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DOUBLE DIFFUSION CONVECTION IN A TILTED SQUARE 
POROUS DOMAIN UNDER CROSS TEMPERATURE AND 

CONCENTRATION GRADIENTS 

Nabil OUAZAA1, Smail BENISSAAD2, Mahmoud MAMOU3  

The present study focuses on double diffusion natural convection in a tilted 
square porous cavity saturated with a binary fluid subjected to cross temperature and 
concentration gradients. The Darcy model with the Boussinesq approximation, 
energy and species transport equations are solved numerically using the classical 
finite difference method with a time-accurate scheme. The case of equal thermal and 
solutal buoyancy forces is considered. For this situation, an equilibrium state solution 
corresponding to the rest state is possible and the resulting onset of motion can be 
either supercritical or subcritical. The study is carried out for an inclination angle of 
45°. The results are presented in terms of Nusselt and Sherwood numbers, and flow 
intensity as functions of the thermal Rayleigh number. In this study, the thresholds for 
the onset of convection are determined as function of the Lewis number.  

Keywords: Double diffusion Convection, Porous medium, Supercritical     
Rayleigh number, Subcritical Rayleigh number. 

1. Introduction 

 The dynamics of heat and mass transfer can be very different from those 
driven by the temperature field solely. Interest in coupled heat and mass transfer 
due to buoyancy forces in porous media has been motivated by such diverse 
engineering problems related to the dispersion of chemical contaminants through 
water-saturated soil, exploitation of continental geothermal reservoir, migration of 
moisture through the air contained in fibrous insulation, metallurgy, 
electrochemistry, geophysics, etc.   
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A comprehensive review on the phenomena of heat and mass transfer and 
convection in porous media could be found in the book by Nield and Bejan [1]. 
Mamou et al. [2] examined the flow in a square cavity subjected to horizontal fluxes 
of heat and mass. In case where the volume forces are in opposite direction and 
same order of magnitude, the existence of multiple solutions was demonstrated. The 
existence of multiple solutions depended heavily on the thermal Rayleigh and 
Lewis numbers. Mansour et al. [3] studied numerically the Soret effect on multiple 
solutions in a square cavity. The authors concluded that the Soret parameter might 
have a strong effect on the convective flow. One, two or three solutions were found 
to be possible. Mohamad and Bennacer [4] obtained numerical results, on the basis 
of two- and three-dimensional flows, of heat and mass transfer in a horizontal 
enclosure with an aspect ratio of two and filled with a saturated porous medium. 
The enclosure was heated differentially and a stably stratified species concentration 
was imposed vertically. It was found that the difference in the rates of heat and mass 
transfer predicted by the two models was not significant.  Mansour et al. [5] studied 
numerically the Soret effect on fluid flow and heat and mass transfer induced by 
double diffusive natural convection in a square porous cavity submitted to cross 
gradients of temperature and concentration. They concluded that the Soret effect 
might affect considerably the heat and mass transfer rates as it led to an 
enhancement or to a reduction of the mass transfer rate, depending on the flow 
structure and on the sign and magnitude of the Soret coefficient. Bourich et al. [6] 
studied analytically and numerically the Soret effect on thermal natural convection 
within a horizontal porous enclosure uniformly heated from below by a constant 
heat flux, using the Brinkman extended Darcy model. It was found that the Soret 
separation parameter had a strong effect on the thresholds of instabilities and on the 
heat and mass transfer characteristics. Saeid [7] studied the problem of natural 
convection in a two-dimensional square vertical porous cavity with the hot (left) 
wall temperature oscillating in time. The author found that during the heat transfer 
process, the hot wall temperature dropped and resulted in a temperature higher than 
the hot wall temperature at some locations inside the cavity. Also, it is observed 
that the average Nusselt number had a peak value at the non-dimensional frequency 
of 450 within the range considered (1–2000) for a Rayleigh number of 103, because 
the convection currents were stronger than those occurred at other frequencies. The 
transient free convection in a two-dimensional square cavity filled with a porous 
medium was considered by Saeid and Pop [8]. The flow was driven by considering 
the case when one of the cavity vertical walls was suddenly heated and the other 
one was suddenly cooled, while the horizontal walls were kept adiabatic. The 
results were obtained for the initial transient state up to the steady state for Rayleigh 
number values of 102–104. It was observed that the average Nusselt number showed 
an undershoot during the transient period and that the time required to reach the 
steady state is longer for low Rayleigh number and shorter for high Rayleigh 
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number. Mansour, et al. [9] studied the transient MHD natural convection in an 
inclined cavity filled with a fluid saturated porous medium by including the effects 
of the magnetic field and heat source in the solid phase. The flow was driven by 
considering the case when one of the cavity vertical walls was suddenly heated and 
the other one was suddenly cooled, while the horizontal walls were adiabatic. The 
authors found that, in general, the temperature of the fluid could be increased by 
increasing both of the Magnetic field force and the inclination angle. Sezai and 
Mohamad [10] presented results for three-dimensional flow in a cubic cavity filled 
with a porous medium and subjected to opposing thermal and concentration 
gradients. Their results revealed that for a certain range of the controlling 
parameters, the flow became three-dimensional and multiple solutions were 
possible within the range. The stability of the flow structures was studied by 
Bergeon et al. [11] where the mechanisms by which the stable solutions lost stability 
or unstable solutions regained stability were determined. The authors also studied 
the influence of the cavity inclination on the stability and bifurcation of the 
solutions and found that the bifurcation at the critical Rayleigh number was either 
transcritical or pitchfork, depending on the aspect ratio and the inclination angle of 
the cavity. Vasseur et al. [12] studied analytically and numerically the flow in a 
tilted rectangular cavity and observed that the maximum heat transfer rate, for a 
given RT, was obtained when the cavity was heated from below, with θ  in the range 
of 90° < θ < 180°. They found that the maximum rate took place for values of θ 
approaching 90° whenever RT increased. Trevisan and Bejan [13] used a numerical 
method and scale analysis to study double diffusion convection in a porous square 
cavity, with the vertical walls maintained at constant temperatures and 
concentrations. It was found that the fluid flow was possible beyond a critical 
Rayleigh number when Le≠1. However, the fluid motion disappeared completely 
for the Le=1 and N=-1. The results of this analysis were found in agreement with 
the numerical study. 
 

