

CHARACTERIZATION OF NUCLEAR PSEUDO-MULTIPLIERS ASSOCIATED TO THE HARMONIC OSCILLATOR

Duván CARDONA¹ and E. SAMUEL BARRAZA²

In this paper we study pseudo-multipliers associated to the harmonic oscillator (also called Hermite pseudo-multipliers) belonging to the ideal of r -nuclear operators on Lebesgue spaces. Our main result is Theorem 1.1 where we classify the r -nuclearity of pseudo-multipliers. We also investigate the nuclear trace of these operators.

Keywords: Harmonic oscillator, Fourier multiplier, Hermite multiplier, nuclear operator, traces.

MSC2010: Primary 81Q10 ; Secondary 47B10, 81Q05.

1. Introduction

1.1. Outline of the paper

In this paper, we are interested in the r -nuclearity of pseudo-multipliers associated to the harmonic oscillator (also called Hermite pseudo-multipliers) on $L^p(\mathbb{R}^n)$ -spaces. This paper is the continuation of the work [2] where the authors have given necessary conditions for the r -nuclearity of Hermite multipliers. Our main result is Theorem 1.1 where we classify the r -nuclearity of pseudo-multipliers. In order to present our result we recall some notions. Let us consider the sequence of Hermite functions on \mathbb{R}^n ,

$$\phi_\nu = \prod_{j=1}^n \phi_{\nu_j}, \quad \phi_{\nu_j}(x_j) = (2^{\nu_j} \nu_j! \sqrt{\pi})^{-\frac{1}{2}} H_{\nu_j}(x_j) e^{-\frac{1}{2} x_j^2} \quad (1)$$

where $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, $\nu = (\nu_1, \dots, \nu_n) \in \mathbb{N}_0^n$, and $H_{\nu_j}(x_j)$ denotes the Hermite polynomial of order ν_j . It is well known that the Hermite functions provide a complete and orthonormal system in $L^2(\mathbb{R}^n)$. If we consider the operator $L = -\Delta + |x|^2$ acting on the Schwartz space $\mathcal{S}(\mathbb{R}^n)$, where Δ is the standard Laplace operator on \mathbb{R}^n , then we have the relation $L\phi_\nu = \lambda_\nu \phi_\nu$, $\nu \in \mathbb{N}_0^n$. The operator L is symmetric and positive in $L^2(\mathbb{R}^n)$ and admits a self-adjoint extension H whose

¹Department of Mathematics, Faculty of Sciences, "PONTIFICIA UNIVERSIDAD JAVERIANA", Colombia, E-mail: duvanc306@gmail.com

² PhD student, Department of computer science and Artificial intelligence, "UNIVERSIDAD DE SEVILLA", E-mail: edgbarver@alum.us.es

domain is given by

$$\text{Dom}(H) = \left\{ \sum_{\nu \in \mathbb{N}_0^n} \langle f, \phi_\nu \rangle_{L^2} \phi_\nu : \sum_{\nu \in \mathbb{N}_0^n} |\lambda_\nu \langle f, \phi_\nu \rangle_{L^2}|^2 < \infty \right\}. \quad (2)$$

So, for $f \in \text{Dom}(H)$, we have

$$(Hf)(x) = \sum_{\nu \in \mathbb{N}_0^n} \lambda_\nu \widehat{f}(\phi_\nu) \phi_\nu(x), \quad \widehat{f}(\phi_\nu) = \langle f, \phi_\nu \rangle_{L^2}. \quad (3)$$

The operator H is precisely the quantum harmonic oscillator on \mathbb{R}^n (see [24]). The sequence $\{\widehat{f}(\phi_\nu)\}$ determines the Fourier-Hermite transform of f , with corresponding inversion formula

$$f(x) = \sum_{\nu \in \mathbb{N}_0^n} \widehat{f}(\phi_\nu) \phi_\nu(x). \quad (4)$$

On the other hand, pseudo-multipliers are defined by the quantization process that associates to a function m on $\mathbb{R}^n \times \mathbb{N}_0^n$ a linear operator T_m of the form:

$$T_m f(x) = \sum_{\nu \in \mathbb{N}_0^n} m(x, \nu) \widehat{f}(\phi_\nu) \phi_\nu(x), \quad f \in \text{Dom}(T_m). \quad (5)$$

The function m on $\mathbb{R}^n \times \mathbb{N}_0^n$ is called the symbol of the pseudo-multiplier T_m . If in (5), $m(x, \nu) = m(\nu)$ for all x , the operator T_m is called a multiplier. Multipliers and pseudo-multipliers have been studied, for example, in the works [1, 30, 31, 32, 33, 34] (and references therein) principally by its mapping properties on L^p spaces. In order that the operator $T_m : L^{p_1}(\mathbb{R}^n) \rightarrow L^{p_2}(\mathbb{R}^n)$ extends to a r -nuclear operator, in this paper we provide necessary and sufficient conditions on the symbol m .

