

**NEW FIXED POINT RESULTS FOR MULTI-VALUED MAPS VIA
MANAGEABLE FUNCTIONS AND AN APPLICATION ON A
BOUNDARY VALUE PROBLEM**

Abdelbasset Felhi¹, Hassen Aydi²

In this paper, by using the concepts of α -admissible mappings and manageable functions, we establish some fixed point results for multi-valued-maps in the setting of metric-like spaces. Some examples and an application on a boundary value problem are presented making effective our results.

Keywords: Hausdorff metric-like, fixed point, manageable functions.

MSC2010: 47H10, 54H25, 46J10.

1. Introduction and Preliminaries

In 1969, Nadler [19] was the first who generalized the Banach contraction principle for multi-valued mappings. Later, this theorem has been generalized and extended in many directions. The notion of metric-like spaces (also named as dislocated metric spaces) were considered by Hitzler and Seda [13] as a generalization of the notion of partial metric spaces [17]. Many authors proved some (common) fixed point results on (generalized) metric-like spaces. In 2008, Aage and Salunke [1] established some fixed point results in dislocated and dislocated quasi-metric spaces. Recently, Aydi and Karapinar [6] (see also [9]) studied the case of generalized $\alpha - \psi$ -contractions. Later, some best proximity point theorems on metric-like spaces have been presented in [8]. Moreover, Karapinar and Salimi [15] gave some details on dislocated metric spaces to metric spaces. For other related results, see [16, 23, 25]. In what follows, we recall some definitions and results we will need in the sequel.

Definition 1.1. [12, 13] Let X be a nonempty set. A function $\sigma : X \times X \rightarrow \mathbb{R}^+$ is said to be a metric-like (or a dislocated metric) on X if for any $x, y, z \in X$, the following conditions hold:

- (P₁) $\sigma(x, y) = 0 \implies x = y$;
- (P₂) $\sigma(x, y) = \sigma(y, x)$;
- (P₃) $\sigma(x, z) \leq \sigma(x, y) + \sigma(y, z)$.

The pair (X, σ) is then called a metric-like (dislocated metric) space.

Let (X, σ) be a metric-like space. A sequence $\{x_n\}$ converges to a point $x \in X$ if and only if $\sigma(x, x) = \lim_{n \rightarrow \infty} \sigma(x, x_n)$. A sequence $\{x_n\}$ in X is said to be a Cauchy sequence if $\lim_{n, m \rightarrow \infty} \sigma(x_n, x_m)$ exists and is finite. (X, σ) is said to be complete if every Cauchy sequence

¹King Faisal University, College of Sciences, Department of Mathematics and Statistics, Al-hassa. Saudi Arabia, e-mail: afelhi@kfu.edu.sa

²University of Dammam, Department of Mathematics. College of Education of Jubail, P.O: 12020, Industrial Jubail 31961. Saudi Arabia, e-mail: hmaydi@quod.edu.sa

Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

$\{x_n\}$ in X converges to a point $x \in X$ such that

$$\lim_{n \rightarrow \infty} \sigma(x, x_n) = \sigma(x, x) = \lim_{n, m \rightarrow \infty} \sigma(x_n, x_m).$$

We also have

$$\sigma(x, x) \leq 2\sigma(x, y) \quad \text{for all } x, y \in X. \quad (1)$$

Very recently, Aydi et al. [5] introduced the concept of a Hausdorff metric-like. Let $CB^\sigma(X)$ be the family of all nonempty, closed and bounded subsets of the metric-like space (X, σ) , induced by the metric-like σ . For $A, B \in CB^\sigma(X)$ and $x \in X$, define

$$\begin{aligned} \sigma(x, A) &= \inf\{\sigma(x, a), a \in A\}, \quad \delta_\sigma(A, B) = \sup\{\sigma(a, B) : a \in A\} \quad \text{and} \\ \delta_\sigma(B, A) &= \sup\{\sigma(b, A) : b \in B\}. \end{aligned}$$

We have the the following useful lemmas.

Lemma 1.1. [5, 7] *Let (X, σ) be a metric-like space and A any nonempty set in (X, σ) , then*

$$\sigma(a, A) = 0 \implies a \in \bar{A},$$

where \bar{A} denotes the closure of A with respect to the metric-like σ . Also, if $\{x_n\}$ is a sequence in (X, σ) that is τ_σ -convergent to $x \in X$, then

$$\lim_{n \rightarrow \infty} |\sigma(x_n, A) - \sigma(x, A)| = \sigma(x, x).$$

Let (X, σ) be a metric-like space. For $A, B \in CB^\sigma(X)$, define

$$H_\sigma(A, B) = \max \{\delta_\sigma(A, B), \delta_\sigma(B, A)\}.$$

We have also some properties of $H_\sigma : CB^\sigma(X) \times CB^\sigma(X) \rightarrow [0, \infty)$.

Proposition 1.1. [5, 7] *Let (X, σ) be a metric-like space. For any $A, B, C \in CB^\sigma(X)$, we have the following:*

- (i) : $H_\sigma(A, A) = \delta_\sigma(A, A) = \sup\{\sigma(a, A) : a \in A\};$
- (ii) : $H_\sigma(A, B) = H_\sigma(B, A);$
- (iii) : $H_\sigma(A, B) = 0$ implies that $A = B$;
- (iv) : $H_\sigma(A, B) \leq H_\sigma(A, C) + H_\sigma(C, B).$

The mapping $H_\sigma : CB^\sigma(X) \times CB^\sigma(X) \rightarrow [0, \infty)$ is called a Hausdorff metric-like induced by σ .