In this work, a numerical study was conducted to examine the effect of the 
Rayleigh number on the heat and mass transfer rates in a porous square cavity tilted 
at 45o. We had examined the case where the thermal and mass buoyancy forces are 
equal and for different values of the Lewis number. Darcy's model is used to 
simulate the double diffusive convection inside the cavity. The existence of solution 
was demonstrated and the threshold for the onset of convection was obtained using 
a novel numerical method.  

 

 

2. Mathematical formulation 
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The physical configuration considered in this work is a square (A=L’/H’=1) 
porous enclosure as shown in Fig. 1. The origin of the coordinates system is located 
at the cavity centre. Constant and crossed thermal and mass fluxes q' and j' were 
imposed on the walls of the cavity. The fluid saturating the porous matrix is 
incompressible and Newtonian, and obeys the Darcy law and the Boussinesq 
approximation.  

 
 
 
 
 
 
 
 
 
 
 
 
 

          
 

Fig. 1. Geometry of the problem. 
 

The governing equations that describe the double-diffusive convection 
inside the enclosure are expressed in terms of the stream function, temperature and 
concentration in dimensionless form as: 

 
𝛻𝛻2𝛹𝛹 = −𝑅𝑅𝑇𝑇ℱ(𝑇𝑇 + 𝑁𝑁𝑁𝑁)                                                                      (1) 

𝛻𝛻2𝑇𝑇 =  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝐽𝐽(𝛹𝛹,𝑇𝑇)                                                                           (2) 
1
𝐿𝐿𝐿𝐿
𝛻𝛻2𝑆𝑆 = 𝜀𝜀

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝐽𝐽(𝛹𝛹, 𝑆𝑆)                                                                    (3) 
 

where Ψ  is the dimensionless stream function defined such that: 
 

𝑢𝑢 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,    𝑣𝑣 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

and the operators ℱ and 𝐽𝐽 are defined as follows:  
 

    ℱ(𝑓𝑓) = 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 ,         𝐽𝐽(𝑓𝑓,𝑔𝑔) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 
The variables u and v are the dimensionless velocity components, T and S 

are the dimensionless temperature and concentration, t is the dimensionless time, x 

q’ 

q’ 

g 

𝒙𝒙′ 

𝒚𝒚′ 
 

j’ 

j’ 

θ 
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and y are the dimensionless coordinate axes, 𝑅𝑅𝑇𝑇 is the thermal Rayleigh number, N 
is the ratio of the buoyancy forces, θ  is the inclination angle, Le is the Lewis number 
and ε is the normalized porosity of the porous medium. In the Darcy model, the 
inertia and viscosity forces are assumed negligible and the Reynolds number based 
on the pores size is assumed to be very low.  