1.2. Nuclearity of pseudo-multipliers

We recall the notion of r -nuclearity as follows. By following A. Grothendieck [22], we can recall that a linear operator $T : E \rightarrow F$ (E and F Banach spaces) is r -nuclear, if there exist sequences $(e'_n)_{n \in \mathbb{N}_0}$ in E' (the dual space of E) and $(y_n)_{n \in \mathbb{N}_0}$ in F such that

$$Tf = \sum_{n \in \mathbb{N}_0} e'_n(f) y_n, \quad \text{and} \quad \sum_{n \in \mathbb{N}_0} \|e'_n\|_{E'}^r \|y_n\|_F^r < \infty. \quad (6)$$

The class of r -nuclear operators is usually endowed with the quasi-norm

$$n_r(T) := \inf \left\{ \left\{ \sum_n \|e'_n\|_{E'}^r \|y_n\|_F^r \right\}^{\frac{1}{r}} : T = \sum_n e'_n \otimes y_n \right\} \quad (7)$$

and, if $r = 1$, $n_1(\cdot)$ is a norm and we obtain the ideal of nuclear operators. In addition, when $E = F$ is a Hilbert space and $r = 1$ the definition above agrees with the concept of trace class operators. For the case of Hilbert spaces H , the set of r -nuclear operators agrees with the Schatten-von Neumann class of order r (see Pietsch [25, 26]).

In order to study the r -nuclearity and the spectral trace of Hermite pseudo-multipliers, we will use results from J. Delgado [8], on the characterization of nuclear integral operators on $L^p(X, \mu)$ spaces, which in this case can be applied to L^p spaces on \mathbb{R}^n . Indeed, we will prove that under certain conditions, a r -nuclear operator $T_m : L^p(\mathbb{R}^n) \rightarrow L^p(\mathbb{R}^n)$ has a nuclear trace given by

$$\text{Tr}(T_m) = \int_{\mathbb{R}^n} \sum_{\nu \in \mathbb{N}_0^n} m(x, \nu) \phi_\nu(x)^2 dx. \quad (8)$$

It was proved in [2] that a multiplier T_m with symbol satisfying one of the following conditions

- $1 \leq p_2 < 4$, $\frac{4}{3} < p_1 < \infty$ and

$$\varkappa(m, p_1, p_2) := \sum_{s=0}^n \sum_{\nu \in I_s} k^{\frac{sr}{2}(\frac{1}{p_2} - \frac{1}{p_1})} \left(\prod_{\nu_j > k} \nu_j \right)^{\frac{r}{2}(\frac{1}{p_2} - \frac{1}{p_1})} |m(\nu)|^r < \infty, \quad (9)$$

- $1 \leq p_2 < 4$, $p_1 = \frac{4}{3}$ and

$$\varkappa(m, p_1, p_2) := \sum_{s=0}^n \sum_{\nu \in I_s} k^{\frac{sr}{2}(\frac{1}{p_2} - \frac{3}{4})} (\ln k)^{sr} \cdot \prod_{\nu_j > k} [\nu_j^{\frac{r}{2}(\frac{1}{p_2} - \frac{3}{4})} (\ln(\nu_j))^r] |m(\nu)|^r < \infty, \quad (10)$$

- $1 \leq p_2 < 4$, $1 < p_1 < \frac{4}{3}$ and

$$\varkappa(m, p_1, p_2) := \sum_{s=0}^n \sum_{\nu \in I_s} k^{\frac{sr}{2}(\frac{1}{p_2} + \frac{1}{3p_1} - 1)} \cdot \left(\prod_{\nu_j > k} \nu_j \right)^{\frac{r}{2}(\frac{1}{p_2} + \frac{1}{3p_1} - 1)} |m(\nu)|^r < \infty, \quad (11)$$

