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DOUBLE DIFFUSION CONVECTION IN A TILTED SQUARE
POROUS DOMAIN UNDER CROSS TEMPERATURE AND
CONCENTRATION GRADIENTS

Nabil OUAZAA'!, Smail BENISSAAD?, Mahmoud MAMOU?

The present study focuses on double diffusion natural convection in a tilted
square porous cavity saturated with a binary fluid subjected to cross temperature and
concentration gradients. The Darcy model with the Boussinesq approximation,
energy and species transport equations are solved numerically using the classical
finite difference method with a time-accurate scheme. The case of equal thermal and
solutal buoyancy forces is considered. For this situation, an equilibrium state solution
corresponding to the rest state is possible and the resulting onset of motion can be
either supercritical or subcritical. The study is carried out for an inclination angle of
45°. The results are presented in terms of Nusselt and Sherwood numbers, and flow
intensity as functions of the thermal Rayleigh number. In this study, the thresholds for
the onset of convection are determined as _function of the Lewis number.

Keywords: Double diffusion Convection, Porous medium, Supercritical
Rayleigh number, Subcritical Rayleigh number.

1. Introduction

The dynamics of heat and mass transfer can be very different from those
driven by the temperature field solely. Interest in coupled heat and mass transfer
due to buoyancy forces in porous media has been motivated by such diverse
engineering problems related to the dispersion of chemical contaminants through
water-saturated soil, exploitation of continental geothermal reservoir, migration of
moisture through the air contained in fibrous insulation, metallurgy,
electrochemistry, geophysics, etc.
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A comprehensive review on the phenomena of heat and mass transfer and
convection in porous media could be found in the book by Nield and Bejan [1].
Mamou et al. [2] examined the flow in a square cavity subjected to horizontal fluxes
of heat and mass. In case where the volume forces are in opposite direction and
same order of magnitude, the existence of multiple solutions was demonstrated. The
existence of multiple solutions depended heavily on the thermal Rayleigh and
Lewis numbers. Mansour et al. [3] studied numerically the Soret effect on multiple
solutions in a square cavity. The authors concluded that the Soret parameter might
have a strong effect on the convective flow. One, two or three solutions were found
to be possible. Mohamad and Bennacer [4] obtained numerical results, on the basis
of two- and three-dimensional flows, of heat and mass transfer in a horizontal
enclosure with an aspect ratio of two and filled with a saturated porous medium.
The enclosure was heated differentially and a stably stratified species concentration
was imposed vertically. It was found that the difference in the rates of heat and mass
transfer predicted by the two models was not significant. Mansour et al. [5] studied
numerically the Soret effect on fluid flow and heat and mass transfer induced by
double diffusive natural convection in a square porous cavity submitted to cross
gradients of temperature and concentration. They concluded that the Soret effect
might affect considerably the heat and mass transfer rates as it led to an
enhancement or to a reduction of the mass transfer rate, depending on the flow
structure and on the sign and magnitude of the Soret coefficient. Bourich et al. [6]
studied analytically and numerically the Soret effect on thermal natural convection
within a horizontal porous enclosure uniformly heated from below by a constant
heat flux, using the Brinkman extended Darcy model. It was found that the Soret
separation parameter had a strong effect on the thresholds of instabilities and on the
heat and mass transfer characteristics. Saeid [7] studied the problem of natural
convection in a two-dimensional square vertical porous cavity with the hot (left)
wall temperature oscillating in time. The author found that during the heat transfer
process, the hot wall temperature dropped and resulted in a temperature higher than
the hot wall temperature at some locations inside the cavity. Also, it is observed
that the average Nusselt number had a peak value at the non-dimensional frequency
of 450 within the range considered (1-2000) for a Rayleigh number of 103, because
the convection currents were stronger than those occurred at other frequencies. The
transient free convection in a two-dimensional square cavity filled with a porous
medium was considered by Saeid and Pop [8]. The flow was driven by considering
the case when one of the cavity vertical walls was suddenly heated and the other
one was suddenly cooled, while the horizontal walls were kept adiabatic. The
results were obtained for the initial transient state up to the steady state for Rayleigh
number values of 1010, It was observed that the average Nusselt number showed
an undershoot during the transient period and that the time required to reach the
steady state is longer for low Rayleigh number and shorter for high Rayleigh
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number. Mansour, et al. [9] studied the transient MHD natural convection in an
inclined cavity filled with a fluid saturated porous medium by including the effects
of the magnetic field and heat source in the solid phase. The flow was driven by
considering the case when one of the cavity vertical walls was suddenly heated and
the other one was suddenly cooled, while the horizontal walls were adiabatic. The
authors found that, in general, the temperature of the fluid could be increased by
increasing both of the Magnetic field force and the inclination angle. Sezai and
Mohamad [10] presented results for three-dimensional flow in a cubic cavity filled
with a porous medium and subjected to opposing thermal and concentration
gradients. Their results revealed that for a certain range of the controlling
parameters, the flow became three-dimensional and multiple solutions were
possible within the range. The stability of the flow structures was studied by
Bergeon et al. [11] where the mechanisms by which the stable solutions lost stability
or unstable solutions regained stability were determined. The authors also studied
the influence of the cavity inclination on the stability and bifurcation of the
solutions and found that the bifurcation at the critical Rayleigh number was either
transcritical or pitchfork, depending on the aspect ratio and the inclination angle of
the cavity. Vasseur et al. [12] studied analytically and numerically the flow in a
tilted rectangular cavity and observed that the maximum heat transfer rate, for a
given Rr, was obtained when the cavity was heated from below, with 8 in the range
of 90° < 8 < 180°. They found that the maximum rate took place for values of 8
approaching 90° whenever Rr increased. Trevisan and Bejan [13] used a numerical
method and scale analysis to study double diffusion convection in a porous square
cavity, with the vertical walls maintained at constant temperatures and
concentrations. It was found that the fluid flow was possible beyond a critical
Rayleigh number when Le#1. However, the fluid motion disappeared completely
for the Le=1 and N=-1. The results of this analysis were found in agreement with
the numerical study.

