <A2£n7y - Un> + Dfp ('Unvgn)' (11)
2o

Setn:=n+1 and go to Step 1.

Lemma 3.1. Suppose that {x,} is the sequence constructed in Algorithm 3.1. Then the
following hold: inp(smyn) < (A1sn, e, (sn)) and /\%Dfp (Uny Tn) < (A2up, ex,(Vn)).

Proof. Note that the former inequality is similar to the latter. So it suffices to show that
the latter holds. In fact, using the definition of 7, and properties of Il¢, one has

0> <ngn — A Asvy, — Jgﬂmy - gn>7 Vy eC.
Setting y = v,, in the last inequality, from (2) we get
)\2<A2vn7vn - yn> 2 <J§"Un - gynavn - yn> 2 Dfp(vn;gn)a

which completes the proof. O

Lemma 3.2. The Armijo-type search rules (8), (10) and the sequence {x,} constructed in
Algorithm 3.1 are well defined.

Proof. Note that the rule (8) is similar to the one (10). So it suffices to show that the latter
is valid. Using the uniform continuity of As on C, from Iy € (0,1) one gets lim;_, o (Av, —
Ag (v, — Bex, (Un)), exy(0n)) = 0. In the case of ey, (v,) = 0, it is explicit that j, = 0. In
the case of ey, (vy,) # 0, we obtain that 35, > 0 s.t. (10) holds.

It is not difficult to verify that for each n > 1, C, and @,, are convex and closed.
Let us show that @ € C, N Q,. Take a fixed z € Q = (N7, VI(C, 4;)) N (N, Fix(S;))
arbitrarily. Using Lemma 2.2 and the Bregman relatively asymptotical nonexpansivity of
S, we get

Dy, (z,wn) < anDy,(2,vn) + (1 — an) Dy, (2,5 vn) — an(l — an)py, | JEv, — JE S v,
< (1+ en)Dfp (z,0n) —an(1l — O‘n)pzvn ||J§Un - JgS"vnH
< (1 + en)Dfp (27’071)7
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which hence leads to z € Q,,. Meantime, from Lemma 2.4, we get (Agtp,tn — 2) > 0. Thus,
(%) = —~(Asfi, v — ) = (Agn, B — 2) + 52Dy, (vn, )

20y 7

_ (12)

Tn_

2o

So it follows from (10) that &2 Dy, (vn,Jn) > (Aovn — Aaty,ex,(vy)). By Lemma 3.1, we

have

< 77__7L<A2t7nae>\2(vn)> + Df,;(vnagn)'

L pe _ 2 _ -
(/\72 - 7)Dfp (vnayn) < <A2Um€>\2 (Un)> - EDfp('Unvyn) < <A2tnae>\2 ('Un)>7
which together with (12), leads to h,(z) < —%"(%2 — p2)Dy, (Un, Yn) < 0. Therefore, Q C
Cr N Qy. As a result, the sequence {x,} is well defined. O

Lemma 3.3. Suppose that {y,} and {§,} are the sequences generated by Algorithm 3.1. If
limy, o0 || — Ynll = 0 and limy, o0 ||vn — Unll = 0, then wy,(s,) C VI(C, A1) and wy,(vy,) C
VI(C, Ay).

Proof. Note that the former inclusion is similar to the latter. So it suffices to show that
the latter is valid. In fact, take a fixed z € wy,(vy,) arbitrarily. Then, 3{v,, } C {v,}, s.t.
Uy, — 2z and limy, o [|Un, — Jn, |l = 0. Hence, it is known that §,, — z. Since C is both
closed and convex, from {y,} C C and ,, — z we get z € C.
Next, we deal with two aspects. If Axz = 0, then z € VI(C, A3) because (Asz, y—z) >
0, Vy € C. If Ayz # 0, using the assumption on As, instead of the weakly sequential
continuity of Aa, we get 0 < ||A2z| < liminfg o0 [[A20n, || So, we might assume that
| Agvp, || # 0 Vk > 1. From (3), we get (Jovn, — AoAsvn, — Jobn,, Y — Jn,) < 0,Vy € C and
hence
1
A2
According to the uniform continuity of As, one knows that {Asv,, } is bounded by Lemma
2.3. Note that {g,, } is bounded as well. So, using the uniform continuity of .J%, on bounded
subsets of E, from (13) we have
liminf(A2v,,, ,y — vn,) >0, VyeC. (14)