The following definition we find it in [2, 18].

Definition 1.2. *Let X be a nonempty set and $T : X \rightarrow 2^X$, be a multi-valued mapping. We say that*

T is α -admissible if, for each $x \in X$ and $y \in Tx$ with $\alpha(x, y) \geq 1$, we have $\alpha(y, z) \geq 1$ for all $z \in Ty$.

We have the following useful lemma.

Lemma 1.2. *Let (X, σ) be a metric-like space, $B \in CB^\sigma(X)$ and $c > 0$. If $a \in X$ and $\sigma(a, B) < c$ then there exists $b = b(a) \in B$ such that $\sigma(a, b) < c$.*

In 2014, Du and Khojasteh [11], introduced a new class of mappings called manageable functions and they obtained some fixed point theorems. Very recently, Hussain et al. [14] established some fixed point theorems for manageable contractions in the setting of metric spaces.

Definition 1.3. [11] *A manageable function is a mapping $\eta : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following conditions:*

(η_1) $\eta(t, s) < s - t$ for all $t, s > 0$;
 (η_2) for any bounded sequence $\{t_n\}$ in $(0, \infty)$ and any non-increasing sequence $\{s_n\}$ in $(0, \infty)$, it holds that

$$\limsup_{n \rightarrow \infty} \frac{t_n + \eta(t_n, s_n)}{s_n} < 1.$$

Let $\widehat{\text{Man}}(\mathbb{R})$ be the set of manageable functions. We provide the following two examples.

Example 1.1. [11] Let $k \in [0, 1)$. Then $\eta_k : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$\eta_k(t, s) = ks - t$$

is a manageable function.

Example 1.2. Let $\eta : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$\eta(t, s) = \begin{cases} \psi(s) - \varphi(t) & \text{if } (t, s) \in [0, \infty) \times [0, \infty), \\ f(s, t) & \text{otherwise,} \end{cases}$$

where $f : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is any function and $\psi, \varphi : [0, \infty) \rightarrow \mathbb{R}$ are two functions such that $\psi(t) < t \leq \varphi(t)$ for all $t > 0$ and $\limsup_{r \rightarrow t^+} \frac{\psi(r)}{r} < 1$ for all $t \in [0, \infty)$. Then, $\eta \in \widehat{\text{Man}}(\mathbb{R})$.

Indeed, for any $s, t > 0$,

$$\eta(t, s) = \psi(s) - \varphi(t) < s - t,$$

so, (η_1) holds. Let $\{t_n\}$ in $(0, \infty)$ be a bounded sequence and $\{s_n\}$ in $(0, \infty)$ be a non-increasing sequence. Then $\lim_{n \rightarrow \infty} s_n$ exists in $[0, \infty)$. Hence $\limsup_{n \rightarrow \infty} \frac{\psi(s_n)}{s_n} = \limsup_{r \rightarrow t^+} \frac{\psi(r)}{r} < 1$. Thus, we get

$$\limsup_{n \rightarrow \infty} \frac{t_n + \eta(t_n, s_n)}{s_n} = \limsup_{n \rightarrow \infty} \frac{\psi(s_n) + t_n - \varphi(t_n)}{s_n} \leq \limsup_{n \rightarrow \infty} \frac{\psi(s_n)}{s_n} < 1.$$

It follows that (η_2) holds.

In this paper, we present variant fixed point results for multivalued mappings involving manageable contractions via α -admissible mappings in the class of metric-like spaces. Some examples and an application on a boundary value problem are given illustrating the presented concepts and obtained results.

2. Fixed points via manageable functions

Now, we state and prove our first main result.

Theorem 2.1. Let (X, σ) be a complete metric-like space and $T : X \rightarrow CB^\sigma(X)$ be a given multi-valued mapping. Suppose that there exist a manageable function $\eta \in \widehat{\text{Man}}(\mathbb{R})$ and $\alpha : X \times X \rightarrow [0, \infty)$ such that

$$\eta(H_\sigma(Tx, Ty), M_\sigma(x, y)) \geq 0 \tag{2}$$

for all $x, y \in X$ satisfying $\alpha(x, y) \geq 1$, where

$$M_\sigma(x, y) = \max\{\sigma(x, y), \sigma(x, Tx), \sigma(y, Ty), \frac{1}{4}[\sigma(x, Ty) + \sigma(Tx, y)]\}.$$

Assume that

- (i) T is α -admissible mapping;
- (ii) there exist elements $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \geq 1$;

(iii) if $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \geq 1$ for all n and $x_n \rightarrow x$ in (X, σ) as $n \rightarrow \infty$, then there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha(x_{n(k)}, x) \geq 1$ for all k .

Then T has a fixed point.

Proof. By assumption (ii), there exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \geq 1$. Clearly, if $x_1 = x_0$ or $x_1 \in Tx_1$, we conclude that x_1 is a fixed point of T and so the proof is finished. Now, we assume that $x_1 \neq x_0$ and $x_1 \notin Tx_1$. So, $\sigma(x_0, x_1) > 0$ and $\sigma(x_1, Tx_1) > 0$.