- $p_2 = 4$, $\frac{4}{3} < p_1 < \infty$ and

$$\varkappa(m, p_1, p_2) := \sum_{s=0}^n \sum_{\nu \in I_s} k^{\frac{sr}{2}(\frac{1}{4} - \frac{1}{p_1})} (\ln(k))^{sr} \prod_{\nu_j > k} [(\ln(\nu_j))^r \nu_j^{\frac{r}{2}(\frac{1}{4} - \frac{1}{p_1})}] |m(\nu)|^r < \infty, \quad (12)$$

- $p_2 = 4$, $p_1 = \frac{4}{3}$ and

$$\varkappa(m, p_1, p_2) := \sum_{s=0}^n \sum_{\nu \in I_s} k^{-\frac{sr}{4}} (\ln k)^{2sr} \prod_{\nu_j > k} [\nu_j^{-\frac{r}{4}} (\ln \nu_j)^{2r}] \cdot |m(\nu)|^r < \infty, \quad (13)$$

- $p_2 = 4$, $1 < p_1 < \frac{4}{3}$ and

$$\varkappa(m, p_1, p_2) := \sum_{s=0}^n \sum_{\nu \in I_s} k^{\frac{sr}{6}(\frac{1}{p_1} - \frac{9}{4})} (\ln(k))^{sr} \prod_{\nu_j > k} [\nu_j^{\frac{r}{6}(\frac{1}{p_1} - \frac{9}{4})} \ln(\nu_j)^r] \cdot |m(\nu)|^r < \infty, \quad (14)$$

- $4 < p_2 \leq \infty$, $\frac{4}{3} < p_1 < \infty$ and

$$\varkappa(m, p_1, p_2) := \sum_{s=0}^n \sum_{\nu \in I_s} k^{\frac{sr}{2}(\frac{1}{3p_2} - \frac{1}{p_1})} \left(\prod_{\nu_j > k} \nu_j \right)^{\frac{r}{2}(\frac{1}{3p_2} - \frac{1}{p_1})} |m(\nu)|^r < \infty, \quad (15)$$

- $4 < p_2 \leq \infty$, $p_1 = \frac{4}{3}$ and

$$\varkappa(m, p_1, p_2) := \sum_{s=0}^n \sum_{\nu \in I_s} k^{-\frac{sr}{6}(\frac{1}{p_2} + \frac{5}{4})} (\ln(k))^{sr} \prod_{\nu_j > k} [\nu_j^{-\frac{r}{6}(\frac{1}{p_2} + \frac{5}{4})} (\ln(\nu_j))^r] |m(\nu)|^r < \infty, \quad (16)$$

- $4 < p_2 \leq \infty$, $1 < p_1 < \frac{4}{3}$ and

$$\varkappa(m, p_1, p_2) := \sum_{s=0}^n \sum_{\nu \in I_s} k^{\frac{sr}{6}(\frac{1}{p_1} - \frac{1}{p_2} - 2)} \cdot \left(\prod_{\nu_j > k} \nu_j^{\frac{r}{6}(\frac{1}{p_1} - \frac{1}{p_2} - 2)} \right) |m(\nu)|^r < \infty, \quad (17)$$

where $\{I_s\}_{s=0}^n$ is a suitable partition of \mathbb{N}_0^n , can be extended to a r -nuclear operator from $L^{p_1}(\mathbb{R}^n)$ into $L^{p_2}(\mathbb{R}^n)$. Although is easy to see that similar necessary conditions apply for pseudo-multipliers, and that such conditions can be useful for applications because they can be verified, for example, numerically for m given, in this paper we want to characterize the r -nuclearity of pseudo-multipliers by using abstract conditions depending on the existence of certain measurable functions. In fact, the main result of this paper is the following.

Theorem 1.1. *$T_m : L^{p_1}(\mathbb{R}^n) \rightarrow L^{p_2}(\mathbb{R}^n)$ is r -nuclear, if and only if, for every $\nu \in \mathbb{N}_0^n$, the function $m(\cdot, \nu)\phi_\nu$ admits a decomposition of the form*

$$m(x, \nu) = \phi_\nu(x)^{-1} \sum_{k=1}^{\infty} h_k(x) \widehat{g}(\phi_\nu), \quad x \in \{\varkappa \in \mathbb{R}^n : \phi_\nu(\varkappa) \neq 0\}, \quad (18)$$

where $\{g_k\}_{k \in \mathbb{N}}$ and $\{h_k\}_{k \in \mathbb{N}}$ are sequences of functions satisfying

$$\sum_{k=0}^{\infty} \|g_k\|_{L^{p'_1}}^r \|h_k\|_{L^{p_2}}^r < \infty. \quad (19)$$

Some remarks about our main theorem are the following.