k—o0

<J§'vnk - Jggnpy - gnk> + <A2'Un;€agnk - 'Unk> < <A2'Unk7y - 'Unk>7 VyeC. (13)

To show that z € VI(C, A3), we now select a sequence {xkx} C (0,1) s.t. kg | 0 as k — oo.
For each k > 1, we denote by my the smallest positive integer such that

(Aovn;, Yy — V) + Kk >0, V5 > my. (15)

Because {kj} is decreasing, it is easily known that {my} is increasing. For convenience,
we still denote {Azvn,, } by {A2vm, }. Note that Asvy,, # 0 Vk > 1 (due to {Azvy, } C

A20mi  ome gets (Ao, JEeGm,) = 1, V& > 1. In
Az |1

fact, it is evident that (Asvm, , S G, ) = (——————)7" | A2y, |9 = 1, Yk > 1. So, by

lA2vm, [4=T
(15) one has (Agvpm, , Y+ Kk J e Gmy — Umy,) > 0, Vk > 1. Again from the pseudomonotonicity
of As one has

{Asvp, }). Then, putting gn,, =

(As(y + Kk b G )s U + Kk e Gmy — Umy,) >0, Yy e C. (16)

Let us show that limy o0 ik Jfe Gm,, = 0. In fact, because {vy,, } C {vn, } and kg } 0 as k —
K limsupy,_, o Kk _
[A2vm, || = liminfy oo [[A2vn, | —

00, it follows that 0 < limsup,_, o ||£k s Gy || = limsupy,_, o
0. Hence one gets krJE.Gm, — 0 as k — oo. Thus, taking the limit as ¥ — oo in

(3.9), by condition (C3) we have (Asy,y — z) > 0, Yy € C. By Lemma 2.4 one obtains
2 € VI(C, As). O
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Lemma 3.4. Let {y,} and {§,} be the sequences generated by Algorithm 3.1. Then, (i)
limy, 00 7Dy, (SnsYn) = 0 = limp o0 Dy, (5n,yn) = 0 and (ii) limy, o 70 Dy, (Vn, Un) =
0 = lim, 00 Dy, (Vn,¥n) = 0.

Proof. Note that the claim (i) is similar to the one (ii). So it suffices to show that the second
is valid. To verify the second, we discuss two cases. In case liminf, ,., 7, > 0, we might
assume that 37 > 0 s.t. 7, > 7 > 0, Vn > 1, which immediately leads to

~ 1 B 1 _ _
Dfp(vmyn) = ;T"Dfp (Umyn) < 7 'Tanp (vnayn)~ (17)

This together with lim,, oo 7 Dy, (Un, ¥n) = 0, arrives at lim, oo Dy, (Vn, Jn) = 0.

In case liminf,, o 7, = 0, we assume that limsup,, ,., Dy, (vn,¥n) = @ > 0. Then we
deduce that 3{m;} C {n} s.t. limj 0 7n; =0 and limj o0 Dy, (Vm;, Jm;) = @ > 0. We
define t,,, = ii’mjymj +(1- i?mj)vmj, Vj > 1. Noticing lim;_cc Ty, Dy, (Vi Um;) = 0,
From (2) we get lim; o0 7o, [|Vm; — Um, ||P = 0 and hence

_ 7=l
: _ 1 i = m _
i fftm; = v, 7 = B == Fomy [0m; = G, |7 = 0. (18)

Because As is uniformly continuous on bounded subsets of C', we obtain

i || Agtm, — Asion]| = 0. (19)
j—o0
From the step size rule (10) and the definition of En?, it follows that

<A2Um‘7 - AQt/m\javmj - gm,‘> > %Dfp (vmj'?ng')' (20)

Now, taking the limit as j — oo, from (19) we have lim; ;oo Dy, (Vm;, ¥m,) = 0. This arrives
at a contradiction. Therefore, lim, o Dy, (Vn, ¥n) = 0. O

Now, we are ready to show the weak convergence theorem.

