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CHARACTERIZATION OF NUCLEAR PSEUDO-MULTIPLIERS
ASSOCIATED TO THE HARMONIC OSCILLATOR

Duvén CARDONA! and E. SAMUEL BARRAZAZ

In this paper we study pseudo-multipliers associated to the harmonic
oscillator (also called Hermite pseudo-multipliers) belonging to the ideal of 7-
nuclear operators on Lebesgue spaces. QOur main result is Theorem 1.1 where
we classify the r-nuclearity of pseudo-multipliers. We also investigate the nuclear
trace of these operators.
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1. Introduction
1.1. Outline of the paper

In this paper, we are interested in the r-nuclearity of pseudo-multipliers asso-
ciated to the harmonic oscillator (also called Hermite pseudo-multipliers) on LP(R")-
spaces. This paper is the continuation of the work [2] where the authors have given
necessary conditions for the r-nuclearity of Hermite multipliers. Our main result is
Theorem 1.1 where we classify the r-nuclearity of pseudo-multipliers. In order to
present our result we recall some notions. Let us consider the sequence of Hermite
functions on R",

by =10y, 61, (03) = (OvyVm)HH (a)e 4 1

where © = (21, ,2,) € R", v = (v1,--- ,vp) € Ny, and H,, (x;) denotes the
Hermite polynomial of order v;. It is well known that the Hermite functions provide
a complete and orthonormal system in L?(R"™). If we consider the operator L =
—A + |z|? acting on the Schwartz space 8(R™), where A is the standard Laplace
operator on R", then we have the relation L¢, = A\ ¢,, v € Njj. The operator L
is symmetric and positive in L?(R") and admits a self-adjoint extension H whose

!Department of Mathematics, Faculty of Sciences, ”PONTIFICIA UNIVERSIDAD JAVERIANA”,
Colombia, E-mail: duvanc306@gmail.com

2 PhD student, Department of computer science and Artificial intelligence, ” UNIVERSIDAD DE
SEVILLA”, E-mail: edgbarver@alum.us.es

163



164 Duvan CARDONA, E. SAMUEL BARRAZA

domain is given by

Dom(H) = ¢ > (f,du) 26 D Nulfidu)pel’ <oop. (2)
veNy veNg
So, for f € Dom(H), we have
(Hf) () =Y MF(b)u(@), Fd) = (fidu)1e. (3)
vENy

The operator H is precisely the quantum harmonic oscillator on R™ (see [24]). The
sequence { f(¢)} determines the Fourier-Hermite transform of f, with corresponding
inversion formula
F@) =) [(du)ou(@). (4)
veNg
On the other hand, pseudo-multipliers are defined by the quantization process that
associates to a function m on R"™ x Njj a linear operator T}, of the form:

~

Tnf(x) = m(@,v)f(#)¢u(@), | € Dom(Ty). (5)
veNg

The function m on R™ x N is called the symbol of the pseudo-multiplier T},. If in
(5), m(z,v) = m(v) for all z, the operator T), is called a multiplier. Multipliers and
pseudo-multipliers have been studied, for example, in the works [1, 30, 31, 32, 33, 34]
(and references therein) principally by its mapping properties on L spaces. In order
that the operator T, : LP*(R™) — LP2(R"™) extends to a r-nuclear operator, in this
paper we provide necessary and sufficient conditions on the symbol m.

1.2. Nuclearity of pseudo-multipliers

We recall the notion of r-nuclearity as follows. By following A. Grothendieck
[22], we can recall that a linear operator 7' : E — F' (E and F Banach spaces) is
r-nuclear, if there exist sequences (e},)nen, in E’ (the dual space of E) and (yn)nen,
in F' such that