- A consequence of the above theorem is that symbols associated to nuclear multipliers admit decompositions of the form

$$m(\nu) = \sum_{k=0}^{\infty} \widehat{h}_k(\phi_\nu) \widehat{g}_k(\phi_\nu). \quad (20)$$

This can be obtained multiplying both sides of (18) by ϕ_ν and later integrating both sides over \mathbb{R}^n .

- Our approach is an adaptation to the non-compact case of \mathbb{R}^n of techniques used in the work [19] by M. B. Ghaemi, M. Jamalpour Birgani, and M. W. Wong.
- For every ν , the function ϕ_ν has only finitely many zeros. So, the set $M = \{x : \phi_\nu(x) = 0 \text{ for some } \nu\}$ is a countable subset of \mathbb{R}^n . According to (18), outside of the set M we have

$$m(x, \nu) = \phi_\nu(x)^{-1} \sum_{k=1}^{\infty} h_k(x) \widehat{g}(\phi_\nu). \quad (21)$$

So, our main result can be formulated as follows: a pseudo-multiplier T_m can be extended to a r -nuclear operator from L^{p_1} into L^{p_2} if and only if (21) holds true almost everywhere where the functions h_k and g_k satisfy the condition (19).

- Let us recall that $L^2(\mathbb{R}^n)$ is a Hilbert space and consequently, the ideal of r -nuclear operators on $L^2(\mathbb{R}^n)$ coincides with the class of Schatten-von Neumann of order r , $S_r(L^2)$ for all $0 < r \leq 1$. Although our main theorem classify those pseudo-multipliers in the ideal $S_r(L^2)$, explicit conditions in order that the operators $T_m \in S_r(L^2)$ have been proved in Cardona [3].

1.3. Related works

Now, we include some references on the subject. Sufficient conditions for the r -nuclearity of spectral multipliers associated to the harmonic oscillator, but, in modulation spaces and Wiener amalgam spaces have been considered by J. Delgado, M. Ruzhansky and B. Wang in [10, 11]. The Properties of these multipliers in L^p -spaces have been investigated in the references S. Bagchi, S. Thangavelu [1], J. Epperson [18], K. Stempak and J.L. Torrea [30, 31, 32], S. Thangavelu [33, 34] and references therein. Hermite expansions for distributions can be found in B. Simon [29]. The r -nuclearity and Grothendieck-Lidskii formulae for multipliers and other types of integral operators can be found in [9, 11]. Sufficient conditions for the nuclearity of pseudo-differential operators on the torus can be found in [7, 19]. The references [12, 13, 14, 15] and [17] include a complete study on the r -nuclearity, $0 < r \leq 1$, of multipliers (and pseudo-differential operators) on compact Lie groups, and more generally on compact manifolds, with explicit conditions on symbols of operators providing an useful tool for applications (see [5]). For compact and Hausdorff groups, the work [20] by M. B. Ghaemi, M. Jamalpour Birgani, and M. W. Wong characterize in terms of the existence of certain measurable functions the nuclearity of pseudo-differential operators. On Hilbert spaces the class of r -nuclear operators agrees with the Schatten-von Neumann class $S_r(H)$; in this context operators with integral kernel on Lebesgue spaces and, in particular, operators with kernel acting of a special way with anharmonic oscillators of the form $E_a = -\Delta_x + |x|^a$, $a > 0$, have been considered on Schatten classes on $L^2(\mathbb{R}^n)$ in J. Delgado and M. Ruzhansky [16].

The proof of our results will be presented in the next section.