Since $\alpha(x_0, x_1) \geq 1$, by (2), we have

$$\eta(H_\sigma(Tx_0, Tx_1), M_\sigma(x_0, x_1)) \geq 0, \quad (3)$$

where

$$\begin{aligned} M_\sigma(x_0, x_1) &= \max\{\sigma(x_0, x_1), \sigma(x_0, Tx_0), \sigma(x_1, Tx_1), \frac{1}{4}[\sigma(x_0, Tx_1) + \sigma(x_1, Tx_0)]\} \\ &= \max\{\sigma(x_0, x_1), \sigma(x_1, Tx_1), \frac{1}{4}[\sigma(x_0, Tx_1) + \sigma(x_1, x_1)]\}. \end{aligned}$$

Note that

$$\frac{1}{4}[\sigma(x_0, Tx_1) + \sigma(x_1, x_1)] \leq \frac{1}{4}[\sigma(x_1, Tx_1) + 3\sigma(x_0, x_1)] \leq \max\{\sigma(x_0, x_1), \sigma(x_1, Tx_1)\}.$$

Therefore

$$M_\sigma(x_0, x_1) = \max\{\sigma(x_0, x_1), \sigma(x_1, Tx_1)\}.$$

Define the function $\lambda : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$\lambda(t, s) = \begin{cases} \frac{t+\eta(t, s)}{s} & \text{if } t, s > 0, \\ 0 & \text{otherwise.} \end{cases}$$

By (η_1) , we have

$$0 < \lambda(t, s) < 1 \quad \text{for all } t, s > 0. \quad (4)$$

Also, if $\eta(t, s) \geq 0$, then

$$0 < t \leq s\lambda(t, s) \quad \text{for all } t, s > 0. \quad (5)$$

From (3) and (4), we get

$$0 < \lambda(H_\sigma(Tx_0, Tx_1), M_\sigma(x_0, x_1)) < 1. \quad (6)$$

Since $\sigma(x_1, Tx_1) > 0$, by using (6), we have

$$\sigma(x_1, Tx_1) < \frac{1}{\sqrt{\lambda(H_\sigma(Tx_0, Tx_1), M_\sigma(x_0, x_1))}} \sigma(x_1, Tx_1).$$

Lemma 1.2 implies the existence of a point $x_2 \in Tx_1$ such that

$$\sigma(x_1, x_2) < \frac{1}{\sqrt{\lambda(H_\sigma(Tx_0, Tx_1), M_\sigma(x_0, x_1))}} \sigma(x_1, Tx_1). \quad (7)$$

From (5), we have

$$H_\sigma(Tx_0, Tx_1) \leq M_\sigma(x_0, x_1) \lambda(H_\sigma(Tx_0, Tx_1), M_\sigma(x_0, x_1)) < M_\sigma(x_0, x_1).$$

Then

$$\sigma(x_1, Tx_1) \leq H_\sigma(Tx_0, Tx_1) < M_\sigma(x_0, x_1),$$

which implies that $M_\sigma(x_0, x_1) = \sigma(x_0, x_1)$. It follows that

$$\sigma(x_1, Tx_1) \leq \sigma(x_0, x_1) \lambda(H_\sigma(Tx_0, Tx_1), \sigma(x_0, x_1)). \quad (8)$$

Combining (7) and (8), we get

$$\sigma(x_1, x_2) \leq \sqrt{\lambda(H_\sigma(Tx_0, Tx_1), \sigma(x_0, x_1))} \sigma(x_0, x_1).$$

Note that $x_2 \neq x_1$ because $x_1 \notin Tx_1$. If $x_2 \in Tx_2$, we conclude that x_2 is a fixed point of T and so the proof is finished. Now, we assume that $x_2 \notin Tx_2$. Since T is α -admissible and $x_2 \in Tx_1$, we have

$$\alpha(x_1, x_2) \geq 1.$$

Hence by (2)

$$\eta(H_\sigma(Tx_1, Tx_2), M_\sigma(x_1, x_2)) \geq 0,$$

where

$$\begin{aligned} M_\sigma(x_1, x_2) &= \max\{\sigma(x_1, x_2), \sigma(x_1, Tx_1), \sigma(x_2, Tx_2), \frac{1}{4}[\sigma(x_1, Tx_2) + \sigma(x_2, Tx_1)]\} \\ &= \max\{\sigma(x_1, x_2), \sigma(x_2, Tx_2)\}. \end{aligned}$$

Since $\sigma(x_2, Tx_2) > 0$, by using (6), we have

$$\sigma(x_2, Tx_2) < \frac{1}{\sqrt{\lambda(H_\sigma(Tx_1, Tx_2), M_\sigma(x_1, x_2))}} \sigma(x_1, Tx_2).$$

Lemma 1.2 implies the existence of a point $x_3 \in Tx_2$ such that

$$\sigma(x_2, x_3) < \frac{1}{\sqrt{\lambda(H_\sigma(Tx_1, Tx_2), M_\sigma(x_1, x_2))}} \sigma(x_2, Tx_2).$$

Similarly, we get $\alpha(x_2, x_3) \geq 1$ and

$$\sigma(x_2, x_3) \leq \sqrt{\lambda(H_\sigma(Tx_1, Tx_2), \sigma(x_1, x_2))} \sigma(x_1, x_2).$$