In this work, a numerical study was conducted to examine the effect of the
Rayleigh number on the heat and mass transfer rates in a porous square cavity tilted
at 45°. We had examined the case where the thermal and mass buoyancy forces are
equal and for different values of the Lewis number. Darcy's model is used to
simulate the double diffusive convection inside the cavity. The existence of solution
was demonstrated and the threshold for the onset of convection was obtained using
a novel numerical method.

2. Mathematical formulation
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The physical configuration considered in this work is a square (4=L /H=1)
porous enclosure as shown in Fig. 1. The origin of the coordinates system is located
at the cavity centre. Constant and crossed thermal and mass fluxes ¢’ and j" were
imposed on the walls of the cavity. The fluid saturating the porous matrix is
incompressible and Newtonian, and obeys the Darcy law and the Boussinesq
approximation.

Fig. 1. Geometry of the problem.

The governing equations that describe the double-diffusive convection
inside the enclosure are expressed in terms of the stream function, temperature and
concentration in dimensionless form as:

V2@ = —R,F(T + NS) (1)
rer = 2L, @)
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where ¥ is the dimensionless stream function defined such that:
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and the operators F and J are defined as follows:
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The variables # and v are the dimensionless velocity components, 7" and §
are the dimensionless temperature and concentration, ¢ is the dimensionless time, x
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and y are the dimensionless coordinate axes, Ry is the thermal Rayleigh number, N
is the ratio of the buoyancy forces, @ is the inclination angle, Le is the Lewis number
and ¢ is the normalized porosity of the porous medium. In the Darcy model, the
inertia and viscosity forces are assumed negligible and the Reynolds number based
on the pores size is assumed to be very low.

The dimensionless boundary conditions are given by:
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3. Numerical solution

The numerical solution of the equations governing the convective flows (1)-
(3) with the boundary conditions (4)-(5) is obtained using a finite difference
scheme. The entire domain, as shown in Figure 1, has been discredited with a
uniform mesh (101x101). The solution includes the stream function, the
temperature and concentration fields. A central finite difference scheme with
second-order precision is used to transform the basic equations into a set of finite
difference discretized equations. The energy and concentration equations, after
having been written in a conservative form, are solved using the alternating
direction implicit (A.D.I) method, while the stream function field is obtained from
the Darcy equation using the successive over-relaxation (S.O.R) method with a
convergence criterion based on the residual less or equal to 10, The Nusselt and
Sherwood numbers were integrated numerically using the Simpson scheme.

