U.P.B. Sci. Bull., Series A, Vol. 87, Iss. 2, 2025 ISSN 1223-7027

SOME NEW RESULTS ON WEIGHTED GRAND LORENTZ SPACES

Ilker ERYILMAZ*

The concept of Lebesgue space has been generalized to the grand Lebesgue
space with non-weight and weight, and the classical Lorentz space concept has been gen-
eralized to grand Lorentz spaces with a similar logic in literature. In this study, instead of
using rearrangement function of a measurable function, weighted grand Lorentz spaces
are defined by using the mazimal function for 1 < p,q < oo. In addition, being Ba-
nach function space and some inclusion properties in weighted grand Lorentz spaces are
investigated.
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1. Introduction

The concept of grand Lebesgue spaces, introduced by Iwaniec and Sbordone in [10]
and in somewhat more general form in [8], provides a natural generalization of classical
Lebesgue spaces. These spaces, denoted by LP), are defined for 1 < p < co on a finite mea-
sure space (X, Y, ). Unlike standard Lebesgue spaces, grand Lebesgue spaces encompass
measurable functions whose integrability varies over a range of exponents. For any f € LP),
the functional
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defines a norm, making LP a Banach function space. These spaces satisfy the inclusion
LP C ILP) ¢ LP~¢ for 0 < € < p — 1, highlighting their flexibility in handling functions that
exhibit varying integrability.

Recent researchs [5, 7, 11, 12, 13, 14, 15] and [18] have shown that grand Lebesgue
spaces are particularly useful in applications involving the Jacobian integrability problem,
partial differential equations, variational problems and harmonic analysis. These spaces have
been employed in studying maximal functions, extrapolation theory and other areas where
classical Lebesgue spaces may be insufficient. Moreover, the harmonic analysis of grand
Lebesgue spaces has been extensively developed, with applications ranging from weighted
inequalities to operator theory.

A significant generalization of grand Lebesgue spaces, denoted by

(| L= =17 (X),

0<e<p—1
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was introduced in [8]. These spaces extend 2 (X) by incorporating an additional parameter
6 > 0, which provides further flexibility. The norm for any f € LP)? (X) is given by
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where LP)? (X) reduces to classical Lebesgue spaces when § = 0 and to grand Lebesgue
spaces when # = 1. These spaces have applications in weighted inequalities and their
structural properties, such as being rearrangement invariant Banach function space, have
been studied in depth [1, 8]. Also we have L? (X) C LP? (X) C LP~¢ (X)) for0 <e <p—1
and L? (X) c L)% (X) c LP)%2 (X) for 0 < 6; < 65 [1, 9].

It is important to remember that the subspace of test functions C§° (X) is not dense
in LP-? (X). If one calls the closure of C§° (X) in LP? (X) as EP)? (X), then we get that

EPY(X) = {f e LPY(X): lim €ﬁ||f|‘p—6 = O}
e—0+

is a closed subspace of LP)? (X) and L)% (X) c EP)}%2 (X) for 0 < 6; < 65.

The small Lebesgue spaces are introduced in [5]. According to that, the small
Lebesgue space L(P consists of all measurable functions g on a finite measure space (X, )
which can be represented in the form g = > .2, gr (convergence a.e.) and such that the
following norm is finite:

oo
1
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HgH(p g:l%gk k:10<612p’—16 P Hng(p/,g),

where ||g||, stands for the normalised norm in LP space:

ot = (51 /- |g<x>|pdx);

and 1 < p < oo, ;—i—% = 1. In[7], the authors characterised these spaces as > —extrapolation
and interpolation spaces. They showed that
. — . 1
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holds for 1 < p < co. Here LP",0 < p < 00,0 < r < oo are the usual Lorentz spaces

with the quasi-norm
o 1
1 " i s
ot = { [ [0 atge}
0

Let 1 < p < co and w be a weight function, i.e. measurable, positive almost every-

where and locally integrable on X. Weighted grand Lebesgue spaces denoted by Lﬁ,) are the
space of ¥—measurable functions defined on finite measure space (X, 3, 1) such that
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is finite for any f € Lﬁ}) . Weighted grand Lebesgue spaces have been introduced to address

problems involving weight functions in [6]. The boundedness of the Hardy-Littlewood max-

imal operator on the space L’ZJ) was also examined in the same paper. Further work has

explored the Riesz potential and its boundedness on weighted grand Lebesgue spaces [13].
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In addition to these, the classical weighted Lorentz and grand Lorentz spaces were compared
and the boundedness of the maximal operator was examined in [4, 17].

2. Preliminaries

Throughout the paper L (u) will denote the linear space of all equivalence classes of
Y-measurable functions on X and x4 will be used for the characteristic function of a set A.
For any two non-negative expressions (i.e. functions or functionals), A and B, the symbol
A < B means that A < ¢B, for some positive constant ¢ independent of the variables in the
expressions A and B. If A < B and B < A, we write A ~ B and say that A and B are
equivalent.