 
The dimensionless boundary conditions are given by:  

 

   𝑦𝑦 = ±
1
2
∶ 𝛹𝛹 = 0,   

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0  and    
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −1                             (4) 

   𝑥𝑥 = ±
1
2
∶ 𝛹𝛹 = 0,   

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1    and    
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                              (5) 

3. Numerical solution 

The numerical solution of the equations governing the convective flows (1)-
(3) with the boundary conditions (4)-(5) is obtained using a finite difference 
scheme. The entire domain, as shown in Figure 1, has been discredited with a 
uniform mesh (101x101). The solution includes the stream function, the 
temperature and concentration fields. A central finite difference scheme with 
second-order precision is used to transform the basic equations into a set of finite 
difference discretized equations. The energy and concentration equations, after 
having been written in a conservative form, are solved using the alternating 
direction implicit (A.D.I) method, while the stream function field is obtained from 
the Darcy equation using the successive over-relaxation (S.O.R) method with a 
convergence criterion based on the residual less or equal to 10-6. The Nusselt and 
Sherwood numbers were integrated numerically using the Simpson scheme.  

4. Calculation of the Critical Rayleigh Number 

In what follows we present a new method for determining the onset of 
instabilities in natural convection. The calculation method of the supercritical 
Rayleigh number ( 𝑅𝑅𝑇𝑇𝑇𝑇

𝑠𝑠𝑠𝑠𝑠𝑠 ) requires at least two flow simulations above and below 
the threshold of instability. For Le=1 and by trial and error procedure, using the 
numerical code which solves the full governing equations, it was found that for 
RT= 5, 10 and 15 the solution is purely conductive (rest state), however, for RT=20, 
a convective solution is triggered and leads to a convective steady state solution. 
Even for RT=18 the solution is convective. Thus, obviously the threshold for the 
onset of convection must be within the interval [15, 18]. As known, for infinitesimal 
amplitude convection, the time evolution of the flow intensity is exponential, 
according to the linear stability analysis, and can be correlated by 𝜳𝜳𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎(𝒕𝒕) =
𝜳𝜳𝟎𝟎𝒆𝒆𝒑𝒑𝒑𝒑, where 𝜳𝜳𝟎𝟎𝒎𝒎𝒎𝒎𝒎𝒎 is the convective flow amplitude and 𝜳𝜳𝟎𝟎 is the initial flow 
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amplitude at t=0. The parameter p represents the perturbation amplitude growth 
rate. When p < 0, the flow is decaying, and when p > 0 the flow is amplified in time. 
Then, p < 0 is obtained below the threshold of convection and p > 0 occurs above 
the threshold. By performing two simulations for two Rayleigh numbers below and 
above the threshold, the growth rate parameter can be computed numerically. Then 
the threshold of convection can be determined accurately by interpolation for p=0, 
the situation where the marginal stability occurs. Now, applying this procedure, 
starting first from a pure conductive state (instable), for RT=18, a flow simulation 
is performed. The flow intensity time history is presented in Fig. 2. An excellent 
exponential curve fit is obtained 𝜳𝜳𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎< 10-2. For this case, the solution is marched 
in time and converged to a steady state convective solution. Now, for RT=15, using 
the converged solution as initial conditions, the flow simulation is carried again and 
as can be seen from Fig. 2, the flow decays towards the pure conductive state. 
Focusing only on the infinitesimal curve branch, 10-10 < 𝜳𝜳𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 < 10-2, an 
exponential curve fit is presented. The growth rate parameter, using the exponential 
curve fit, is obtained as p=1.117 for RT=18 and p=-0.756 for RT=15. Using linear 
interpolation for p=0, the threshold of marginal stability is obtained as 𝑅𝑅𝑇𝑇𝑇𝑇

𝑠𝑠𝑠𝑠𝑠𝑠=16.21. 
 