Tf=Y e(fyn, and > eplmlynli < oo (6)
neNp n€Ng

The class of r—nuclear operators is usually endowed with the quasi-norm

1
0o (T) = inf {Zuegrwynu%} T-Y ey, 0

and, if » = 1, ny(-) is a norm and we obtain the ideal of nuclear operators. In
addition, when E = F' is a Hilbert space and r = 1 the definition above agrees
with the concept of trace class operators. For the case of Hilbert spaces H, the set
of r-nuclear operators agrees with the Schatten-von Neumann class of order r (see
Pietsch [25, 26]).
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In order to study the r-nuclearity and the spectral trace of Hermite pseudo-multipliers,
we will use results from J. Delgado [8], on the characterization of nuclear inte-

gral operators on LP(X, u) spaces, which in this case can be applied to LP spaces

on R™. Indeed, we will prove that under certain conditions, a r-nuclear operator

T, : LP(R™) — LP(R™) has a nuclear trace given by

/ZN (e, v) o () ?de. (8)

It was proved in [2] that a multiplier T,, with symbol satisfying one of the
following conditions

ol§p2<4,%<p1<ooand

se(m, p1, pa) ZZ/ﬁ TR H v;)2 2 jm(v)|” < oo, 9)

e 1<py<4,1<p <3and
EL _
se(m, p1,pa) szmﬂm (I w2 V) < 0, (1)
s=0rvel, vi>k
0p2:4,%<p1<ooand

o) =3 S K FG B k) [T (00 w2 ) m)l < oo,

s=0vels v;i>k

e py=4,p; =3 and
»(m,p1,p2) Z S ETE (k) ] vy *(nvy)* - Im(v)]” < o, (13)
s=0vely v >k
op2:4,1<p1<§and
( 1 sr %(%_%) r r
»(m, p1,p2) Z S kT ~V(In(k)) 1T In(v;)"}-im(v)[" < oo, (14)
s=0velg vi>k

o4<p2§oo,%<p1<ooand

1 7‘ 1 1)

»(m, p1,p2) ZZW Gy HV ) ) <0, (15)

s=0vely vi>k
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e 4<py< oo, pr =3 and

mprpn) =3 S K FE D ) T tn() i) < oo,

s=0 vel, vi>k

o4<p2§00,1<p1<§and

sro 1 _L_ I S
se(m, p1,pa) : Zzyﬁmp (T w3 5 2m)lr < o0, (17)

s=0vely v >k

where {I}7_ is a suitable partition of Nf, can be extended to a r-nuclear operator
from LP'(R™) into LP2(R™). Although is easy to see that similar necessary conditions
apply for pseudo-multipliers, and that such conditions can be useful for applications
because they can verified, for example, numerically for m given, in this paper we want
to characterize the r-nuclearity of pseudo-multipliers by using abstract conditions
depending on the existence of certain measurable functions. In fact, the main result
of this paper is the following.

Theorem 1.1. T, : LPr(R™) — LP2(R") is r-nuclear, if and only if, for every
v € Ny, the function m(-,v)¢, admits a decomposition of the form

m(z,v) Z hi(2)g(dw), @ € {3 € R": ¢, () # 0}, (18)
where {gi}ren and {hi}ren are sequences of functions satisfying

Z 1grll" o 1l zp2 < 00 (19)

Some remarks about our main theorem are the following.

e A consequence of the above theorem is that symbols associated to nuclear
multipliers admit decompositions of the form

oo
= Z hk(¢u)§k(¢u) (20)
k=0
This can be obtained multiplying both sides of (18) by ¢, and later integrating
both sides over R™.

e Our approach is an adaptation to the non-compact case of R™ of techniques
used in the work [19] by M. B. Ghaemi, M. Jamalpour Birgani, and M. W.
Wong.

e For every v, the function ¢, has only finitely many zeros. So, the set M = {x :
¢v(x) = 0 for some v} is a countable subset of R"™. According to (18), outside
of the set M we have

m(z,v) = ¢V(‘r)7lzhk(l’)§(¢u) (21)
k=1
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So, our main result can be formulated as follows: a pseudo-multiplier T}, can
be extended to a r-nuclear operator from LP! into LP? if and only if (21) holds
true almost everywhere where the functions h; and g satisfy the condition
(19).

e Let us recall that L?(R") is a Hilbert space and consequently, the ideal of r-
nuclear operators on L?(R™) coincides with the class of Schatten-von Neumann
of order r, S,.(L?) for all 0 < < 1. Although our main theorem classify those
pseudo-multipliers in the ideal S,(L?), explicit conditions in order that the
operators Ty, € S,(L?) have been proved in Cardona [3].