Continuing in this fashion, we construct a sequence $\{x_n\}$ in X such that for all $n \geq 1$

- (i) $\alpha(x_n, x_{n+1}) \geq 1$, $x_n \notin Tx_n$, $x_n \neq x_{n+1}$, $x_{n+1} \in Tx_n$;
- (ii) $\sigma(x_n, x_{n+1}) \leq \sqrt{\lambda(H_\sigma(Tx_{n-1}, Tx_n), \sigma(x_{n-1}, x_n))} \sigma(x_{n-1}, x_n)$. (9)

From (9) and (4), we get $0 < \sigma(x_n, x_{n+1}) < \sigma(x_{n-1}, x_n)$ for all n , which implies that $\{\sigma(x_{n-1}, x_n)\}$ is a non-increasing sequence of positive reals, then it is convergent. Also, we have

$$0 < H_\sigma(Tx_{n-1}, Tx_n) < \sigma(x_{n-1}, x_n),$$

for all n , which implies that $\{H_\sigma(Tx_{n-1}, Tx_n)\}$ is a bounded sequence. From (η_2) , we have

$$\limsup_{n \rightarrow \infty} \lambda(H_\sigma(Tx_{n-1}, Tx_n), \sigma(x_{n-1}, x_n)) < 1. \quad (10)$$

Let

$$\lambda_n = \sqrt{\lambda(H_\sigma(Tx_{n-1}, Tx_n), \sigma(x_{n-1}, x_n))}, \quad \forall n \geq 1.$$

From (9), we get

$$\sigma(x_n, x_{n+1}) \leq \lambda_n \sigma(x_{n-1}, x_n), \quad \forall n \geq 1. \quad (11)$$

By (10), there exist $\gamma \in (0, 1)$ and $n_0 \in \mathbb{N}$ such that

$$\lambda_n \leq \gamma, \quad \forall n \geq n_0.$$

Hence, by (11), we get

$$\sigma(x_n, x_{n+1}) \leq \gamma \sigma(x_{n-1}, x_n), \quad \forall n \geq n_0.$$

Thus

$$\sigma(x_n, x_{n+1}) \leq \gamma^{n-n_0+1} \sigma(x_{n_0-1}, x_{n_0}), \quad \forall n \geq n_0.$$

Now, for $m > n \geq n_0$, we have

$$\begin{aligned} \sigma(x_n, x_m) &\leq \sum_{i=n}^{m-1} \sigma(x_i, x_{i+1}) \leq \sum_{i=n}^{m-1} \gamma^{i-n_0+1} \sigma(x_{n_0-1}, x_{n_0}) \leq \sigma(x_{n_0-1}, x_{n_0}) \sum_{i=n}^{\infty} \gamma^i \rightarrow 0 \text{ as } n \rightarrow \infty. \end{aligned}$$

Thus,

$$\lim_{n,m \rightarrow \infty} \sigma(x_n, x_m) = 0.$$

So $\{x_n\}$ is σ -Cauchy in the complete metric-like space (X, σ) . Then there exists $u \in X$ such that

$$\lim_{n \rightarrow \infty} \sigma(x_n, u) = \sigma(u, u) = \lim_{n,m \rightarrow \infty} \sigma(x_n, x_m) = 0.$$

We will show that u is a fixed point of T . If there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} = u$ or $Tx_{n_k} = Tu$ for all k , then $Tx_{n_k} = Tu$ for all k . Since $x_{n_k+1} \in Tx_{n_k}$ for all k , then $x_{n_k+1} \in Tu$ for all k . Hence $\sigma(u, Tu) \leq \sigma(u, x_{n_k+1})$ for all k . Letting $k \rightarrow \infty$, we get $\sigma(u, Tu) \leq 0$ and so by Lemma 1.1, we have $u \in \overline{Tu} = Tu$.

So, without loss of generality, we may suppose that $x_n \neq u$ and $x_n \neq Tu$ for all nonnegative integer n . By assumption (iii), there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha(x_{n(k)}, u) \geq 1$ for all k . Hence by (2), we have

$$\eta(H_\sigma(Tx_{n(k)}, Tu), M_\sigma(x_{n(k)}, u)) \geq 0, \quad \forall k,$$

where

$$M_\sigma(x_{n(k)}, u) = \max\{\sigma(x_{n(k)}, u), \sigma(u, Tu), \sigma(x_{n(k)}, Tx_{n(k)}), \frac{1}{4}[\sigma(x_{n(k)}, Tu) + \sigma(u, Tx_{n(k)})]\}.$$

From (5), we have

$$H_\sigma(Tx_{n(k)}, Tu) \leq \lambda(H_\sigma(Tx_{n(k)}, Tu), M_\sigma(x_{n(k)}, u))M_\sigma(x_{n(k)}, u) < M_\sigma(x_{n(k)}, u), \quad \forall k.$$

Since

$$\sigma(u, Tu) \leq \sigma(u, x_{n(k)+1}) + \sigma(x_{n(k)+1}, Tu) \leq \sigma(u, x_{n(k)+1}) + H_\sigma(Tx_{n(k)}, Tu),$$

then

$$\begin{aligned} \sigma(u, Tu) &\leq \sigma(u, x_{n(k)+1}) + H_\sigma(Tx_{n(k)}, Tu) \\ &\leq \sigma(u, x_{n(k)+1}) + \lambda(H_\sigma(Tx_{n(k)}, Tu), M_\sigma(x_{n(k)}, u))M_\sigma(x_{n(k)}, u), \quad \forall k. \end{aligned}$$