Theorem 3.1. Let E be a p-uniformly convex and uniformly smooth Banach space with
the weakly sequentially continuous duality mapping Jb. If {x,} is the sequence generated by
Algorithm 3.1, then x,, = z € Q & sup,,>q |lzn| < 0o provided S™ v, — S™v, — 0.

Proof. Note that that the necessity of Theorem 3.1 is valid. So it suffices to show that the
sufficiency is valid. Assume that sup,,>q [|7n| < co. Take a fixed z € Q arbitrarily. It is
clear that S,x, # Sptn_1 < Jhw, # Jo(x, + Spxn — Spwp—1). Using the definition of
€n, we get e, || Jhzy, — Jo(Tn + Spn — Span_1)|| < 4, Vn > 1. From (2), (7) and the three
point identity of Dy, we get
Dy, (2,9n) < (1 = €n) Dy, (2,20) + €n Dy, (2,20 + Sp®p — Spn_1)

< Dy (z,2n) + en(Jpxn — Jp(2n + Sn®n — Snn—1), 2 + SnTn_1 — Snln — Tn)

< Dfp(Z, xn) + 4, M,
where sup,,~1 ||z + SpTn_1 — SpTn — @pl| < M for some M > 0. By Lemma 2.2 we have

Dfp(z7 Sn) = pr(zaﬁnjgsnmn + (1 - ﬂn)Jggn)
1 B
< ;llz\lp = Bn(JpSnn, 2) = (1 = Bn){JEgn, 2) + ?HJ%Snanq

]. - n *
i %nggnnq = Bn(1 = Br)pp T Snn — Jpgnl
= 6Dy, (2. Sun) + (L= B) Dy, (2.90) — (L = Bu)oi 1 T3S — T

< Dfp (Z, mn) + 4 M — Bn(l - ﬂn)pZHJgSnl'n - Jggn”'
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Noticing v, = ¢, 8n, by (2) and (4) we get
Dy, (z,vn) < Dy, (2, 5n) — Dy, (n, sn)
< Dy, (2, 5n) — 7[dist(Cy, sn)]".
Because v, 11 = g, ng, Un, by (2) and (4) we have
Dy, (2, xn11) < Dy, (2,v0) = Dy, (Tn41,0n)
< Dy, (2,0n) — T||Pa, vn — vnl|”
= Dy, (z,vn) — 7[dist(Ch, vy)]P.
Combining (20) and the last two inequalities, we obtain
Dy, (2, xn11) < Dy, (2,v0) = Dy, (Tn41,0n)
< Dy, (2 0) + €M = Bu(1 = B3 1TESuivn — Thgal (21)
— 7[dist(Cp, 5,,)]P — 7[dist(Cy,, vp)]",
which hence leads to Dy, (z,zn41) < Dy, (2,2n) 4+ €nM. Since Y | £, < 0o, by Lemma

2.9 we deduce that lim, . Dy, (z,2,) exists. In addition, by the boundedness of {z,},

we conclude that {g,}, {sn}, {vnts {wn}, {vn}, {Un}, {tn}; {tn}, {Snzs} and {S™v, } are also
bounded. From (21) we obtain