2. Nuclear pseudo-multipliers associated to the Harmonic oscillator

2.1. Characterization of nuclear pseudo-multipliers

In this section we prove our main result for pseudo-multipliers T_m . Our criteria will be formulated in terms of the symbols m . First, let us observe that every multiplier T_m is an operator with kernel $K_m(x, y)$. In fact, straightforward computation

show that

$$T_m f(x) = \int_{\mathbb{R}^n} K_m(x, y) f(y) dy, \quad K_m(x, y) := \sum_{\nu \in \mathbb{N}_0^n} m(x, \nu) \phi_\nu(x) \phi_\nu(y) \quad (22)$$

for every $f \in \mathcal{D}(\mathbb{R}^n)$. In order to analyze the r -nuclearity of T_m we study its kernel K_m by using the following theorem (see J. Delgado [6, 8]).

Theorem 2.1. *Let us consider $1 \leq p_1, p_2 < \infty$, $0 < r \leq 1$ and let p'_i be such that $\frac{1}{p_i} + \frac{1}{p'_i} = 1$. Let (X_1, μ_1) and (X_2, μ_2) be σ -finite measure spaces. An operator $T : L^{p_1}(X_1, \mu_1) \rightarrow L^{p_2}(X_2, \mu_2)$ is r -nuclear if and only if there exist sequences $(h_k)_k$ in $L^{p_2}(\mu_2)$, and (g_k) in $L^{p'_1}(\mu_1)$, such that*

$$\sum_k \|h_k\|_{L^{p_2}}^r \|g_k\|_{L^{p'_1}}^r < \infty, \quad \text{and } Tf(x) = \int_{X_1} \left(\sum_k h_k(x) g_k(y) \right) f(y) d\mu_1(y), \quad \text{a.e.w. } x, \quad (23)$$

for every $f \in L^{p_1}(\mu_1)$. In this case, if $p_1 = p_2$, and $\mu_1 = \mu_2$, (see Section 3 of [6]) the nuclear trace of T is given by

$$\text{Tr}(T) := \int_{X_1} \sum_k g_k(x) h_k(x) d\mu_1(x). \quad (24)$$

Now, we prove our main theorem.

Theorem 2.2. *Let $0 < r \leq 1$. The operator $T_m : L^{p_1}(\mathbb{R}^n) \rightarrow L^{p_2}(\mathbb{R}^n)$ extends to a r -nuclear operator, if and only if, for every $\nu \in \mathbb{N}_0^n$, the function $m(\cdot, \nu) \phi_\nu$ admits a decomposition of the form*

$$m(x, \nu) = \phi_\nu(x)^{-1} \sum_{k=1}^{\infty} h_k(x) \widehat{g}(\phi_\nu), \quad x \in \{\varkappa \in \mathbb{R}^n : \phi_\nu(\varkappa) \neq 0\}, \quad (25)$$

where $\{g_k\}_{k \in \mathbb{N}}$ and $\{h_k\}_{k \in \mathbb{N}}$ are sequences of functions satisfying

$$\sum_{k=0}^{\infty} \|g_k\|_{L^{p'_1}}^r \|h_k\|_{L^{p_2}}^r < \infty. \quad (26)$$

Proof. Let us assume that $T_m : L^{p_1}(\mathbb{R}^n) \rightarrow L^{p_2}(\mathbb{R}^n)$ is a r -nuclear operator. Then there exist sequences h_k in L^{p_2} and g_k in $L^{p'_1}$ satisfying

$$Tf(x) = \int_{\mathbb{R}^n} \left(\sum_{k=1}^{\infty} h_k(x) g_k(y) \right) f(y) dy, \quad f \in L^{p_1}, \quad (27)$$

with

$$\sum_{k=0}^{\infty} \|g_k\|_{L^{p'_1}}^r \|h_k\|_{L^{p_2}}^r < \infty. \quad (28)$$

Since every Hermite function ϕ_ν belongs to the Schwartz class which is contain in L^p -spaces, for $f = \phi_\nu \in L^{p_1}$ we have

$$T_m(\phi_\nu) = \int_{\mathbb{R}^n} \left(\sum_{k=1}^{\infty} h_k(x) g_k(y) \right) \phi_\nu(y) dy = \sum_{k=1}^{\infty} h_k(x) \widehat{g}_k(\nu).$$

Now, if we compute $T_m(\phi_\nu)$ from the definition of pseudo-multipliers (5), we obtain

$$T_m(\phi_\nu)(x) = m(x, \nu) \phi_\nu(x) \quad (29)$$

where we have used the L^2 -orthogonality of Hermite functions. Consequently, we deduce the identity

$$m(x, \nu) = \phi_\nu(x)^{-1} \sum_{k=1}^{\infty} h_k(x) \widehat{g}(\phi_\nu), \quad x \in \{\boldsymbol{\nu} \in \mathbb{R}^n : \phi_\nu(\boldsymbol{\nu}) \neq 0\}. \quad (30)$$