4. Calculation of the Critical Rayleigh Number

In what follows we present a new method for determining the onset of
instabilities in natural convection. The calculation method of the supercritical
Rayleigh number ( Ry ) requires at least two flow simulations above and below
the threshold of instability. For Le=1 and by trial and error procedure, using the
numerical code which solves the full governing equations, it was found that for
R7=15, 10 and 15 the solution is purely conductive (rest state), however, for R7=20,
a convective solution is triggered and leads to a convective steady state solution.
Even for R7=18 the solution is convective. Thus, obviously the threshold for the
onset of convection must be within the interval [15, 18]. As known, for infinitesimal
amplitude convection, the time evolution of the flow intensity is exponential,
according to the linear stability analysis, and can be correlated by ¥ gmax(t) =
YoePt where Woay is the convective flow amplitude and ¥ is the initial flow
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amplitude at /=0. The parameter p represents the perturbation amplitude growth
rate. When p <0, the flow is decaying, and when p > 0 the flow is amplified in time.
Then, p < 0 is obtained below the threshold of convection and p > 0 occurs above
the threshold. By performing two simulations for two Rayleigh numbers below and
above the threshold, the growth rate parameter can be computed numerically. Then
the threshold of convection can be determined accurately by interpolation for p=0,
the situation where the marginal stability occurs. Now, applying this procedure,
starting first from a pure conductive state (instable), for R7=18, a flow simulation
is performed. The flow intensity time history is presented in Fig. 2. An excellent
exponential curve fit is obtained ¥ g,,q,< 102. For this case, the solution is marched
in time and converged to a steady state convective solution. Now, for Rr=15, using
the converged solution as initial conditions, the flow simulation is carried again and
as can be seen from Fig. 2, the flow decays towards the pure conductive state.
Focusing only on the infinitesimal curve branch, 107! <¥,,... < 102 an
exponential curve fit is presented. The growth rate parameter, using the exponential
curve fit, is obtained as p=1.117 for R7=18 and p=-0.756 for R;=15. Using linear
interpolation for p=0, the threshold of marginal stability is obtained as R ;Iép=l6.2 l.

10°

10"

Fig. 2. Flow intensity time histories below and above the threshold of supercritical convection for
Le=1.

5. Results and discussion

The present study is limited to the state of equilibrium where the thermal
and solutal buoyancy forces are equal. Under these conditions, a solution of the rest
state is possible and a threshold exists for the onset of convective flows. The effect
of the Rayleigh and Lewis numbers on the flow behavior and on the heat and mass
transfer rates is investigated and the convective flow instability thresholds are
determined. The threshold of subcritical convection and the onset of natural
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convective were approximately determined from the numerical. The determination
of the supercritical Rayleigh number is explained in section 4.

' T S

Fig.3. Stream function, temperature and concentration contours obtained for Rr=100:
a) Le=1: W= 0.00 Yyor= 3.89 Nuy=3.19 Shy= 2.78
b) Le=0.1: Yomir=-7.37 Yomax= 0.00 Nup=4.21 Shy= 1.13
¢) Le=10: Y= 0.00 Pyper= 3.16 Nu,,=3.07 Sh,= 9.38.

Fig. 3 represents the contours of the stream function, temperature and
concentration obtained for R7 =100 and Le = 10, 1 and 0.1. Fig. 4 (a) shows the
intensity of the flow. The effect of the Rayleigh number on the heat and mass
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transfer rates, Nu and Sh, is presented in Fig. 4 (b) and (c), respectively, for various
values of Le. The heat and mass transfer rates and the flow intensity are seen to
increase monotonically with Rr. It is observed that, when R7 is relatively small, the
flow intensity magnitude increases with the Lewis number. The same trend is
observed for the Nusselt number. However, it is found that the Sherwood number
increases monotonically with the Lewis number.
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Fig. 4. Bifurcation diagram as a function of Rr and Le: (a) Flow intensity,
(b) Nusselt number, and (¢) Sherwood number.

As shown in Fig. 4 (a), natural convection is usually the preferable solution
when launching the flow simulation using the rest state solution as initial
conditions. As the mass diffusivity is greater than the thermal diffusivity (Le= 0.1),
the heat transfer rate is higher than the mass transfer rate and conversely for the
case where the thermal diffusivity exceeds the mass diffusivity (Le = 10). In our
study, we have two types of bifurcations, a supercritical bifurcation for Le = 1, and
a subcritical bifurcation for Le = 0.1 and 10 (see Table 1).
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Critical values of Ry and R3%’ and type of bifurcations.
Le | Ry& R3ub Bifurcation
10 2.86 2.50 Subcritical
1 16.21 Supercritical
0.1 ] 2934 25.07 Subcritical

Within a narrow range of the Rayleigh number near the critical point, the
bifurcation diagrams are illustrated in Fig. 5 for various values of the Lewis number.
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Fig. 5. Bifurcation diagrams in terms of ¥ versus Rrfor: (a) Le=1,
(b) Le=10, and (c) Le=0.1.

