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ON JAGGI TYPE CONTRACTION MAPPINGS

Erdal Karapınar1

By a work of Jaggi, it is known that the existence of certain inequalities
for continuous maps over metric spaces implies the existence and uniqueness of fixed
points. In this paper, we show that if p denotes a partial metric, the existence of a
rational form of type

p(Tt, Ts) ≤ a1
p(t, T t) · p(s, Ts)

d(t, s)
+ a2p(t, s)

for some a1 and a2 with a1+a2 < 1 for a continuous map T over a partial metric space
leads to the same conclusions, that is, the existence and uniqueness of fixed points.

Keywords: Jaggi-type contraction, Fixed Point, Partial Metric Space, Contractions
with Rational Expression

MSC2010: 47H10,54H25,46J10, 46J15

1. Introduction

In this paper we aim to study Jaggi’s inequalities that imply the existence and uniqueness
of fixed points in metric spaces from the view point of partial metric spaces. The notion of
partial metric space was introduced by Matthews [46],[47] to handle and to solve ”econom-
ically” the domain theory problems in the frame of computer science. In this pioneer work,
Matthews [46] proved the analog of Banach contraction mapping principle in the context of
complete partial metric space, and hence, he built one more bridge between the computer
science and mathematics [43]. After than, a number of authors reported several fixed point
results to corroborate the relations between the fixed point theory [1]-[67] and computer
science [17, 56, 57, 68, 69, 70, 71].

We would like to start with an overview of the subject of partial metrics and partial
metric spaces.

Definition 1.1. Let M be a nonempty set. A function p : M ×M → [0,∞) is called a
partial metric on M if it satisfies the properties

(P1) p(t, t) = p(t, s) and p(t, t) = p(s, s) implies t = s,
(P2) p(t, r) + p(s, s) ≤ p(t, s) + p(s, r),
(P3) p(t, t) ≤ p(t, s),
(P4) p(t, s) = p(s, t)

for all t, s, r ∈ M . The pair (M,p) is referred to as a partial metric space (see [46],[47] for
more details on the subject).

We would like to present a very well-known and elementary example of a partial metric
space which is extensively studied in the literature. We shall often abbreviate partial metric
space by PMS in this text.
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Throughout the manuscript, we denote N0 := N∪{0} where N is the positive integers.
Further, R represent the real numbers and R+

0 := [0,∞).

Example 1.1. Let us consider the set M = [0, 1]. Let p : M × M → M be the map
defined by p(t, s) = max{t, s}. Then for any t, s ∈M if we have max{t, t} = max{t, s} and
max{t, t} = max{s, s}, then we obviously get t = s because max{t, t} = t and max{s, s} = s.
Note that max{t, t} ≤ max{t, s} and max{t, s} = max{s, t} hold for any t, s ∈M . Therefore,
the properties (P1), (P3), and (P4)in Definition 1.1 clearly hold. We need to verify (P2).

Given t, s and r in M , assume that we have max{t, s, r} = t. Then we derive that
p(t, r) + p(s, s) = t + s ≤ t + max{s, r} = p(t, s) + p(s, r). Since the elements in {t, s, r}
can be renamed so that t becomes the maximum again, the inequality above can be repeated
in any case. This shows that the property in (P2) also holds for p. Hence, we conclude that
(M,p) is a partial metric space.

It is clear that the partial metric p in Example 1.1 is not a metric onM . In general, the value
p(t, t) may not be equal to 0, e.g., p(3, 3) = 3 in Example 1.1. But it is possible to introduce
a metric on M associated with a given partial metric on the same set. In particular, it can
be shown that if p is a partial metric on M , then the function dp : M ×M → [0,∞) given
by

dp(t, s) = 2p(t, s)− p(t, t)− p(s, s), (1)

is a metric on M (see [46]). The relationship between partial metrics and metrics given
above plays a crucial role in proving certain statements in the frame of Fixed Point Theory
on the context of Partial Metric Spaces.

