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PROSE-TO-P4: LEVERAGING HIGH LEVEL LANGUAGES

Mihai-Valentin DUMITRU?, Vlad-Andrei BADOIU?2, Costin RAICIU?

Languages such as P4 and NPL have enabled a wide and diverse
range of networking applications that take advantage of programmable data
planes. However, software development in these languages is difficult. To
address this issue, high-level languages have been designed to offer pro-
grammers powerful abstractions that reduce the time, effort and domain-
knowledge required for developing networking applications, as well as to al-
low writing portable and modular code. These languages are then translated
by a compiler into P4/NPL code.

Inspired by the recent success of Large Language Models (LLMs) in the
task of code generation, we propose to raise the level of abstraction even
higher, employing LLMs to translate prose into high-level networking code.
We analyze this problem, focusing on the motivation and opportunities, as
well as the challenges involved, and sketch out a roadmap for the develop-
ment of a system that can generate high-level data plane code from natural
language instructions. We present some promising preliminary results on
generating Lucid code from natural language.
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1. Introduction

During the past decade, the introduction of programmable data planes
and associated languages, such as P4 |7] and NPL [8], has opened the door for
a broad variety of networking applications, such as in-band network telemetry,
firewalls and load-balancing [10], to name a few.

Software development in these languages has proven to be difficult, for
multiple reasons [6, 5|. For example, limited hardware resources require pro-
grammers to be familiar with the target and customize programs for it, re-
ducing portability. The nature of these languages induces programs to be
monolithic: removing or adding support for a protocol requires changes in
multiple parts of the program (parser, deparser, control), making it hard to
compose programs or to compartmentalize functionality into separate libraries.
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FIGURE 1. Proposed pipeline of going from prose to concrete data
plane applications on actual switches. Some languages may re-
quire network configurations or other extra information, grouped
here under “input artifacts”. Compilation produces one or more data
plane programs, perhaps together with program-to-device mappings
or other information, grouped here as “output artifacts”.

One strategy to address these problems is the development of high-level
data plane programming languages (HLDPPLs) that compile to P4/NPL code
for one or more switches. These enable programmers to focus on higher-level
aspects of the resulting network application, without concerning themselves
with the low-level details of a particular target. Multiple such languages have
been designed, including Graph-to-P4 [1], Lucid [4, 5], Lucid 2.0 [9], Lyra [6],
O4 [2], P4All [16], P4rrot [3], pcube [17]. They provide various levels of ab-
straction that help lessen burden on the developer; many of them have simpler
grammars than P4 or NPL. However, the field remains volatile: new languages
appear periodically and none of the existing ones has been widely adopted and
given the opportunity to mature.

Inspired by the recent success of Large Language Models (LLMs) in the
task of code generation [11, 12, 14, 13, 15, 20|, we wish to push the move to-
wards higher-level network programming languages even further, by employing
natural language as the top layer for the development of data planes. Ideally,
the network programmer should be able to express desired functionalities in
the form of a natural language prompt that is then progressively transformed
into code that runs on actual devices (Figure 1). The user of such a system
can not only ignore platform-specific constructs and hardware constraints, but
can also do away with learning to program in a language that may easily be
abandoned or superseded. All that is needed is a rudimentary knowledge of
basic networking architectures and protocols.

One of the main obstacles in developing such a system is the low amount
of data available. The authors of The Stack v2 [13], one of the largest publicly
available coding datasets, refer to languages in their dataset such as Julia
(450K files totalling 6.12 GB) and Perl (1.12M files totalling 7.82 GB) as “low-
resource languages”. We wish to address “no-resource languages”, for which
only several programs are available.

The experiments presented in this paper target exclusively the Lucid
language, but our focus is not on code-generation for one particular, already
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existing data plane language, but rather code-generation for recently published,
non-mature HLDPPLs, for which there is no existing program dataset or active
community.

One may ask what makes data plane networking a good candidate for
code generation under the no-resources constraints. Computations intended
to be run in the data plane are linear in nature; each program can be modeled
as a chain of simple instructions, with occasional branching for conditional
blocks, but no loops. Due to the nature of the applications themselves, as well
as the constraints ultimately mandated by the target switches, programs are
also quite limited in length. We believe these features make HLDPPLs ideal
candidates for using LLMs to generate ‘“no-resource languages”.