1.3. Related works

Now, we include some references on the subject. Sufficient conditions for the
r-nuclearity of spectral multipliers associated to the harmonic oscillator, but, in
modulation spaces and Wiener amalgam spaces have been considered by J. Del-
gado, M. Ruzhansky and B. Wang in [10, 11]. The Properties of these multipliers
in LP-spaces have been investigated in the references S. Bagchi, S. Thangavelu [1],
J. Epperson [18], K. Stempak and J.L. Torrea [30, 31, 32], S. Thangavelu [33, 34]
and references therein. Hermite expansions for distributions can be found in B.
Simon [29]. The r-nuclearity and Grothendieck-Lidskii formulae for multipliers and
other types of integral operators can be found in [9, 11]. Sufficient conditions for
the nuclearity of pseudo-differential operators on the torus can be found in [7, 19].
The references [12, 13, 14, 15] and [17] include a complete study on the r-nuclearity,
0 < r <1, of multipliers (and pseudo-differential operators) on compact Lie groups,
and more generally on compact manifolds, with explicit conditions on symbols of op-
erators providing an useful tool for applications (see [5]). For compact and Hausdorff
groups, the work [20] by M. B. Ghaemi, M. Jamalpour Birgani, and M. W. Wong
characterize in terms of the existence of certain measurable functions the nuclearity
of pseudo-differential operators. On Hilbert spaces the class of r-nuclear operators
agrees with the Schatten-von Neumann class S, (H); in this context operators with
integral kernel on Lebesgue spaces and, in particular, operators with kernel acting of
a special way with anharmonic oscillators of the form E, = —A, + |z|*, a > 0, have
been considered on Schatten classes on L?(R") in J. Delgado and M. Ruzhansky
[16].

The proof of our results will be presented in the next section.

2. Nuclear pseudo-multipliers associated to the Harmonic oscillator
2.1. Characterization of nuclear pseudo-multipliers

In this section we prove our main result for pseudo-multipliers 7T;,,. Our criteria
will be formulated in terms of the symbols m. First, let us observe that every multi-
plier T,, is an operator with kernel K,,(x,y). In fact, straightforward computation
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show that
Tnf@) = | Kn(ey)f @)y, Kn(e,y) = > omzv)du(@)euly)  (22)
veNy

for every f € D(R™). In order to analyze the r-nuclearity of T, we study its kernel
K, by using the following theorem (see J. Delgado [6, §]).

Theorem 2.1. Let us consider 1 < p1,p2 < 00, 0 < r < 1 and let p, be such
that 1 = = 1. Let (X1, p1) and (Xa, u2) be o-finite measure spaces. An operator

T: Lpl (Xl 1) — LP2(Xo, ug) is r-nuclear if and only if there exist sequences (hy)x
in LP2(uz), and (gx) in L7 (1), such that

S Ihaloe gl < o0, and Tf(a / S o) F@)n (), o

k
(23)
for every f € LP'(uy). In this case, if p1 = pa2, and p1 = pe, (see Section 3 of [6])
the nuclear trace of T' s given by

~ [ S ooy ). (24)
x, k

Now, we prove our main theorem.

Theorem 2.2. Let 0 < r < 1. The operator T,, : LP*(R"™) — LP2(R") extends to a
r-nuclear operator, if and only if, for every v € Nij, the function m(-,v)¢, admits a
decomposition of the form

m(z,v) th g(@v), T € {x €R" 1 4y(5) £0}, (25
where {gi tren and {hi}ren are sequences of functions satisfying
o0
> lgkl" py 1k < 00 (26)

Proof. Let us assume that T, : LP*(R"™) — LP2(R"™) is a r-nuclear operator. Then
there exist sequences hy, in LP? and gj, in L1 satisfying

= /R" (Z hk($)9k(y)> fy)dy, f € LP, @)
k=1
with .
Z Hgk”l?’l ||| zpe < 00. (25)