Let X = (X, X, 1) be a o—finite measure space and w be a weight function. Weighted
Lorentz spaces or Lorentz spaces over weighted measure spaces L (p,q, wdu) are studied
and discussed in [3, 16] by taking the measure wdy instead of the measure u. Then the
distribution function of f which is considered real-valued, measurable and defined on the
measure space (X, wdu)

Na@=wleXs f@I>u= [ w@de), 20
{zeX: [f(2)|>y}
is found. The nonnegative rearrangement of f is given by
fo (#) =inf{y >0: A5 (y) <t} =supfy>0:Ap0(y) >1}, t>0
where we assume that inf @ = co and sup @ = 0. Also the average (maximal) function of f

on (0, 00) is given by

0= [ s

Note that A (-), fi (-) and fi* (-) are non-increasing and right continuous functions.
The weighted Lorentz space L (p, ¢, wdp) is the set of all classes of ¥ —measurable functions

f such that ||fH;7q’w < 00, where

(28 17 )7 dr) ", 0<pig< oo

supt%fj;(t), 0<p<oo,qg=00
t>0

1117, g.00 = (1)

Pigw
But by replacing f with f* in (1), we get that L (p, ¢, wdp) is a normed space, with the

norm |||, ., under certain restrictions on p and g.
Ifl<p<ooandl<gq< oo, then

p
||f||;7q,w < ||f||p,q,w < Zfl Hf”;,q,w

where the first inequality is an immediate consequence of the fact that f; < f** and the
second follows from the Hardy inequality.
For more on weighted Lorentz spaces one can refer to [3, 16] and references therein.

In general, however, ||| is not a norm since the Minkowski inequality may fail.

Remark 2.1. The case p = 00 and 0 < g < 0o is not important for L (p,q, wdu) because of
L (p, g, wdp) = {0}.

3. Main Results

Let X = (X, X, 1) be a finite measure space and w be a weight function, i.e. ¥—measurable,
positive, locally integrable function on X. Using average function f* (-) instead of nonneg-
ative rearrangement f (-) used in the definition of grand Lorentz space in [17], we defined
the weighted grand Lorentz spaces as follows.
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Definition 3.1. The weighted grand Lorentz space Lﬁ,’q) = Lﬁ,’q) (X,3,p) is the set of all
classes of complex-valued, Y —measurable functions which are defined on the measure space

(X, 3, wdp) such that ||f|\;iq) < 0o for any f € LY where

1

sup ei: (2 fow(X) £ [frr ()] E dt)qj , 0<p,qg<oo
IfI1 = o<e<a—1 P
P 1
P sup v fir (), 0<p<oo, g=o00
o<t<w(X)

and w(X) = [yw(z)dp(z). In particular, if 1 < p < 00,1 < qg<o0;p=gq=1or

)

p = q = o0, then the functional H~||;f’q) is a norm and so the normed space L';" is a Banach

space.

Remark 3.1. ijjq) space is not normable if 0 < p < oo, 0<g¢g<lor0<p<1l,1<¢g<
orp=1,1<q < 0.

Lemma 3.1. Let f € L (p,q,wdp). Then t7 £ (1) <[], 4.0-

Proof. For any f € L (p,q,wdu), we have
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by using the non-increasing property of f* (-). O

The following theorem gives the inclusion property of weighted grand Lorentz spaces
and regular weighted Lorentz spaces.

Theorem 3.1. If 1 < p < oo and 1 < q < oo, then L (p,q,wdy) C 59,
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Proof. Firstly, let 1 < ¢ < oo. By using (2) in the preceding Lemma, for any f € L (p, ¢, wdu)

we have
1 q w(X) 4 ﬁ
My = o =7 (5 [ 6 U e
0

0<e<g-—1 p
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w(X) ge \7°
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= qu(X) 7 [[fll,qw-
Similarly for ¢ = oo,
1 1
IAIE = sup 3£ (1) < supth £7 (8) = 1]
0<t<w(X) o<t

can be written. Therefore we have showed an embedding result in the framework of grand
and classical weighted Lorentz spaces. 0

Example 3.1. Let E € ¥ with w(E) < oo. The non-increasing rearrangement of xg is
found as

(XE ) (t) = X[0,u(m)) (t) -
Following this, we get

e 0= [l 0d={ Ly i Zuim
0

Therefore || x gl

p,o0,w

el = L[ [l )" ar
g w( . q w(X) a1 1 q
_ 5/0 ; dt+p/w(E) ¢ Lw(E)] dt (3)
= (w(E)F 47w (E) w(X) 7 — (w(E)?],

where %—i— % = 1. Consequently, we see that xg € L (p,q,wdu) and so xg € L]Z,’Q) by

Theorem 3.1. Moreover, we have

w(X) o
et = o<§1£—1 1%5 / tr ! ((xe)y (8) " dt
0
= D @E)F+ R [wE) e (07— w @)
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if 1 <p,q<oo, and

w 1 ok 1
IxBllp,q = sup  t7 (xm), (t) = (w(E))?
0<t<w(X)

if 1 <p<oo,qg=o0.
Lemma 3.2. Let h be a decreasing function on (0,1). If 0 < a <1 and 8 > 0, then

1 @ 1

w7 hi(uw)du | < afT [ uP (b (w)® du
/ /

0 0

and the constant a1~ is sharp [2].
Lemma 3.3. Letl1<p<oo, 1<g<r<ooand f € Lﬁ}q) ﬂLﬁ}T). Then

1 1
w(X) r—e w(X) q—¢
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3
0 0

forany0<e<qg—1.