Example 1.2. Let us consider the set M = {[a, b] : a, b ∈ R, a ≤ b} and the map p :
M ×M → M defined by p([a, b], [c, d]) = max{b, d} − min{a, c}. We will leave the details
on verifying the fact that (M,p) is a partial metric space to the readers (see [47] for more
on this example).

Let x = [a, b] and y = [c, d]. We have the following cases: (1) b ≤ d and a ≤ c, or
(2) b ≤ d and c ≤ a, or (3) d ≤ b and a ≤ c, or (4) d ≤ b and c ≤ a. In either case, we
calculate that 2p(t, s)− p(t, t)− p(s, s) = |d− b|+ |c− a|. In particular, we obtain that

dp(t, s) = |d− b|+ |c− a|.
Notice that we have dp(t, s) ≥ 0, dp(t, s) = dp(s, t), and dp(t, s) = 0 if and only if t = s for
every t, s ∈M . We also have

dp(t, s) = |d− b|+ |c− a|
= |d− f + f − b|+ |c− e+ e− a|
≤ |d− f |+ |c− e|+ |f − b|+ |e− a|
= dp(t, r) + dp(z, y)

for any z = [e, f ] ∈M . Therefore, (M,dp) is a metric space.

Example 1.3. Let us consider the PMS in Example 1.1. We aim to calculate

2max{t, s} −max{t, t} −max{s, s} = 2max{t, s} − x− y.

If max{t, s} = t, then we get dp(t, s) = t − y ≥ 0. If max{t, s} = y, then we find that
dp(t, s) = y − x ≥ 0. Therefore, we derive that dp(t, s) = |x − y| is the restriction of the
usual length metric of R to M = [0, 1].

It is known that each partial metric p on M generates a T0−topology, a topology where for
any distinct t, s ∈ M there exits an open set U such that t ∈ U and y ̸∈ U or x ̸∈ U and
y ∈ U . This topology has the family of open p-balls

{Bp(x, r) : t ∈M, r > 0}
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as its base where Bp(x, r) = {y ∈M : |p(t, s)− p(t, t)| < r}.

Example 1.4. Let (M,p) be the PMS in the Example 1.1. Let t be an element in [0, 1] so
that t ̸= 1 and r > 0. Then any ball centered at t is given as

Bp(t, ϵ) = [0, t+ r).

Because any s ≤ t will satisfy the inequality max{s, t} = t < t + r = max{t, t}. If s > t,
then s is in Bp(t, r) if max{t, s} = s < t+ r or t < s < t+ r. If we let t = 1, then any ball
centered at 1 is

Bp(1, r) = [0, 1].

Therefore, there are two types of open balls in (M, τp). Clearly, (M, τp) is a T0-space.

Let us recall some basic topological definitions for partial metric spaces that we shall need
in this work (for details see e.g. [46, 47, 2, 24, 30].)

Definition 1.2. Let (M,p) be a PMS and t and t0 denote two points in M . Let {tn} be a
sequence contained in M .

(1) {tn} converges to t, denoted by if and only if for every ϵ > 0 there exists a positive
integer M > 0 so that tn ∈ Bp(x, ϵ) for every n > M , i.e., p(t, t) = lim

n→∞
p(x, tn).

(2) {tn} is called a Cauchy sequence if and only if limn,m→∞ p(tn, tm) exists and is finite.
(3) (M,p) is called complete if and only if every Cauchy sequence {tn} in M converges to

a point t ∈M .
(4) A mapping f : (M,p) → (M,p) is said to be continuous at t0 if and only if for every

ϵ > 0, there exists δ > 0 such that f(Bp(t0, δ)) ⊆ Bp(f(t0), ϵ).
(5) A mapping f : (M,p) → (M,p) is said to be continuous if it is continuous at every

point t ∈M .

Example 1.5. Consider the PMS given in Example 1.1. Let tn = 1/n for n ∈ N. Notice
that we have

lim
n→∞

p

(
0,

1

n

)
= lim

n→∞

1

n

= 0

= p(0, 0).