So, we have proved the first part of the theorem. Now, if we assume that the symbol m of a multiplier T_m and every Hermite function ϕ_ν satisfies the decomposition formula 30 for fixed sequences h_k in L^{p_2} and g_k in $L^{p'_1}$ satisfying (28), then from (5) we can write

$$\begin{aligned} T_m f(x) &= \sum_{\nu \in \mathbb{N}_0^n} m(x, \nu) \phi_\nu(x) \widehat{f}(\phi_\nu) = \sum_{\nu \in \mathbb{N}_0^n} \sum_{k=1}^{\infty} h_k(x) \widehat{g}_k(\nu) \widehat{f}(\phi_\nu) \\ &= \sum_{\nu \in \mathbb{N}_0^n} \sum_{k=1}^{\infty} h_k(x) \int_{\mathbb{R}^n} g_k(y) \phi_\nu(y) dy \widehat{f}(\phi_\nu) \\ &= \int_{\mathbb{R}^n} \left(\sum_{k=1}^{\infty} h_k(x) g_k(y) \right) \left(\sum_{\nu \in \mathbb{N}_0^n} \widehat{f}(\phi_\nu) \phi_\nu(y) \right) dy \\ &= \int_{\mathbb{R}^n} \left(\sum_{k=1}^{\infty} h_k(x) g_k(y) \right) f(y) dy, \end{aligned}$$

where in the last line we have used the inversion formula (4). So, by Delgado Theorem (Theorem 2.1) we end the proof. \square

2.2. Traces of nuclear pseudo-multipliers of the harmonic oscillator

If $T : E \rightarrow E$ is r -nuclear, with the Banach space E satisfying the Grothendieck approximation property (see Grothendieck[22]), then there exist sequences $(e'_n)_{n \in \mathbb{N}_0}$ in E' (the dual space of E) and $(y_n)_{n \in \mathbb{N}_0}$ in E such that

$$Tf = \sum_{n \in \mathbb{N}_0} e'_n(f) y_n, \quad \text{and} \quad \sum_{n \in \mathbb{N}_0} \|e'_n\|_{E'}^r \|y_n\|_F^r < \infty. \quad (31)$$

In this case the nuclear trace of T is given by $\text{Tr}(T) = \sum_{n \in \mathbb{N}_0^n} e'_n(f_n)$. L^p -spaces have the Grothendieck approximation property and as consequence we can compute the nuclear trace of every r -nuclear pseudo-multipliers. For to do so, let us consider a r -nuclear pseudo-multiplier $T_m : L^p(\mathbb{R}^n) \rightarrow L^p(\mathbb{R}^n)$. Since the function, $\varkappa(x, y) := \sum_k h_k(x) g_k(y)$ is defined a.e.w., let us choose $z \in \mathbb{R}^n$ such that $\varkappa(x, z)$ is finite a.e.w. Let us consider $B(z, r)$, the ball centered at z with radius $r > 0$. Let us denote by $|B(z, r)|$ the Lebesgue measure of $B(z, r)$. If $f = |B(z, r)|^{-1} \cdot 1_{B(z, r)}$, where $1_{B(z, r)}$

is the characteristic function of $B(z, r)$, we obtain

$$T_m(|B(z, r)|^{-1} \cdot 1_{B(z, r)}) = \frac{1}{|B(z, r)|} \int_{B(z, r)} \left(\sum_{k=1}^{\infty} h_k(x) g_k(y) \right) dy \quad (32)$$

but, we also have

$$T_m(|B(z, r)|^{-1} \cdot 1_{B(z, r)}) = \frac{1}{|B(z, r)|} \int_{B(z, r)} K_m(x, y) dy, \quad (33)$$

where K_m is defined as in (22). So, we have the identity

$$\frac{1}{|B(z, r)|} \int_{B(z, r)} K_m(x, y) dy = \frac{1}{|B(z, r)|} \int_{B(z, r)} \left(\sum_{k=1}^{\infty} h_k(x) g_k(y) \right) dy \quad (34)$$

for every $r > 0$. Taking limit as $r \rightarrow 0^+$ and by applying Lebesgue differentiation Theorem, we obtain

$$K_m(x, z) = \sum_{k=1}^{\infty} h_k(x) g_k(z), \text{ a.e.w.} \quad (35)$$

Finally, the nuclear trace of T_m can be computed from (24). So, we have

$$\text{Tr}(T_m) = \int_{\mathbb{R}^n} K_m(x, x) dx = \int_{\mathbb{R}^n} \sum_{\nu \in \mathbb{N}_0^n} m(x, \nu) \phi_{\nu}(x)^2 dx. \quad (36)$$