Dy, (vn, $n) + Dy, (Zn+1,0n) < Dy, (2,20) + M — Bn(1 = By) py || T5:Sn@n — gl
- Dfp(Z,.’En+1),
which immediately yields
Dfp(vru sn) + DfP ($n+17 Un) + 577,(1 - 5n)p2”J§Snxn - Jg‘gnH
< Dy, (2,2n) — Dy, (2, Zny1) + £ M.
Since limy, 500 £, = 0, liminf, o Bn(1 — B) > 0 and lim, o Dy, (2, 2,) exists, it fol-
lows that limy, e Dy, (Un, 55) = 0, limy 00 Dy, (Tng1,vn) = 0, and limy, o0 pf || JpSnan —
Jgn|| = 0, which hence yields lim,, oo || J5Snzyn — Jhgn|| = 0. From s, = J. (BnJaSnan +
(1 = Bn)Jrgn), it is readily known that lim, e |[|[Jhsn — JpSnay|| = 0. Noticing g, =
JE (1 = €n)Joxn + endo(zn + Spxn — Spn_1)), we obtain from lim,_, ¢, = 0 and the
definition of ¢, that
| Jogn — Jhxn|| = enl|Jh(zh + Snan — Span_1) — Jpan| < €, =0 (n — o).
Hence, using (2) and uniform continuity of Jf. on bounded subsets of E*, we conclude that

lim, o ||gn — zn]| = 0 and

lim v, — $pll = lim ||2p11 — o] = lim ||z, — Spzn| = lim ||s, — z,] = 0. (22)
n—oo n—oo n—oo n—oo

Since {z,} is bounded and E is reflexive, we know that wy(x,) # 0. In what follows, we
claim that wy(z,) C Q. Take a fixed z € wy(x,) arbitrarily. Then, Iz, } C {x,} s.t.
Ty, — z. From (22) one gets v,, — z. Since {A;t,} is bounded, we know that 3L; > 0 s.t.
|A1t,|| < Ly. This ensures that for all z,y € C,,,

Ihn () = hn(Y)| = [(Artn, z — y)| < [[Atn|lllz =yl < Laflz — yll,
which implies that h, (y) is L1-Lipschitz continuous on C,,. Using Lemma 2.6, we get

1 Tn
I (sn) L £o(Sn5 Yn) (23)
Noticing #,+1 € Qy, from the definition of Q,, and (21), we have
Dy, (@pt1,wn) < (14 60)[Dy, (2,0n) = Dy, (2, 2n41)]
< (1 +6,)[Dy, (2,20) — Dy, (2, Tng1) + n M].

dist(Ch,, sp) >
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It follows that lim, e ||Znt1 — wy| = 0. This together with (22), arrives at

lim |lv, — wy| = 0. (24)

n—oo

On the other hand, using Lemma 2.2, we get
Dy (z,wn) = Vi, (2, an Jpvn + (1 — an) J5.S" vy

1 a
< EHZHP—-an<J§vn7Z>—-G»—<%0<J§S"vnvz>+—7fHJ§van

1— Ay * n
00y g gm0~ (1= an)pi 1750 — TBS™0n]
< anDy, (z,0n) + (1 = o) (1 4 6,) Dy, (2,vn) — o (1 = an)py | Tpvn — J5S™vn
< (14 60,)Dy, (2,0) — an (1 — o) py | Tpvn — JS™vn .

Therefore,
(L = @) pi | Tvn — TBS vl < (1 +0,)Dy, (2, 0,) — Dy, (2, ws)

<
< (Jpwp — Jpvn, 2 — vn) + 0, Dy, (2,05).

Taking the limit in the last inequality as n — oo, and using uniform continuity of J%, on
bounded subsets of E, (24) and liminf,, oo an(1 — ay) > 0, we get lim, o0 pi || JRvn —
JES™v,|| = 0 and hence lim,_, || Jhv, — J5S™vy, || = 0. This together with uniform conti-
nuity of J£. on bounded subsets of E* implies that

lim |lv, —S™v,| = 0. (25)

n—oo

Now let us show that z € ﬂ?:l VI(C, A;). Since {Ast,} is bounded, we know that
ALy > 0 s.t. ||Aaty,|| < Le. This ensures that for all z,y € C,,,

[hn(2) = B (y)] = [(A2tn, z — y)| < [[Astulllz =yl < Laflz —
which guarantees that h,,(y) is Le-Lipschitz continuous on C,,. By Lemma 2.6, we get