Therefore, {1/n}∞n=1 is a convergent sequence which converges to 0. In fact, this sequence is
Cauchy. Note that if we have m ≥ n, then we get p(1/m, 1/n) = 1/n and limn,m→∞ 1/n = 0.
If we have n ≥ m, then we get p(1/m, 1/n) = 1/m and limn,m→∞ 1/m = 0. In either case,
we obtain that limn,m→∞ p(tn, tm) exists and is finite.

We would like to point out that this example also shows that limit of a convergent
sequence in a PMS may not be unique. Indeed, {1/n}∞n=1 also converges to 1 because
limn→∞ p(1, 1/n) = p(1, 1).

We shall use the following definition to name the set of limit points of a sequence in a PMS.

Definition 1.3. Let {tn}∞n=1 be a sequence in a PMS. We will denote the set of limit points,
if there is any, by

L({tn}∞n=1) = {t ∈M : lim
n→∞

p(x, tn) = p(t, t)}.

We would like to emphasize that L({tn}∞n=1) may be empty. On the other hand, it may be
the whole space, e.g., L({1/n}∞n=1) = [0, 1] in Example 1.5.

Example 1.6. Let (M,p) be the PMS in Example 1.1. Let us consider the map T :M →M
defined by Tt = t/10. We aim to show that T is continuous over M .
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Let t0 be an element in [0, 1). For any given ϵ > 0, however small, we let δ = 10ϵ.
Then we see that

T (Bp(t0, δ)) = T ([0, t0 + δ)) ⊆
[
0,
t0
10

+ ϵ

)
= Bp(Tt0, ϵ).

Let t0 = 1. For any given ϵ > 0, however small, we let δ = ϵ. Then we find that
T (Bp(1, δ)) = T ([0, 1]) ⊆ [0, 1/10 + ϵ) = Bp(T1, ϵ). Thus, T is continuous on M = [0, 1].

Example 1.7. Let (M,p) be the PMS in Example 1.1. Let us consider the map T :M →M
defined by Tt = 0. Let t0 be a point in [0, 1). For any given ϵ > 0, however small, we let
δ = ϵ. Then we observe that

T (Bp(t0, δ)) = T ([0, t0 + δ)) ⊆ [0, ϵ) = Bp(Tt0, ϵ).

Let t0 = 1. For any given ϵ > 0, however small, we let δ = ϵ. Then we find that
T (Bp(1, δ)) = T ([0, 1]) ⊆ [0, ϵ) = Bp(T1, ϵ). Thus, T is continuous on M = [0, 1].

We would like to include the statements of a number of lemmas that we shall need directly
or indirectly to prove the main results of this paper. We omit the proofs of some of these
lemmas as they are either easily accessible in the literature or elementary in the sense that
they can be derived directly from Definition 3.1 and/or the relationship between metrics
and partial metrics.

Lemma 1.1. Let (M,p) be a partial metric space and (M,dp) be the corresponding metric
space. Then we have the necessary and sufficient conditions

(1) a sequence {tn} is a Cauchy sequence in (M,p) if and only if it is a Cauchy sequence
in (M,dp), and

(2) the space (M,p) is complete if and only if the space (M,dp) is complete.

In the spirit of the earlier examples, we would like to include basic examples showing an
application of the lemma above.

Example 1.8. Let us set M = [0, 1]∪ [2, 3] and define a map p :M ×M → [0,∞) such that

p(t, s) =

{
max{t, s} if {t, s} ∩ [2, 3] ̸= ∅,
|t− s| if {t, s} ⊂ [0, 1].

Then (M,p) is a partial metric space (see [47] for details). We aim to show that (M,p) is
a complete PMS. By Lemma 1.1, it is enough to show that (M,dp) is complete.