Now, in order to determinate a relation with the eigenvalues of T_m we recall that, the nuclear trace of an r -nuclear operator on a Banach space coincides with the spectral trace, provided that $0 < r \leq \frac{2}{3}$. For $\frac{2}{3} \leq r \leq 1$ we recall the following result (see [27]).

Theorem 2.3. *Let $T : L^p(X, \mu) \rightarrow L^p(X, \mu)$ be a r -nuclear operator as in (31). If $\frac{1}{r} = 1 + |\frac{1}{p} - \frac{1}{2}|$, then,*

$$\text{Tr}(T) := \sum_{n \in \mathbb{N}_0^n} e'_n(f_n) = \sum_n \lambda_n(T), \quad (37)$$

where $\lambda_n(T)$, $n \in \mathbb{N}$ is the sequence of eigenvalues of T with multiplicities taken into account.

As an immediate consequence of the preceding theorem, if $T_m : L^p(\mathbb{R}^n) \rightarrow L^p(\mathbb{R}^n)$ is a r -nuclear pseudo-multiplier and $\frac{1}{r} = 1 + |\frac{1}{p} - \frac{1}{2}|$ then,

$$\text{Tr}(T_m) = \int_{\mathbb{R}^n} \sum_{\nu \in \mathbb{N}_0^n} m(x, \nu) \phi_{\nu}(x)^2 dx = \sum_n \lambda_n(T), \quad (38)$$

where $\lambda_n(T)$, $n \in \mathbb{N}$ is the sequence of eigenvalues of T_m with multiplicities taken into account.

Acknowledgements: We would like to thank the anonymous referee who lead us to improve the manuscript from its original form.