Suppose that $\sigma(u, Tu) > 0$. Then, there exists $N \in \mathbb{N}$ such that

$$M_\sigma(x_{n(k)}, u) = \sigma(u, Tu), \quad \forall k \geq N.$$

It follows that

$$\sigma(u, Tu) \leq \sigma(u, x_{n(k)+1}) + \lambda(H_\sigma(Tx_{n(k)}, Tu), \sigma(u, Tu))\sigma(u, Tu), \quad \forall k \geq N.$$

Passing to \limsup as $k \rightarrow \infty$, we get

$$\begin{aligned} \sigma(u, Tu) &\leq \limsup_{k \rightarrow \infty} \sigma(u, x_{n(k)+1}) + \sigma(u, Tu) \limsup_{k \rightarrow \infty} \lambda(H_\sigma(Tx_{n(k)}, Tu), \sigma(u, Tu)) \\ &< \sigma(u, Tu), \end{aligned}$$

which is a contradiction. Hence $\sigma(u, Tu) = 0$ and so $u \in Tu$, that is, u is a fixed point of T . \square

By using the same techniques, we may state the following results in the setting of partial metric and metric-like spaces. Mention that the partial Hausdorff metric H_p written in Theorem 2.2 has been already introduced by Aydi et al. [3].

Theorem 2.2. *Let (X, p) be a complete partial metric space and $T : X \rightarrow CB^p(X)$ be a given multi-valued mapping. Suppose that there exist a manageable function $\eta \in \widehat{Man}(\mathbb{R})$ and $\alpha : X \times X \rightarrow [0, \infty)$ such that*

$$\eta(H_p(Tx, Ty), N_p(x, y)) \geq 0 \tag{12}$$

for all $x, y \in X$ satisfying $\alpha(x, y) \geq 1$, where

$$N_p(x, y) = \max\{p(x, y), p(x, Tx), p(y, Ty), \frac{1}{2}[p(x, Ty) + p(Tx, y)]\}.$$

Assume that

- (i) T is α -admissible mapping;
- (ii) there exist elements $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \geq 1$;
- (iii) if $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \geq 1$ for all n and $x_n \rightarrow x$ in (X, σ) as $n \rightarrow \infty$, then there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha(x_{n(k)}, x) \geq 1$ for all k .

Then T has a fixed point.

Theorem 2.3. Let (X, σ) be a complete metric-like space and $T : X \rightarrow CB^\sigma(X)$ be a given multi-valued mapping. Suppose that there exist a manageable function $\eta \in \widehat{\text{Man}}(\mathbb{R})$ and $\alpha : X \times X \rightarrow [0, \infty)$ such that

$$\eta(H_\sigma(Tx, Ty), \sigma(x, y)) \geq 0 \quad (13)$$

for all $x, y \in X$ satisfying $\alpha(x, y) \geq 1$. Assume that

- (i) T is α -admissible mapping;
- (ii) there exist elements $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \geq 1$;
- (iii) if $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \geq 1$ for all n and $x_n \rightarrow x$ in (X, σ) as $n \rightarrow \infty$, then there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha(x_{n(k)}, x) \geq 1$ for all k .

Then T has a fixed point.

Remark 2.1. Theorem 2.1 is a generalization of Theorem 2 in [5]. Theorem 2.2 is a generalization of Theorem 2.2 in [4] (when considering one mapping).

We give an example to illustrate the utility of Theorem 2.1.

Example 2.1. Let $X = [0, \infty)$ and $\sigma : X \times X \rightarrow [0, \infty)$ defined by

$$\sigma(x, y) = x + y, \quad \forall x, y \in X$$

Then (X, σ) is a complete metric-like space. Define the map $T : X \rightarrow CB^\sigma(X)$ by

$$Tx = \begin{cases} [2, \infty) & \text{if } x > 1 \\ \{0, \frac{x^2}{1+x}\} & \text{if } x \in [0, 1] \end{cases}$$

Note that Tx is bounded and closed for all $x \in X$ in metric-like space (X, σ) . Take the applications $\alpha : X \times X \rightarrow [0, \infty)$ and $\eta : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined as follow

$$\alpha(x, y) = \begin{cases} 2 & \text{if } x, y \in [0, 1] \\ 0 & \text{if not} \end{cases}$$

$$\eta(t, s) = rs - t \text{ for all } s, t \in \mathbb{R} \text{ with } r \in [\frac{1}{2}, 1].$$

It is easy to show that η is a manageable function and T is an α -admissible mapping. Let $x, y \in X$ such that $\alpha(x, y) \geq 1$. This implies that $x, y \in [0, 1]$. We shall show that

$$H_\sigma(Tx, Ty) \leq \frac{1}{2}M_\sigma(x, y), \quad \forall x, y \in [0, 1].$$

For this, we consider the following cases:

Case 1: $x = y$. We have

$$\begin{aligned} H_\sigma(Tx, Ty) &= \max\{\sigma(0, Tx), \sigma\left(\frac{x^2}{1+x}, Tx\right)\} \\ &= \max\{\min\{\sigma(0, 0), \sigma(0, \frac{x^2}{1+x})\}, \min\{\sigma(0, \frac{x^2}{1+x}), \sigma\left(\frac{x^2}{1+x}, \frac{x^2}{1+x}\right)\}\} \\ &= \max\{0, \frac{x^2}{1+x}\} = \frac{x^2}{1+x} \leq x = \frac{1}{2}\sigma(x, x) \leq \frac{1}{2}M_\sigma(x, y). \end{aligned}$$