Proof. Let 1 <p< oo, 1<qg<r<oo. Forany f € L{L’Q) N qu’r), we have
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If we apply Holder’s inequality with parameters a = 4=, b
then we get
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In other words,

w(X) r—e w(X) -

G @) | < EF (L () de
[

(gw (X)Z)(qg)(:s)]

g

can be written.

Theorem 3.2. Letl <p< oo and 1 < q; < g < o0o. Then
< Cllly,

I ”p q2) = P, q1)

where the sharp constant is

(g2—1)(q91 —4q2)
€ = Lyp i (x)
q1

Therefore qum) — qu"h),

Proof. Let’s take any f € L%, If we use the inequality (4), then the following
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q1
can be written and C (p, g1, g2, w (X)) is sharp.

Remark 3.2. An alternative proof can be given by using Lemma 3.2 in which =

[ O = h(t) and a = {1=53.

(g2—¢)

P = w(X) -
q2 (qlg) a2 </ t% 1 [f:;* (t)]qz—a dt)
p 0

(4)
O

O

q2
p )

Corollary 3.1. Since weighted grand Lorentz spaces are defined on a finite measure space,
the embedding Lﬁ,’q) — LZS) can be proved easily for all0 <r <p < oo and 0 < q,s < 0.

Theorem 3.3. Let 1 < p < 00 and 1 < ¢ < 0o. If ws < wy, then LEY ¢ LED.
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Proof. Let 1 < p < oo and 1 < ¢ < oo and wi,ws be weights satisfying we < wy. Since
wy < w1, then there exists C' > 0 such that ws () < Cw; (z) for all z € X. By using the

definitions of distribution, rearrangement and maximal(average) functions, we get

)‘f«,w2 (y) =

IN

for any y > 0. Moreover

and so
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inf {y > 0: Apw, (y) <t}
inf{y > 0:CAfw, (y) <t}

e
= (2)
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w2

e}
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can be written by change of variable. If we take the norm of f € L3}’ according to ||-||

P,q)

then
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is found. Therefore Lﬁ,’f) C qu’;f) when we < wj.

wa
1,q)’
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Discussion

This study highlights the complexity and significance of weighted and grand Lorentz
spaces in functional analysis. Weighted spaces offer flexibility through weight functions, dis-
tributing function spaces to various mathematical models and applications. Grand Lorentz
spaces extend Lorentz spaces, enriching function space theory and revealing intricate geo-
metric properties.

Our exploration uncovered key results, from fundamental properties to operator be-
havior, with applications in signal processing, image reconstruction, and mathematical
physics. As this field continues to evolve, the interplay between weight functions, func-
tion space geometry, and operator theory presents new research opportunities.

Ultimately, weighted grand Lorentz spaces remain fundamental in functional analysis,
paving the way for future discoveries and advancements in this dynamic field.

Conclusion

After reading this paper, one can

(i) consider further investigating the properties and characterizations of weighted
grand Lorentz spaces. This could include analyzing specific function classes, exploring con-
tinuity properties, and examining their connections with other function spaces.

(ii) study the behavior of various operators on weighted grand Lorentz spaces, includ-
ing maximal, integral, differential operators, and the Hilbert transform. This exploration
may involve analyzing their boundedness, compactness, and spectral properties within the
framework of weighted spaces.

(iii) study the approximation properties of functions in weighted grand Lorentz spaces,
investigating like interpolation methods or wavelet decompositions. This includes exploring
optimal approximation rates and the role of weight functions in approximation accuracy.

(iv) apply harmonic analysis and PDE techniques to study phenomena in these
spaces. This includes investigating existence, uniqueness and regularity of PDE solutions
on weighted domains and exploring connections with harmonic analysis, such as Fourier
analysis on weighted spaces.

(v) examine the interplay between weight functions and geometric properties such
as smoothness, convexity, and the Radon-Nikodym property and deal with embeddings of
weighted spaces into other function spaces.

(vi) explore applications of weighted grand Lorentz spaces in fields like image pro-
cessing, data analysis and mathematical physics, leveraging their flexibility to model and
analyze real-world phenomena more effectively.

(vii) extend weighted grand Lorentz spaces to broader frameworks like variable ex-
ponent Lebesgue spaces, Karamata spaces or Orlicz spaces, exploring their properties and
applications
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