We explore code generation for HLDPPLs and not directly for P4 or
NPL, as this offers unique opportunities and challenges. The grammars and
semantics of these high-level languages are simpler, with programs being gen-
erally shorter than their low-level counterparts; this should make it easier for
programmers to read, understand, validate and correct the generated code.
Programs written in HLDPPLs are also not tightly coupled to a specific ar-
chitecture, which makes them portable. This lifts the burden of managing
hardware from the generating LLM and places it instead on the compiler.
Just like in general-purpose programming settings, time-tested conventional
compiler techniques can be levereaged to reliably transform high-level code
into correct, safe, highly performant programs.

P4 also differs from these HLDPPLs by having an active programming
community which produces publicly available code, allowing for techniques
such as fine-tuning for obtaining a code-generating LLLM. The problem of col-
lecting a P4 dataset and fine-tuning LLMs of various architectures and sizes
to generate P4 code has been addressed by [27].

The aim of this work is to leverage code-generating LLMs and conven-
tional transpilers to transform natural languages prompts into concrete code
that can run on a programmable switch. The opportunity to do so is enabled
by the simple nature of HLDPPLs and the relatively short program length.
The main challenge stems from the lack of a dataset of programs written in
these languages: code-generating LLMs are usually trained or fine-tuned on
gigabytes, or even terabytes of data; we only assume the existence of a handful
of examples.

We make the following key contributions:

e we identify a series of characteristics that make HLDPPLs good candi-
dates for the task of using LLMs to generate “no-resource languages”

e we analyze the challenges and opportunities involved in this task

e we evaluate the plausibility of our methodology using two state-of-the-art
LLMs (ChatGPT 4 [26] and Gemini Ultra [20, 21]|) to generate code in
the Lucid language [4]
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2. High-level data plane programming languages

The difficult nature of software development in P4 has lead to research
into new data plane programming languages which abstract away target-specific
details, offering programmers high-level constructs to aid with portability, com-
posability, ease of development etc. These language differ in their motivations,
scope, structure, constructs and level of abstraction, but in general they all
aim to reduce the time, effort and domain-knowledge needed to develop new
data plane applications.

We briefly survey existing languages, focusing on features relevant to our
goal of LLM-assisted code generation and present our rationale for singling out
Lucid [4] for our preliminary experiments.

O4 [2], pcube [17], P4All [16] add to P4 several syntactical constructs
such as fixed-size loops and arrays (O4, pcube) and elastic structures (P4All).
They are essentially thin wrappers over the P4 syntax, offering a few convenient
constructs.

Graph-to-P4 [1] can translate state diagrams (designed visually and
represented as an XML) into parser graphs. Its scope is limited to P4 parsers
and does not address other components of data plane programming, such as
control blocks.

P4rrot [3] aims to ease the implementation of “application-layer tasks”
in the data plane. It is designed as a Python library, which has interesting im-
plications, as Python seems to be at the center of LLM-based code generation
efforts. However, for the purposes of this work, we choose to focus on a lan-
guage with a standalone syntax, as this is more common among the languages
considered.

Lyra [6] addresses the issues of portability, extensibility and composition.
The Lyra compiler takes as input code in the Lyra language, an algorithm
scope describing the placement of algorithms (e.g. on a specific subset of
switches) and a description of the network’s topology and configuration; from
these it first produces a “context-aware intermediate representation” that can
be then turned by the backend into P4 or NPL code. Unfortunately neither
a complete grammar, a compiler implementation, detailed documentation or
complete examples are publicly available.

Lucid [4]’s goal is “putting control functionality into the data plane.”
Lucid introduces events (such as an arriving packet) and event handlers, which
are procedures that describe stateful computation to be executed when an
event occurs, as well as a novel type system and memory operations. We
consider Lucid to be the most mature HLDPPL currently available. It has
been followed by Lucid 2.0 [9], which introduces new constructs (such as
polymorphism and type inference) to aid with modular programming. The
presentation has also been extended to a PhD thesis [5] that provides additional
details on the language design and motivation. Both the compiler and example
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programs are publicly available!, which makes Lucid an ideal candidate for our
experiments, because it offers all the resources that we might expect from such
a language.