Case 2: $x \neq y$. Since σ is symmetric, it suffices to consider the case where $x > y$. We have

$$\begin{aligned} H_\sigma(Tx, Ty) &= H_\sigma(\{0, \frac{x^2}{1+x}\}, \{0, \frac{y^2}{1+y}\}) \\ &= \max\{\max\{\sigma(0, \{0, \frac{y^2}{1+y}\}), \sigma\left(\frac{x^2}{1+x}, \{0, \frac{y^2}{1+y}\}\right)\}, \\ &\quad \max\{\sigma(0, \{0, \frac{x^2}{1+x}\}), \sigma\left(\frac{y^2}{1+y}, \{0, \frac{x^2}{1+x}\}\right)\}\} \\ &= \max\{\sigma\left(\frac{x^2}{1+x}, \{0, \frac{y^2}{1+y}\}\right), \sigma\left(\frac{y^2}{1+y}, \{0, \frac{x^2}{1+x}\}\right)\} \\ &= \max\{\frac{x^2}{1+x}, \frac{y^2}{1+y}\} = \frac{x^2}{1+x} \leq \frac{1}{2}x \leq \frac{1}{2}(x+y) = \frac{1}{2}\sigma(x, y) \leq \frac{1}{2}M_\sigma(x, y). \end{aligned}$$

Thus

$$\eta(H_\sigma(Tx, Ty), M_\sigma(x, y)) = rM_\sigma(x, y) - H_\sigma(Tx, Ty) \geq (r - \frac{1}{2})M_\sigma(x, y) \geq 0.$$

Moreover, the conditions (ii) and (iii) of Theorem 2.1 are verified. Indeed, for $x_0 = 0$ and $x_1 = 0$, we have $\alpha(x_0, x_1) = 2 > 1$. Also, if $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \geq 1$ for all n and $x_n \rightarrow x$ in (X, σ) as $n \rightarrow \infty$, we get $\{x_n\} \subseteq [0, 1]$ and $|x_n - x| \rightarrow 0$ as $n \rightarrow \infty$. So, $x \in [0, 1]$. Hence $\alpha(x_n, x) = 2 \geq 1$ for all n . Then all required hypotheses of Theorem 2.1 are satisfied. Here $u = 0$ is a fixed point of T .

3. Fixed point theory in ordered metric-like spaces

The study of fixed points in partially ordered sets was developed in [10, 20–22, 24]. In this section, we give some fixed point results for multi-valued mappings in the concept of metric-like spaces endowed with a partial order. Finally, we say that $x, y \in X$ are comparable if $x \preceq y$ or $y \preceq x$ holds. Moreover, for $A, B \subseteq X$, we have $A \preceq B$ whenever for each $x \in A$ there exists $y \in B$ such that $x \preceq y$.

First, we introduce the following concept.

Definition 3.1. Let (X, σ) be a metric-like space and $T : X \rightarrow CB^\sigma(X)$ be a multi-valued mapping. The pair (X, \preceq) is said to be regular if the following condition holds: for any sequence $\{x_n\}$ in X with $Tx_n \preceq Tx_{n+1}$, for all $n \in \mathbb{N}$ and $x_n \rightarrow x \in (X, \sigma)$, then there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $Tx_{n(k)} \preceq Tx$, for all $k \in \mathbb{N}$.

We also have the following results.

Theorem 3.1. Let (X, σ, \preceq) be a complete partially ordered metric-like space. Suppose that $T : X \rightarrow CB^\sigma(X)$ is a multi-valued mapping. Suppose that there exists a manageable function $\eta \in \widehat{Man}(\mathbb{R})$ such that

$$\eta(H_\sigma(Tx, Ty), M_\sigma(x, y)) \geq 0 \tag{14}$$

for all $x, y \in X$, with $Tx \preceq Ty$, where

$$M_\sigma(x, y) = \max\{\sigma(x, y), \sigma(x, Tx), \sigma(y, Ty), \frac{1}{4}[\sigma(x, Ty) + \sigma(Tx, y)]\}.$$

Assume that

- (i) for each $x \in X$ and $y \in Tx$ with $Tx \preceq Ty$, we have $Ty \preceq Tz$ for all $z \in Ty$;
- (ii) there exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $Tx_0 \preceq Tx_1$;
- (iii) (X, \preceq) is regular.

Then T has a fixed point.