Starting with the rest state solution as initial conditions, the numerical
results presented in Fig. 5 (a)-(c) indicate that, below the subcritical or supercritical
Rayleigh number (region 1), the rest state prevails. In region (II), it is observed that
the onset of steady motion is supercritical, as illustrated in Fig. 5 (a), and subcritical,

as illustrated in Fig. 5 (b) and (c), occurring at Rayleigh numbers, Ry’ and R5%2,
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above which the numerical solution bifurcates towards a steady finite amplitude
convective regime. Upon increasing Ry above the supercritical Rayleigh number,
R;Iép, (region III), the strength of the convection is promoted monotonically, as can
be seen from Fig. 5.

After several tests, we can find a relationship that links the supercritical
Rayleigh number to the Lewis number. Fig. 6 shows the supercritical Rayleigh
number as a function of the Lewis number. A correlation giving a relationship
between Ry, and Le is obtained as follows:

32.37
Rsup —
TC Le+1

(6)

Equation (6), illustrated in Fig. 6 by a solid line, is seen to be in good
agreement with the numerical results depicted by square symbols.
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Fig. 6. Supercritical Rayleigh number according to Lewis number.
6. Conclusions

In the paper, double diffusion convection in a tilted porous square cavity,
subjected to heat flow and cross-flow, was studied numerically. The conditions
under which the thermal and solutal buoyancy forces are equal (N = 1) were
considered. For this situation, we proved the existence of stable convective
solutions for various values of the governing parameters. The existence of exchange
stability was demonstrated; the threshold for the appearance of supercritical
convection was obtained numerically and computed accurately using a novel
numerical method. The main concluding remarks on the results are itemized below:
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» When the thermal diffusivity is equal to the mass diffusivity (Le=1), we
obtained one convective cell which circulates in the clockwise direction.
The intensity of the flow increases by increasing the thermal Rayleigh
number and the heat transfer rate is slightly larger compared to the mass

transfer rate.

» When the mass diffusivity is larger than the thermal diffusivity (Le<l), we
obtained a convective cell that circulates in counterclockwise direction with
very a high flow intensity. Owing to fast solute diffusing component, we
noticed that the heat transfer rate becomes more important than the mass

transfer rate.

Nomenclature

cavity aspect, L /H’
mass diffusivity of species

a
height of the cavity B
constant mass flux per unit area B,
permeability of the porous medium %
Lewis number, /D v
buoyancy ratio, SrAS /SrAT’ U
Nusselt number P
constant heat flux per unit area (pC)y
thermal Darcy Rayleigh number, g8, KHAT /av  (pC)p
dimensionless concentration, (S’ —S()/AS" o
Sherwood number £
reference concentration at x'=0 and »'=0
characteristic concentration, j'H'/ D g
dimensionless wall-to-wall concentration difference v
dimensionless temperature, (7' —T¢y) / AT’ Y
dimensionless time, t'o. /o H' 2
characteristic temperature, g'H'/ k '
dimensionless wall-to-wall temperature difference sub
dimensionless velocity in x-direction, u'H'/a sup
dimensionless velocity in y-direction, v'H' /o c
dimensionless coordinate axis, x'/H' m
dimensionless coordinate axis, y'/ H' max
min

Greek symbols
thermal diffusivity, k/(pC) p
concentration expansion coefficient
thermal expansion coefficient
angle of inclination of the cavity
kinematic viscosity of the fluid
dynamic viscosity of fluid
density of the fluid
heat capacity of fluid
heat capacity of saturated porous medium

heat capacity ratio (PC) , /(pC) ;

dimensionless porosity of the porous

medium, &’/o=1

porosity of the porous medium

dimensionless stream function, ¥/«

stream function value at centre of the cavity
Superscripts

dimensional variable

subcritical
supercritical

Superscripts
critical value
average value
maximum value
minimum value
reference state
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