At the time of writing, none of these languages has been standardised or
widely-adopted; they are research projects in various degrees of active devel-
opment. We expect this volatility to continue in the near future, with existing
languages being improved or modified and new languages being designed. The
lack of stability in the field makes it difficult for novices (and perhaps expe-
rienced programmers alike) to enjoy the benefits of these languages, since the
learning effort can be considered wasted if a language is soon abandoned by
its creators and the community or superseded by a new one.

We wish to offer potential network programmers the possibility of rapid
prototyping with low effort and little domain-knowledge, harnessing the power
of HLDPPLs without requiring the commitment to familiarize oneself with a
particular language: its syntax, semantics and idiosyncrasies. To this end, we
propose using LLMs to translate natural language specifications into code. In
this paper we focus on the Lucid language, for reasons discussed above and in
the next section.

3. Generating “no-resource languages”

Our goal is to translate natural language specifications into HLDPPL
code using LLMs. Due to their maturity and impressive results on a wide
range of applications, we choose ChatGPT 4 and Gemini Ultra. While LLMs
have, in recent times, shown very good results in the task of prose-to-code,
they usually generate code in popular programming languages, for which a
large number of programs written by human developers is available; models
are fine-tuned (or come pre-trained, as is the case for our two LLMs) on these
large code datasets. For a newly published programming language with no
active community, such a wide range of examples is not available, making
fine-tuning or training non-viable strategies.

We assume the resources available for such a language are a subset of the
following:

e the contents of the scientific paper that introduces the language
additional documentation

description of the formal grammar

several code examples

a compiler implementation

The documentation, grammar and examples could be available as appen-
dices to the original paper, or as part of a public repository; a compiler could
be useful for the possibility of extracting a formal grammar description from
its parser, as well as for offering a better understanding of the semantics of the

1https://g'ithub.com/Pr‘incetonUn‘iverS'ity/luC'id
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language. We focus our experiments on the Lucid language, because it is the
only HLDPPL we are aware of that ticks all the five boxes above.

Lacking a dataset of programs to retrain (or fine-tune) the LLMs, we have
to rely on prompt engineering techniques, which involve carefully constructing
the inputs to the LLM, guiding it to produce high-quality answers. Prompt
engineering has already developed into a wide and diverse field [22|, with tech-
niques such as Chain-of-Thought [23] and Tree-of-thoughts [24] achieving im-
pressive results on tasks such as arithmetic reasoning, symbolic reasoning,
creative writing etc.

The technique of “grammar prompting” developed by Wang et al. [18]
is most relevant to our goals. The authors tackle the problem of generating
programs in a Domain Specific Language (DSL) that is absent (or present in
small quantities) in the LLM’s training set. To this end, a few-shot approach
is employed, attaching to each example a small subset of the DSL’s grammar,
“minimally sufficient” for generating that particular example. The model is
instructed to first produce a specialized grammar for the requested program,
then generate the code conditioned on this grammar.

That same paper presents state-of-the-art results on five DSLs for the
tasks of semantic parsing, Al planning and molecule generation. Jain et al. [19]
experiment with grammar prompting, as well as other techniques, for the task
of prose-to-diagram: translating a natural language description into the syntax
used by the Penrose framework? [25], which produces visual diagrams.

Because our goal is to develop a system for generating newly published
languages, it is relevant to know whether data associated with the tested lan-
guage (Lucid), such as the text of the original paper or the public repository
code, are part of these LLMs’ training sets. Unfortunately, for ChatGPT 4 and
Gemini Ultra, this information is not publicly available; basic interrogation of
the two LLMs reveal that they have at least some knowledge of Lucid. This is
a limitation of our experiments and results, because the language information
does not come solely from the contents of the prompt, which may cast doubt
on whether the results could transfer to brand new programming languages,
completely absent from the training dataset. However, we illustrate that this is
not a critical limitation, by building a baseline of results that shows how, with-
out advanced prompt-engineering techniques, neither ChatGPT 4 nor Gemini
Ultra can generate code in the considered languages.

4. Preliminary results

We evaluate the grammar prompting technique [18] for few-shot HLDPPL
code generation in the Lucid programming language, because of its standalone
syntax and public availability of all the resources mentioned in section “Gen-
erating “no-resource languages”™. To this end, we leverage the Gemini Ultra
and ChatGPT 4 models due to their overall performance on a wide variety of

2https://penrose.cs.cmu.edu/
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tasks, including natural language understanding, symbolic reasoning and code
generation, which we believe are useful skills for the task at hand.