Proof. Take $\alpha : X \times X \rightarrow [0, \infty)$ such that

$$\alpha(x, y) = \begin{cases} 1 & \text{if } Tx \preceq Ty \\ 0 & \text{otherwise.} \end{cases}$$

The multi-valued mapping T is α -admissible. In fact, if $x \in X$ and $y \in Tx$ with $\alpha(x, y) \geq 1$, then $Tx \preceq Ty$. By condition (i), we have $Ty \preceq Tz$ for all $z \in Ty$, then $\alpha(y, z) = 1$. Also, by (16), T verifies (2) of Theorem 2.1. Proceeding as in proof of Theorem 2.1, we may construct a sequence $\{x_n\}$ which converges to $x \in (X, \sigma)$ and $x_{n+1} \in Tx_n$ for all $n \in \mathbb{N}$. Finally, by condition (iii) and Lemma 1.1, we conclude that x is a fixed point of T . \square

Theorem 3.2. Let (X, p, \preceq) be a complete partially ordered partial metric space. Suppose that $T : X \rightarrow CB^p(X)$ is a multi-valued mapping. Suppose that there exists a manageable function $\eta \in \widehat{Man}(\mathbb{R})$ such that

$$\eta(H_p(Tx, Ty), N_p(x, y)) \geq 0 \quad (15)$$

for all $x, y \in X$, with $Tx \preceq Ty$, where

$$N_p(x, y) = \max\{p(x, y), p(x, Tx), p(y, Ty), \frac{1}{2}[p(x, Ty) + p(Tx, y)]\}.$$

Assume that

- (i) for each $x \in X$ and $y \in Tx$ with $Tx \preceq Ty$, we have $Ty \preceq Tz$ for all $z \in Ty$;
- (ii) there exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $Tx_0 \preceq Tx_1$;
- (iii) (X, \preceq) is regular.

Then T has a fixed point.

Theorem 3.3. Let (X, σ, \preceq) be a complete partially ordered metric-like space. Suppose that $T : X \rightarrow CB^\sigma(X)$ is a multi-valued mapping. Suppose that there exists a manageable function $\eta \in \widehat{Man}(\mathbb{R})$ such that

$$\eta(H_\sigma(Tx, Ty), \sigma(x, y)) \geq 0 \quad (16)$$

for all $x, y \in X$, with $Tx \preceq Ty$. Assume that

- (i) for each $x \in X$ and $y \in Tx$ with $Tx \preceq Ty$, we have $Ty \preceq Tz$ for all $z \in Ty$;
- (ii) there exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $Tx_0 \preceq Tx_1$;
- (iii) (X, \preceq) is regular.

Then T has a fixed point.

4. Application

In this section, we consider the following two-point boundary value problem for second order differential equation:

$$\begin{cases} -\frac{d^2x}{dt^2} = f(t, x(t)), t \in [0, 1] \\ x(0) = x(1) = 0, \end{cases} \quad (17)$$

where $f : [0, 1] \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. The Green's function associated to (17) is

$$\begin{cases} G(t, s) = t(1-s) & \text{if } 0 \leq t \leq s \leq 1 \\ G(s, t) = s(1-t) & \text{if } 0 \leq s \leq t \leq 1. \end{cases} \quad (18)$$

Let us take $X = \mathcal{C}(I)(I = [0, 1])$ the space of all continuous functions defined on I . Consider the metric-like σ given by

$$\sigma(x, y) = \|x\|_\infty + \|y\|_\infty \quad \text{for all } x, y \in X,$$

where $\|u\|_\infty = \max_{t \in [0, 1]} |u(t)|$ for each $u \in X$. Clearly, (X, σ) is complete. Note that σ is not a partial metric.

It is well known that $x \in C^2(I)$ is a solution of (17) if and only if $x \in X = C(I)$ is a solution of the integral equation

$$x(t) = \int_0^1 G(t, s) f(s, x(s)) ds, t \in I. \quad (19)$$

Inspired from [6], we state the following result.

Theorem 4.1. *Suppose the following conditions hold:*

- there exists a continuous function $\beta : I \rightarrow [0, \infty)$ such that

$$|f(s, a)| \leq 8\beta(s)|a|,$$

for each $s \in I$ and $a \in \mathbb{R}$;

- $\sup_{s \in I} \beta(s) = k \in (0, 1)$.

Then the problem (17) has a solution $u \in X$.

Proof. Consider the mapping $T : X \rightarrow X$ defined by

$$Tx(t) = \int_0^1 G(t, s) f(s, x(s)) ds,$$

for all $x \in X$ and $t \in I$. Note that problem (17) is equivalent to finding $u \in X$ that is a fixed point of T . For $x, y \in X$, we have

$$\begin{aligned} |Tx(t)| &= \left| \int_0^1 G(t, s) f(s, x(s)) ds \right| \\ &\leq \int_0^1 G(t, s) |f(s, x(s))| ds \\ &\leq 8 \int_0^1 G(t, s) \beta(s) |x(s)| ds \\ &\leq 8k \|x\|_\infty \sup_{t \in I} \int_0^1 G(t, s) ds \\ &= k \|x\|_\infty. \end{aligned}$$

We have used the fact that for each $t \in I$, we have $\int_0^1 G(t, s) ds = -\frac{t^2}{2} + \frac{t}{2}$, and so $\sup_{t \in I} \int_0^1 G(t, s) ds = \frac{1}{8}$. Thus

$$\|Tx\|_\infty \leq k \|x\|_\infty. \quad (20)$$

Proceeding similarly, one can get

$$\|Ty\|_\infty \leq k \|y\|_\infty. \quad (21)$$

Summing (20) to (21), we find

$$\begin{aligned} \sigma(Tx, Ty) &= \|Tx\|_\infty + \|Ty\|_\infty \\ &\leq k(\|x\|_\infty + \|y\|_\infty) \\ &= k \sigma(x, y) \leq kM(x, y). \end{aligned}$$

Thus

$$\eta(H_\sigma(Tx, Ty), M_\sigma(x, y)) =: kM(x, y) - H_\sigma(Tx, Ty) \geq 0.$$

So all hypotheses of Theorem 2.1 are satisfied (with $\alpha(x, y) = 1$), and so T has a fixed point $u \in X$, that is, the problem (17) has a solution $u \in C^2(I)$. \square

Acknowledgment: The authors express their gratitude to the referees for constructive and useful remarks.