Since every Hermite function ¢, belongs to the Schwartz class which is contain in
LP—spaces, for f = ¢, € LP' we have

Tl = [ <th )m dy—th
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Now, if we compute T3, (¢, ) from the definition of pseudo-multipliers (5), we obtain

Tn(¢v)(x) = m(z,v)¢y () (29)

where we have used the L2-orthogonality of Hermite functions. Consequently, we
deduce the identity

m(x,v) -t th 9(py), ze{xeR": ¢,(3) #0}. (30)

So, we have proved the first part of the theorem. Now, if we assume that the symbol
m of a multiplier 7, and every Hermite function ¢, satisfies the decomposition
formula 30 for fixed sequences hy in LP? and g;, in L1 satisfying (28), then from (5)
we can write

Loi@) = Y me s @fo) = 33 k@i )6,

vEND veNy k=1
=YY e / )00 (W)dyf(,)
veNg k=1
-/ < hk@c)gk(y)) S F6.)0u) | dy
k=1 veNy

_/ <th(w)gk(y)) f(y)dy,
R™ \k=1

where in the last line we have used the inversion formula (4). So, by Delgado
Theorem (Theorem 2.1) we end the proof. O

2.2. Traces of nuclear pseudo-multipliers of the harmonic oscillator

If T : E — FEisr-nuclear, with the Banach space F satisfying the Grothendieck
approximation property (see Grothendieck[22]), then there exist sequences (€], )nen,
in £’ (the dual space of E) and (yp)nen, in E such that

Tf=Y en(flyns and Y llenlmlynly < oo (31)

neNp n€Ng

In this case the nuclear trace of T is given by Tr(7T') = ZneNg el (fn). LP-spaces have
the Grothendieck approximation property and as consequence we can compute the
nuclear trace of every r-nuclear pseudo-multipliers. For to do so, let us consider a
r—nuclear pseudo-multiplier T, : LP(R"™) — LP(R"™). Since the function, »(z,y) :=
> i hie(x) gk (y) is defined a.e.w., let us choose z € R™ such that »(z, z) is finite a.e.w.
Let us consider B(z,r), the ball centered at z with radius r > 0. Let us denote by
|B(z,7)| the Lebesgue measure of B(z,7). If f = |B(z,7)|7!- 1B(z,r), Where 1p(; )
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is the characteristic function of B(z,r), we obtain

_ 1
B ) = gy (et ) v 5
but, we also have
Tm(‘B(zﬂa)‘il : 1B(zr) |B 2 | / .I' Y dya (33)

where K, is defined as in (22). So, we have the 1dent1ty

1 00
Z r | / (z,r) x i dy N W /B(z,r) <l~cz:1 hk(x)Qk(?/)) dy (34)

for every r > 0. Taking limit as » — 0" and by applying Lebesgue differentiation
Theorem, we obtain

z) = Z hi(x)gr(z), a.e.w. (35)
k=1
Finally, the nuclear trace of T, can be computed from (24). So, we have
Te(T,,) = Ky (z,z)dx —/ Z m(z, )¢, (z)*dx. (36)
Rm veNy

Now, in order to determinate a relation with the eigenvalues of T, we recall
that, the nuclear trace of an r-nuclear operator on a Banach space coincides with
the spectral trace, provided that 0 < r < % For % < r <1 we recall the following
result (see [27]).

Theorem 2.3. Let T : LP(X, u) — LP(X, p) be a r-nuclear operator as in (31). If
7—1+|7—f] then,

TT(T) = Z e;L(fn) = an(T)v (37)
neNy n

where A\, (T), n € N is the sequence of eigenvalues of T with multiplicities taken into
account.

As an immediate consequence of the preceding theorem, if T, : LP(R™) —

LP(R™) is a r-nuclear pseudo-multiplier and 1 =1+ |f — 2| then,
/ Z (z,v) ¢, (x de—Z)\ (38)
" veNy

where A, (T), n € N is the sequence of eigenvalues of T, with multiplicities taken
into account.
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