One important constraint for prompt engineering is the context length of
the LLM — the number of tokens that the LLM can effectively consider when
producing the answer. A naive prompt for Lucid, consisting of task-specific
instructions, the contents of the original paper [4], a complete grammar in
Backus-Naur form (extracted from the publicly available parser) and the full
code of the ten applications presented in the paper has a length of 35K tokens;
this is more than the web interfaces of both ChatGPT 4 and Gemini Ultra
can handle. However, state of the art models have context lengths in the
hundreds of thousands, even millions of tokens. We ran a few simple tests
using OpenAl’s API to query GPT 4. The results seem syntactically coherent
but more testing is needed. For the rest of our experiments, we used the web
interface of ChatGPT and Gemini (to avoid API costs) and employed grammar
prompting. This has the advantage of using a context size six times smaller
than the naive prompt, while generating syntactically correct code.

To integrate Lucid into the framework, we wrote a grammar for it in
Lark * and designed 20 samples for few-shot learning. The samples vary
from basic concepts (e.g. defining the type for IPv4 packets), to more com-
plex prompts (i.e. MAC address learning). The resulting grammar-learning
prompts are structured as shown in Figure 2. They sum up to around 5.5K
tokens; the responses are just several hundred tokens in length.

Besides the program written in the Lucid language, a P4 template is also
required, containing basic elements such as parsers and deparser, as well as
annotations for where the high-level parts should fit. For the purposes of this
paper, we do not require the LLM to generate it.

The model is provided with the full Lucid grammar and several example
queries consisting of a specialized grammar (subset of the complete grammar)
and the resulting code that implements the query. Lastly, the model is asked to
predict a grammar for a given query and generate the program that implements
a query conforming to it (Figure 3).

We have tested several simple queries, requiring one-line responses and
three complex ones: writing a firewall that can drop packets based on the con-
nection 5-tuple (partial answer in Figure 3), a stateful NAT and a 6to4 tunnel.
We noticed that Gemini Ultra sometimes fails to conform to the requirements
and does not produce a grammar subset to drive the generated code, which
results in an incorrect syntax even for simple examples. ChatGPT-4 is able to
follow the guidance of grammar prompting and always produces a grammar
for its output; however, this grammar is not always correct, so neither is the
accompanying program; however, the errors are not of a conceptual nature and
can be easily fixed by a human programmer. Figure 3 shows a fragment of
ChatGPT 4’s answer for a firewall query.

3https://github.com/lark-parser/lark
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Prompt to LLM

You are an expert data plane programmer, and you need to write
a program for the given language query.

A complete grammar of the language is presented below. First,

you should write grammar rules by choosing from the following

BNF rules.

Then, you should write programs that conform to your predicted
rules.

[BEGIN RULES]
// Full definition of the Lucid grammar
[END RULES]

query: generate a global array "nat_to_port" with NUM_PORTS
va'lues

BNF grammar rules:

prog ::= decls

decls ::= decl

decl ::= GLOBAL cid poly ID ASSIGN cid paren_args SEMI
GLOBAL ::= "global"

cid ::= ID "." cid | ID

ID ::= "Array" | "t" | "nat_to_port" | "create" | "NUM_PORTS"
poly ::= LLEFT polys RRIGHT

LLEFT ::= "<"

polys ::= size

size ::= NUM

NUM ::= "32"

RRIGHT ::= '">>"

ASSIGN ::= "="

paren_args ::= LPAREN args RPAREN

LPAREN ::= "("

args ::= exp

exp ::= cid

RPAREN ::= ")"

SEMI ::= ";"

program based on the BNF grammar rules:
global Array.t<<32>> nat_to_port = Array.create(NUM_PORTS);

// other examples

query: <the desired query>

FIGURE 2. Sample of prompt engineering for Lucid
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BNF grammar rules:

prog ::= decls
decls ::= decl decls | decl
decl ::= "const" ty ID ASSIGN exp SEMI | GLOBAL cid poly ID

ASSIGN cid paren_args SEMI | event_decl SEMI | HANDLE ID
paramsdef "{" statement "}" | FUN ty ID paramsdef "{"
statement "}"

ty ::= TINT | TINT single_poly | TBOOL
[...]