 
Fig. 2. Flow intensity time histories below and above the threshold of supercritical convection for 

Le=1. 

5. Results and discussion  

The present study is limited to the state of equilibrium where the thermal 
and solutal buoyancy forces are equal. Under these conditions, a solution of the rest 
state is possible and a threshold exists for the onset of convective flows. The effect 
of the Rayleigh and Lewis numbers on the flow behavior and on the heat and mass 
transfer rates is investigated and the convective flow instability thresholds are 
determined. The threshold of subcritical convection and the onset of natural 
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convective were approximately determined from the numerical. The determination 
of the supercritical Rayleigh number is explained in section 4. 

 
 Ψ T S 
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Fig.3. Stream function, temperature and concentration contours obtained for RT=100: 

a) Le =1:    Ψ0min=  0.00 Ψ0max=  3.89 Num= 3.19 Shm=  2.78 
b) Le =0.1: Ψ0min= -7.37 Ψ0max=  0.00 Num= 4.21 Shm=  1.13 
c) Le =10:  Ψ0min=  0.00 Ψ0max=  3.16 Num= 3.07 Shm=  9.38. 

 

 

Fig. 3 represents the contours of the stream function, temperature and 
concentration obtained for RT =100 and Le = 10, 1 and 0.1. Fig. 4 (a) shows the 
intensity of the flow. The effect of the Rayleigh number on the heat and mass 
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transfer rates, Nu and Sh, is presented in Fig. 4 (b) and (c), respectively, for various 
values of Le. The heat and mass transfer rates and the flow intensity are seen to 
increase monotonically with RT. It is observed that, when RT is relatively small, the 
flow intensity magnitude increases with the Lewis number. The same trend is 
observed for the Nusselt number. However, it is found that the Sherwood number 
increases monotonically with the Lewis number. 

 
 

    
Fig. 4. Bifurcation diagram as a function of RT and Le: (a) Flow intensity,  

(b) Nusselt number, and (c) Sherwood number. 

As shown in Fig. 4 (a), natural convection is usually the preferable solution 
when launching the flow simulation using the rest state solution as initial 
conditions. As the mass diffusivity is greater than the thermal diffusivity (Le= 0.1), 
the heat transfer rate is higher than the mass transfer rate and conversely for the 
case where the thermal diffusivity exceeds the mass diffusivity (Le = 10). In our 
study, we have two types of bifurcations, a supercritical bifurcation for Le = 1, and 
a subcritical bifurcation for Le = 0.1 and 10 (see Table 1). 
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Table 1 
Critical values of 𝑅𝑅𝑇𝑇𝑇𝑇

𝑠𝑠𝑠𝑠𝑠𝑠  𝑎𝑎𝑎𝑎𝑎𝑎  𝑅𝑅𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠   and type of bifurcations. 
 
 
 
 
 
 
 
 
Within a narrow range of the Rayleigh number near the critical point, the 

bifurcation diagrams are illustrated in Fig. 5 for various values of the Lewis number.  
 

 
Fig. 5. Bifurcation diagrams in terms of Ψ0 versus RT for: (a) Le=1,  

(b) Le=10, and (c) Le=0.1.  
Starting with the rest state solution as initial conditions, the numerical 

results presented in Fig. 5 (a)-(c) indicate that, below the subcritical or supercritical 
Rayleigh number (region I), the rest state prevails. In region (II), it is observed that 
the onset of steady motion is supercritical, as illustrated in Fig. 5 (a), and subcritical, 
as illustrated in Fig. 5 (b) and (c), occurring at Rayleigh numbers, 𝑅𝑅𝑇𝑇𝑇𝑇

𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑅𝑅𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠, 

Le 𝑅𝑅𝑇𝑇𝑇𝑇
𝑠𝑠𝑠𝑠𝑠𝑠 𝑅𝑅𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 Bifurcation 

10 2.86 2.50 Subcritical 

1 16.21 … Supercritical 

0.1 29.34 25.07 Subcritical 

 



140                          Nabil Ouazaa, Smail Benisaad, Mahmoud Mamou 

above which the numerical solution bifurcates towards a steady finite amplitude 
convective regime. Upon increasing 𝑅𝑅𝑇𝑇 above the supercritical Rayleigh number, 
𝑅𝑅𝑇𝑇𝑇𝑇
𝑠𝑠𝑠𝑠𝑠𝑠, (region III), the strength of the convection is promoted monotonically, as can 

be seen from Fig. 5. 
  