Let t and s be two elements in M . If we have {t, s} ⊂ [0, 1], then we get dp(t, s) =
2|t − s|. Let us assume that {t, s} ∩ [2, 3] ̸= ∅. Then there are two cases to consider:
max{t, s} = t or max{t, s} = s. If we have the first case, then we see that dp(t, s) = 2t−t−s
or dp(t, s) = t− s. In the second case, we find that dp(t, s) = 2s− t− s or dp(t, s) = s− t.
In other words, we have dp(t, s) = |t − s| if {t, s} ∩ [2, 3] ̸= ∅. Therefore, we conclude that
dp is essentially the usual length metric on M .

We know that (R, | · |) is a complete metric space with the induced topology from the
length metric. Since M is a closed subset of R, the metric space (M,dp) is also complete by
Lemma 1.1.

Example 1.9. Let (M,p) be the PMS in Example 1.1. By Example 1.3, we know that dp
is the usual length metric |.|. Since (R, |.|) is complete and M = [0, 1] is a closed subset of
R, the partial metric space (M,p) is also complete by Lemma 1.1.

One of the implications of (2) in Lemma 1.1 is the necessary and sufficient condition stated as
limn→∞ dp(t, tn) = 0 if and only if p(t, t) = limn→∞ p(t, tn) and p(t, t) = limn,m→∞ p(tm, tn)
for any Cauchy sequence {tn} in (M,p) or (M,dp) (see e.g. [2, 24, 30]).
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Lemma 1.2. Let (M,p) be a complete PMS and {tn}∞n=1 be a Cauchy sequence in M . If
there exists an element u ∈ L({tn}∞n=1) such that p(u, u) = 0, then we have u ∈ L({tnj}∞j=1)
for every subsequence {tnj

}∞j=1 of {tn}∞n=1.

Proof. We need to show that limj→∞ p(tnj
, u) = p(u, u). We know that {tn}∞n=1 is Cauchy.

For any given ϵ >, there exists a positive integer M > 0, however large, so that |p(tm, tn)−
p(u, u)| < ϵ for everym,n > M . Therefore, we have |p(tnj

, tn)−p(u, u)| < ϵ for large enough
j so that nj > M . In other words, we observe that limn,j→∞ p(tnj , tn) = p(u, u). Similarly,
we also observe that limn→∞ p(tn, tn) = p(u, u). We use the property (P2) in Definition 3.1
to derive that

p(tnj , u) + p(tn, tn) ≤ p(tnj , tn) + p(tn, u)

for every n, j ∈ N. We calculate the limit of both sides of the inequality above. We find that

lim
n,j→∞

(
p(tnj , u) + p(tn, tn)

)
≤ lim

n,j→∞

(
p(tnj , tn) + p(tn, u)

)
lim
j→∞

p(tnj
, u) ≤ 0.

Thus, we conclude that limj→∞ p(tnj , u) = p(u, u). �

The proof of the following lemma is obvious.

Lemma 1.3. Let (M,p) be a complete PMS and T : M → M be a continuous map. Let
{tn}∞n=1 be a Cauchy sequence in M . If there exists an element u ∈ L({tn}∞n=1) such that
p(u, u) = 0, then we have Tu ∈ L({Ttn}∞n=1).

Lemma 1.4. [47, 51]

(i) {tn} is a Cauchy sequence in a partial metric space (M,p) if and only if it is a Cauchy
sequence in the metric space (M,dp);

(ii) A partial metric space (M,p) is complete if and only if the metric space (M,dp) is
complete. Furthermore, limn→∞ dp(tn, t) = 0 if and only if p(t, t) = limn→∞ p(tn, t) =
limn→∞ p(tn, tm).

(iii) If {tn} is a convergent sequence in (M,dp), then it is a convergent sequence in the
partial metric space (M,p).

Lemma 1.5. [2] Let {tn} and {sn} be two sequences in a partial metric space M such that

lim
n→∞

p(tn, t) = lim
n→∞

p(tn, tn) = p(t, t),

and

lim
n→∞

p(sn, s) = lim
n→∞

p(sn, sn) = p(s, s),

then lim
n→∞

p(tn, sn) = p(t, s). In particular, lim
n→∞

p(tn, r) = p(t, r) for every r ∈M .