FUN ::= "fun"

RETURN ::= "return"

program based on the BNF grammar rules:

const 1int HASH_SEED = 1234;

const {int NUM_PORTS 6;

global Array.t<<32>> nat_to_ip = Array.create(NUM_PORTS);
global Array.t<<32>> nat_to_port = Array.create(NUM_PORTS);

[...]

handle outside_packet(int<<32>> dst_port) {
int ip = Array.get(nat_to_ip, dst_port);
int<<32>> port = Array.get(nat_to_port, dst_port);
generate outside_continue(ip, port);

FIGURE 3. ChatGPT response for the query: “a stateful NAT”.

Table 1 summarizes ChatGPT’s performance on the three complex tasks;
for each task, it lists the number of rules in the output grammar (“A ::= B |
C” counts as two rules), the number of lines of code in the output Lucid program
and the number of lines that need to be fixed for the program to compile. The
task prompts are admittedly vague, so it is hard to assess the “correctness”
of the implementation, which is why we focus on whether programs compile.
The generated code is aligned with the input query and could serve well as a
starting point for a more particular implementation.

While always generating a grammar fragment, ChatGPT doesn’t always
respect it. For the tunnel implementation, it uses hexadecimal constants with
the “0x” prefix, which are invalid both in the grammar fragment generated and
in the complete Lucid grammar; it also uses a bitwise “&” without generating
rules for it. Conversely, it includes rules that it does not use; for example it
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Task # of rules LoC LoC to fix
Firewall 91 17 2
NAT 97 39 0
6to4 tunnel 74 15 4

TABLE 1. Summary of the results on the three complex tasks

13

allows the equality operator “==" then generates a program that does not
perform any equality check.

5. Discussion and Future Work

The results presented in section “Preliminary results” are an initial move
towards the task of translating natural language instructions into HLDPPLs.
An immediate next step is mostly quantitative in nature: increasing the num-
ber of example programs included in the prompt and developing additional
tests to generate snippets and programs of increasing complexity. We would
like to perform further experiments both with the baseline prompt (a large
dump of all available resources) and with the technique of grammar prompt-
ing, which would allow us to better quantify and compare the efficacy of the
two methods.

The issues mentioned at the end of section “Preliminary results”, con-
cerning constructs that are not valid for the grammar fragment and grammar
rules that are unneeded, warrant additional attention. We believe they can
be addressed effectively through an automated loop of additional queries that
employ the LLM to analyse its answer, identify errors and suggest fixes, using
a technique such as Tree of Thoughts [24].

Lucid requires a P4 harness with the basic structure of the data plane,
together with annotations for where the functionality described in the high-
level language should fit. In our tests, we only focused on the Lucid language
itself; in the future, we would like to extend our framework, such that the LLM
also generates the P4 template.

Information about Lucid, as well as about all the languages presented in
section “High-level data plane programming languages”, is very likely part of
the dataset on which ChatGPT 4 and Gemini were trained. Our experiments
show that grammar prompting yields better results than the naive baseline of
relying solely on the LLM’s existing knowledge, but such improvements may be
possible solely due to the latent knowledge of the LLM. To explore this issue, we
must experiment with new languages that are not part of the training dataset.
We plan to design a minimalistic HLDPPL, producing all the relevant artifacts
(description of the language, formal grammar, code examples) and apply the
techniques presented here to evaluate code generation for this new language.

6. Conclusion

In order to address the difficulties of programming in P4 or NPL, several
high-level data plane programming languages have been developed. As this
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is an active field, neither of these have been standardized or widely-adopted.
Thanks to their simple structure, narrow scope and short program length, we
believe these are good candidates for the task of employing LLMs to generate
languages for which no dataset is available. These code-generators would re-
move the burden of learning a new, possibly short-lived language and would
allow network programmers to quickly develop proof-of-concept applications.

In section “Preliminary results” we presented preliminary results of us-
ing ChatGPT 4 and Gemini Ultra in order to generate code for the Lucid
language, using the technique of grammar prompting. While Gemini Ultra
failed to always produce a subset grammar (and thus grammatically correct
code), ChatGPT-4 generated code that only needed minor fixes and could
serve as a starting point for further development.
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