REFERENCES

- [1] *S. Bagchi and S. Thangavelu*, On Hermite pseudo-multipliers. *J. Funct. Anal.* **268**(2015), No. 1, 140–170.
- [2] *E. S. Barraza and D. Cardona*, On nuclear L^p -multipliers associated to the Harmonic oscillator, in: *Analysis in Developing Countries*, Springer Proceedings in Mathematics & Statistics, Springer, 2018, M. Ruzhansky and J. Delgado (Eds), to appear.
- [3] *D. Cardona*, A brief description of operators associated to the quantum harmonic oscillator on Schatten-von Neumann classes, *Rev. Integr. Temas Mat.* 36(2018), No. 1, 49–57.
- [4] *D. Cardona*, Nuclear pseudo-differential operators in Besov spaces on compact Lie groups. *J. Fourier Anal. Appl.* 23(2017), No. 5, 1238–1262.
- [5] *D. Cardona and C. Del Corral*, The Dixmier trace and the non-commutative residue for multipliers on compact manifolds, submitted. arXiv:1703.07453
- [6] *J. Delgado*, A trace formula for nuclear operators on L^p , in: Schulze, B.W., Wong, M.W. (eds.) *Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, Operator Theory: Advances and Applications*, 205, 181–193. Birkhäuser, Basel (2010)
- [7] *J. Delgado and M. W. Wong*, L^p -nuclear pseudo-differential operators on \mathbb{Z} and \mathbb{S}^1 . *Proc. Amer. Math. Soc.*, 141(2013), No. 11, 3935–394.
- [8] *J. Delgado*, The trace of nuclear operators on $L^p(\mu)$ for σ -finite Borel measures on second countable spaces. *Integral Equations Operator Theory*, 68(2010), No. 1, 61–74.
- [9] *J. Delgado*, On the r -nuclearity of some integral operators on Lebesgue spaces. *Tohoku Math. J.* 67(2015), No. 2 125–135.
- [10] *J. Delgado, M. Ruzhansky and B. Wang*, Approximation property and nuclearity on mixed-norm L^p , modulation and Wiener amalgam spaces. *J. Lond. Math. Soc.* 94(2016), 391–408,
- [11] *J. Delgado, M. Ruzhansky, and B. Wang*, Grothendieck-Lidskii trace formula for mixed-norm L^p and variable Lebesgue spaces. to appear in *J. Spectr. Theory*.
- [12] *J. Delgado and M. Ruzhansky*, L^p -nuclearity, traces, and Grothendieck-Lidskii formula on compact Lie groups., *J. Math. Pures Appl.* **(102)**(2014), No. 1, 153–172.
- [13] *J. Delgado and M. Ruzhansky*, Schatten classes on compact manifolds: Kernel conditions. *J. Funct. Anal.*, 267(2014) No. 3, 772–798.
- [14] *J. Delgado and M. Ruzhansky*, Kernel and symbol criteria for Schatten classes and r -nuclearity on compact manifolds., *C. R. Acad. Sci. Paris. Ser. I.* 352(2014), No. 10, 779–784.
- [15] *J. Delgado and M. Ruzhansky*, Fourier multipliers, symbols and nuclearity on compact manifolds. arXiv:1404.6479
- [16] *J. Delgado and M. Ruzhansky*, Schatten-von Neumann classes of integral operators. arXiv:1709.06446.
- [17] *J. Delgado, M. Ruzhansky, and N. Tokmagambetov*, Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary. arXiv:1505.02261
- [18] *J. Epperson*, Hermite multipliers and pseudo-multipliers, *Proc. Amer. Math. Soc.* 124(1996), No. 7, 2061–2068.
- [19] *M. B. Ghaemi, M. JamalpourBirgani, and M. W. Wong*, Characterizations of nuclear pseudo-differential operators on \mathbb{S}^1 with applications to adjoints and products. *J. Pseudo-Differ. Oper. Appl.* 8(2017), No. 2, 191–201.
- [20] *M. B. Ghaemi, M. JamalpourBirgani, and M. W. Wong*, Characterization, adjoints and products of nuclear pseudo-differential operators on compact and Hausdorff groups. *U.P.B. Sci. Bull., Series A*, Vol. 79(2017), No. 4, 207–220.
- [21] *A. Grothendieck*, La theorie de Fredholm, *Bull. Soc. Math. France* 84(1956), 319–384.

[22] *A. Grothendieck*, Produits tensoriels topologiques et espaces nucléaires, Memoirs Amer. Math. Soc. 16, Providence, 1955 (Thesis, Nancy, 1953).

[23] *H. Koch and D. Tataru*, L^p -eigenfunction bounds for the Hermite operator. Duke Math. J. 128(2005), 369–392.

[24] *E. Prugovečki*, Quantum mechanics in Hilbert space. Second edition. Pure and Applied Mathematics, 92. Academic Press, Inc., New York-London, 1981.

[25] *A. Pietsch*, Operator ideals. Mathematische Monographien, 16. VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.

[26] *A. Pietsch*, History of Banach spaces and linear operators. Birkhäuser Boston, Inc., Boston, MA, 2007.

[27] *O.I. Reinov and Q. Latif*, Grothendieck-Lidskii theorem for subspaces of L^p -spaces. Math. Nachr. 286(2013), No. 2-3, 279–282.

[28] *F. Nicola and L. Rodino*, Global pseudo-differential calculus on Euclidean spaces. Pseudo-Differential Operators. Theory and Applications, 4. Birkhäuser Verlag, Basel, 2010.

[29] *B. Simon*, Distributions and their Hermite expansions. J. Math. Phys. 12(1971), 140–148.

[30] *K. Stempak*, Multipliers for eigenfunction expansions of some Schrödinger operators, Proc. Amer. Math. Soc(1985), 93, 477–482.

[31] *K. Stempak and J. L. Torre*, On g-functions for Hermite function expansions, Acta Math. Hung. 109(2005), 99–125.

[32] *K. Stempak ad J. L. Torre*, BMO results for operators associated to Hermite expansions, Illinois J. Math. 49, (2005), 1111–1132,

[33] *S. Thangavelu*, Lectures on Hermite and Laguerre Expansions, Math. Notes, vol. 42, Princeton University Press, Princeton, 1993.

[34] *S. Thangavelu*, Hermite and special Hermite expansions revisited Duke Mathematical Journal, 94(1998), No. 2, 257–278.