Lemma 1.6. [See e.g.[33]] Let (M,p) be a partial metric space. Then

(A) If p(t, s) = 0 then t = s,
(B) If t ̸= s, then p(t, s) > 0.

Remark 1.1. In a recent work of Haghi et al. [16], it was realized that

MT
d (t, s) =MT

p (t, s), with

where T is a self-mapping on a non-empty setM , p, q are metric, partial metric, respectively,
and

MT
m(t, s) = max{m(t, s),m(t, T t),m(Ts, s),m(Tt, s),m(x, Ty)}

where m = d, p. In this note we avoid to use the maximum notation so that the methods
used in [16] can not be applied.
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Definition 1.4. [49] Let T :M →M be a mapping and α :M ×M → [0,∞) be a function.
We say that T is an α-orbital admissible if

α(t, T t) ≥ 1 ⇒ α(Tt, T 2t) ≥ 1.

Let Ψ be the family of functions ψ : [0,∞) → [0,∞) satisfying the following condi-
tions:

(Ψ1) ψ is nondecreasing;
(Ψ2) there exist k0 ∈ N and a ∈ (0, 1) and a convergent series of nonnegative terms

∑∞
k=1 vk

such that

ψk+1 (t) ≤ aψk (t) + vk,

for k ≥ k0 and any t ∈ [0,∞).

Here, these functions are called as (c)-comparison (see e.g. [60]). In [60], Rus proved that if
ψ ∈ Ψ, then the following hold:

(a) the sequence (ψn (t))n∈N converges to 0 as n→ ∞ for all t ∈ [0,∞);
(b) the strict inequality, ψ (t) < t, holds for any t ∈ [0,∞);
(c) the function ψ is continuous at 0;
(d) the series

∑∞
k=1 ψ

k (t) converges for any t ∈ [0,∞).

In this paper, we investigate the existence and uniqueness of a fixed point of the operators
in the frame of rational contraction (will be called Jaggi Type) in the setting of complete
partial metric spaces via auxiliary functions α and ψ ∈ Ψ defined above.

2. Main Results

We start this section with the following definition.

Definition 2.1. Let (M,p) be a complete PMS and T :M →M be a map. Then T will be
referred to as a map of (α−ψ)-Jaggi type if there exist ψ ∈ Ψ, and nonnegative real numbers
a1, a2 with a1 + a2 < 1 so that the inequality

α(t, s)p(Tt, Ts) ≤ ψ

(
a1
p(t, T t) · p(s, Ts)

p(t, s)
+ a2p(t, s)

)
(2)

holds for every distinct t, s ∈M .

Lemma 2.1. Let M be a non-empty set. Suppose that α : M ×M → R+
0 is a function

and T : M → M is an α-orbital admissible mapping. If there exists t0 ∈ M such that
α(t0, T t0) ≥ 1, and tn = Ttn−1 for n = 0, 1, . . . , then, we have

α(tn, tn+1) ≥ 1, for each n = 0, 1, . . . . (3)

Proof. On account of the assumptions of the theorem, there exists t0 ∈ M such that
α(t0, T t0) ≥ 1. Owing to the fact that T is α-orbital admissible, we find

α(t0, t1) = α(t0, T t0) ≥ 1 ⇒ α(Tt0, T t1) = α(t1, t2) ≥ 1.

By iterating the above inequality, we derive that

α(tn, tn+1) = α(Ttn−1, T tn) ≥ 1, for each n = 0, 1, . . . .

�

Theorem 2.1. Let (M,p) be a complete PMS, T :M →M be a map of (α−ψ)-Jaggi type
and there exists t0 ∈ M such that α(t0, T t0) ≥ 1. If the α-orbital admissible mapping T is
continuous, then T has a fixed point in M .
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Proof. By the assumption of the theorem, there exists t0 ∈M such that α(t0, T t0) ≥ 1. So,
we can construct a sequence as follows:

tn = Ttn−1 for n = 0, 1, . . . , .