= 1 - T,
ist(Chr, vp) I (vn) Mol

Combining (21), (23) and (26), we have

Dfp (’Un7 gn) (26)

Dy, (z,2n) — Dy, (2, 2ny1) + M > Dy, (2,5,) — Dy, (2, Tns1)
Tn

2o Lo

T

(27)
2 T[ﬁDfp (Sna yn)]p + T[

Df,, ('Una gn)]p-

Thus, limy, 00 Tn Dy, (Sn, Yn) = limy, 00 T Dy, (Un, Yn) = 0. By Lemma 3.4, we get limy,, o0 [|sn—
Ynl| = limy oo ||vn — ¥n]| = 0. Besides, combining (22) and z,, — z guarantees that
Sn, — 2 and v,, — z. By Lemma 3.3 we deduce that z € wy(s,) C VI(C,A;) and

z € wy(v,) C VI(C, Ay). Consequently,

2
z€ [ VI(C, 4;).
i=1
Next we claim that z € ﬂij\io Fix(S;) with Sp := S. In fact, by (22) we immediately
get [|[Zn41 — 2n| < [|2ns1 — Unll + |on — sull + |sn —2n]] = 0 (n — c0). We first claim that

limy, o0 [|Un — Svp|| = 0 and limy, o0 ||2n — Sizn|| =0 Vi € {1,2,..., N}. We first show that
lim, oo || 2 — Srxn|| = 0 for r = 1,..., N. Actually, according to the definition of S,,, we
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obtain that S,, € {S1,..., Sy} ¥n > 1, which hence leads to S,1; € {S1,...,Sn} Vn > 1,i =
1,---,N. Note that fori =1,--- , N,

l2rn = Snyinll < |20 — Tyl + |Tnyi — SngiTniill + [|SntiTnii — Sntitnl|

N
< ||xn - xn-i-l” + Hxn-&-i - Sn-&-ixn-i-i” + ZHijn-i-i - ijn”-
j=1

Noticing (22) and the uniform continuity of each S; on C, we deduce that &, 4; —Sp+iTnti —
0 and S;xn4; — Sjxn — 0 for 4,5 =1,--- ,N. Thus, we get lim,,_,o ||€s, — Snt:%n|| = 0 for
i =1,---,N. This immediately implies that lim, o ||2n — Sr2n| =0 forr=1,--- N.
So it follows from z,, — z that z € ﬁ(&«) = Fix(S,) for r = 1,--- ,N. Therefore,
z € ﬂf\il Fix(S;). In addition, observe also that

v — Svn|l < |vn — S™0n || + |5 v — S" oy || + |9 T v, — Sv,|. (28)

Noticing the uniform continuity of S on C, we conclude from (25) that Sv,, — S"* v, — 0.
Thus, using the assumption S™v,, — S"*1v, — 0, from (28) we get lim,, o0 ||V — Sv,|| = 0.
Again from (22) and z,,, — z, one has that v,, — z. Hence, we obtain z € ﬁ(S) = Fix(95).
Consequently, z € ﬂf\io Fix(S;), and hence z € Q = (ﬂ?zl VI(C, A;))N (ﬂilio Fix(S;)). This
means that wy,(z,) C Q. As a result, applying Lemma 2.5 we conclude that z, — z. This
completes the proof. O

4. Conclusion

The projection method is a powerful tool for solving VIP in Hilbert spaces. In this
paper, we investigate VIP in Banach spaces by using Bregman projection. We construct
an inertial Bregman extragradient-like algorithm with linesearch process for solving two
pseudomonotone variational inequalities and the common fixed point problem of a Bregman
relatively asymptotically nonexpansive mapping and finitely many Bregman relatively non-
expansive mappings in p-uniformly convex and uniformly smooth Banach spaces, which are
more general than Hilbert spaces. We demonstrate convergence analysis of the suggested
algorithm to a common solution of the considered problems under standard assumptions.
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