REFERENCES

- [1] *C.T. Aage, J.N. Salunke*, The results on fixed points in dislocated and dislocated quasi-metric space, *Appl. Math. Sci.* **2** (2008), 2941-2948.
- [2] *J.H. Asl, S. Rezapour, N. Shahzad*, On fixed points of $\alpha - \psi$ -contractive multifunctions, *Fixed Point Theory Appl.* **2012**, 2012:212.
- [3] *H. Aydi, M. Abbas, C. Vetro*, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, *Topol. Appl.* **159** (2012), 3234–3242.
- [4] *H. Aydi, M. Abbas, C. Vetro*, Common fixed points for multivalued generalized contractions on partial metric spaces, *RACSAM*, **108** (2014), 483–501.
- [5] *H. Aydi, A. Felhi, E. Karapinar, S. Sahmim*, Hausdorff Metric-Like, generalized Nadler's fixed point theorem on metric-like spaces and application, *Miskolc Math. Notes*, 2017, in press.
- [6] *H. Aydi, E. Karapinar*, Fixed point results for generalized $\alpha - \psi$ -contractions in metric-like spaces and applications, *Electronic Journal of Differential Equations*, Vol. **2015** (133) (2015), 1-15.
- [7] *H. Aydi, A. Felhi, S. Sahmim*, Fixed points of multivalued nonself almost contractions in metric-like spaces, *Mathematical Sciences*, **9** (2015), 103–108.
- [8] *H. Aydi, A. Felhi*, Best proximity points for cyclic Kannan-Chatterjea-Ćirić type contractions on metric-like spaces, *J. Nonlinear Sci. Appl.* **9** (2016), 2458–2466.
- [9] *H. Aydi, A. Felhi, S. Sahmim*, On common fixed points for (α, ψ) -contractions and generalized cyclic contractions in b -metric-like spaces and consequences, *J. Nonlinear Sci. Appl.* **9** (2016), 2492-2510.
- [10] *H. Aydi, H.K. Nashine, B. Samet, H. Yazidi*, Coincidence and common fixed point results in partially ordered cone metric spaces and applications to integral equations, *Nonlinear Anal.* **74** (2011), 6814-6825.
- [11] *W.S. Du, F. Khojasteh*, New results and generalizations for approximate fixed point property and their applications. *Abstr. Appl. Anal.* **2014**, Article ID 581267 (2014).
- [12] *A.A. Harandi*, Metric-like spaces, partial metric spaces and fixed points, *Fixed Point Theory Appl.* **2012** (2012), 2012:204.
- [13] *P. Hitzler, A.K. Seda*, Dislocated topologies, *J. Electr. Eng.* **51** (2000), 3-7.
- [14] *N. Hussain, I. Iqbal, M.A. Kutbi*, Fixed point theorems for manageable contractions with application to integral equations, *Journal of Function Spaces*, Volume **2017**, Article ID 7943896, (2017), 10 pages.

- [15] *E. Karapinar, P. Salimi*, Dislocated metric space to metric spaces with some fixed point theorems, *Fixed Point Theory Appl.* **2013**, (2013), 2013:222.
- [16] *P.S. Kumari*, Some fixed point theorems in generalized dislocated metric spaces, *Math. Theory Model.* **1** (4) (2011), 16-22.
- [17] *S.G. Matthews*, Partial metric topology, *Proc. 8th Summer Conference on General Topology and Applications, Annals of the New York Academy of Sciences*, **728** (1994), 183-197.
- [18] *B. Mohammadi, S. Rezapour, N. Shahzad*, Some results on fixed points of $\alpha - \psi$ -Ćirić generalized multifunctions, *Fixed Point Theory Appl.* **2013**, 2013:24
- [19] *S.B. Nadler*, Multi-valued contraction mappings, *Pacific J. Math.* **30** (1969), 475-488.
- [20] *J.J. Nieto, R. Rodriguez-Lopez*, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, *Order*, **22** (2005), 223-239.
- [21] *J.J. Nieto, R. Rodriguez-Lopez*, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, *Acta Math. Sin. (English Ser.)*, **23** (2007), 2205-2212.
- [22] *A.C.M. Ran, M.C. Reurings*, A fixed point theorem in partially ordered sets and some applications to matrix equations, *Proc. Amer. Math. Soc.* **132** (2004), 1435-1443.
- [23] *M. Shrivastava, K. Qureshi, A.D. Singh*, A fixed point theorem for continuous mapping in dislocated quasi-metric spaces, *Int. J. Theor. Appl. Sci.* **4** (1) (2012), 39-40.
- [24] *M. Turinici*, Abstract comparison principles and multivariable Gronwall-Bellman inequalities, *J. Math. Anal. Appl.* **117** (1986), 100-127.
- [25] *K. Zoto*, Some new results in dislocated and dislocated quasi-metric spaces. *Appl. Math. Sci.* **6** (71) (2012), 3519-3526.