After several tests, we can find a relationship that links the supercritical 

Rayleigh number to the Lewis number. Fig. 6 shows the supercritical Rayleigh 
number as a function of the Lewis number. A correlation giving a relationship 
between 𝑅𝑅𝑇𝑇𝑇𝑇

𝑠𝑠𝑠𝑠𝑠𝑠 and Le is obtained as follows:  

                             𝑹𝑹𝑻𝑻𝑻𝑻
𝒔𝒔𝒔𝒔𝒔𝒔 = 𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑

𝑳𝑳𝑳𝑳+𝟏𝟏
                                              (6) 

Equation (6), illustrated in Fig. 6 by a solid line, is seen to be in good 
agreement with the numerical results depicted by square symbols.    

 
 
 
 
 6. Conclusions 
 
In the paper, double diffusion convection in a tilted porous square cavity, 

subjected to heat flow and cross-flow, was studied numerically. The conditions 
under which the thermal and solutal buoyancy forces are equal (N = 1) were 
considered. For this situation, we proved the existence of stable convective 
solutions for various values of the governing parameters. The existence of exchange 
stability was demonstrated; the threshold for the appearance of supercritical 
convection was obtained numerically and computed accurately using a novel 
numerical method. The main concluding remarks on the results are itemized below: 

Fig. 6. Supercritical Rayleigh number according to Lewis number. 
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 When the thermal diffusivity is equal to the mass diffusivity (Le=1), we 

obtained one convective cell which circulates in the clockwise direction. 
The intensity of the flow increases by increasing the thermal Rayleigh 
number and the heat transfer rate is slightly larger compared to the mass 
transfer rate. 

 When the mass diffusivity is larger than the thermal diffusivity (Le<1), we 
obtained a convective cell that circulates in counterclockwise direction with 
very a high flow intensity. Owing to fast solute diffusing component, we 
noticed that the heat transfer rate becomes more important than the mass 
transfer rate. 

 
Nomenclature       

 

A cavity aspect, L’/H’ Greek symbols 
D mass diffusivity of species α thermal diffusivity,  k /( ρC ) f 
H′ height of the cavity β S concentration expansion coefficient 

j′ constant mass flux per unit area β T thermal expansion coefficient 

K permeability of the porous medium θ angle of inclination of the cavity  
Le Lewis number, α / D ν kinematic viscosity of the fluid 
N buoyancy ratio, βT∆S’/βT∆T’ µ  dynamic viscosity of fluid 
Nu Nusselt number ρ density of the fluid 
q′ constant heat flux per unit area ( ρC)f  heat capacity of fluid 
RT thermal Darcy Rayleigh number, gβ T KH ′∆T ′ / αν (ρC ) P heat capacity of saturated porous medium 

S dimensionless concentration, (S ′ − S 0′ ) / ∆S ′ σ  heat capacity ratio (ρC ) p / ( ρC ) f 
Sh Sherwood number ε 

     
dimensionless porosity of the porous  

S 0′ reference concentration at x′=0 and  y′=0  medium, ε’/σ=1 
∆S′  characteristic concentration, j ′H ′ / D ε’ 

 
porosity of the porous medium 

∆S dimensionless wall-to-wall concentration difference Ψ dimensionless stream function, Ψ ′ / α 
T dimensionless temperature, (T ′ − T0′) / ∆T ′ Ψ0 stream function value at centre of the cavity 
t dimensionless time, t ′α / σ H ′ 2 Superscripts 

 ∆T′
  

characteristic temperature, q′H ′ / k ′ dimensional variable 
∆T dimensionless wall-to-wall temperature difference sub subcritical 
u dimensionless velocity in x-direction, u ′H ′ / α sup supercritical 
    
 
v 

 
dimensionless velocity in y-direction, v′H ′ / α 

 
c 

             Superscripts 
critical value 

x dimensionless coordinate axis,  x′ / H ′ m average value 
y dimensionless coordinate axis,  y′ / H ′  max maximum value 
  min minimum value 

 reference state 
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