Due to Lemma 2.1, we have (3).
Without loss of generality, we may assume that

p(tn, tn+1) > 0, for each n = 0, 1, . . . . (4)

Indeed, if there exists an k0 so that p(tn, tn+1) = 0, then, by Lemma 1.6, we have tk0 =
tk0+1 = Ttk0 . It completes the proof with the observation that u = tk0 is a fixed point of T .

Accordingly, throughout the proof, we have (4). Hence, we can use the inequality (2)
for any successive terms t = tn and s = tn+1

p(tn+1, tn+2) = p(Ttn, T tn+1) ≤ α(tn, tn+1)p(Ttn, T tn+1)

≤ ψ
(
a1

p(tn,T tn)·p(tn+1,T tn+1)
p(tn,tn+1)

+ a2p(tn, tn+1)
)

= ψ (a1p(tn+1, tn+2) + a2p(tn, tn+1))

(5)

We need to examine two cases:

(i) p(tn+1, tn+2) > p(tn, tn+1),
(ii) p(tn+1, tn+2) ≤ p(tn, tn+1).

If the first case occurs for some n, then, due to (Ψ1) together with the fact that ψ(t) <
t, ∀t > 0, the inequality (5) turns into

p(tn+1, tn+2) ≤ ψ ([a1 + a2]p(tn+1, tn+2))
≤ ψ(p(tn+1, tn+2)) < p(tn+1, tn+2),

(6)

a contradiction. Hence, the second case, p(tn+1, tn+2) ≤ p(tn, tn+1), holds true for all n ∈ N0.
Moreover, the inequality (5) yields that

p(tn+1, tn+2) ≤ ψ ([a1 + a2]p(tn+1, tn+2)) ≤ ψ (p(tn+1, tn+2)) < p(tn+1, tn+2) (7)

Iteratively, we derive that

p(tn+1, tn) ≤ ψn(p(t1, t0)), for all n ≥ 1. (8)

Due to Lemma (8) (i), we find that

lim
n→∞

p(tn+1, tn) = 0. (9)

Again by keeping the expression (8) in the mind, and by using the triangular inequality
(P4), for all k ≥ 1, we have

p(tn, tn+k) ≤ p(tn, tn+1) + . . .+ p(tn+k−1, tn+k)−
k−1∑
j=1

(p(tn+j , tn+j))

≤
n+k−1∑
j=n

ψj(p(t1, t0))

≤
+∞∑
j=n

ψj(p(t1, t0)) → 0 as n→ ∞.

This implies that

lim
n→∞

p(tn, tn+k) = 0,



56 Erdal Karapınar

and hence {tn} is a Cauchy sequence in (M,p). Since (M,p) is complete, there exists u ∈M
such that

lim
n→∞

p(tn, u) = 0 = lim
n→∞

p(tn, tn+k) = p(u, u). (10)

Since T is continuous, by the definition of the continuity, we conclude from (10) that

lim
n→∞

p(tn+1, Tu) = lim
n→∞

p(Ttn, Tu) = 0. (11)

On account of Lemma 1.5 together with (10) and (11), we find that u is a fixed point of T ,
that is, Tu = u.

�
The continuity condition can be relaxed in Theorem 2.1 by replacing a suitable con-

dition like the given below:

Definition 2.2. Let s ≥ 1. We say that a PMS (M,p) is regular if {tn} is a sequence
in M such that α(tn, tn+1) ≥ 1 for each n and pn → t ∈ M as n → ∞, then there is a
subsequence {tn(k)} of {tn} such that α(tn(k), t) ≥ 1 for each k.

Theorem 2.2. Let (M,p) be a regular complete PMS, T : M → M be a map of (α − ψ)-
Jaggi type and there exists t0 ∈M such that α(t0, T t0) ≥ 1. If T is the α-orbital admissible
mapping, then T has a fixed point in M .

Proof. Following the proof of Theorem 2.1, we know that the sequence {tn} defined by
tn+1 = Ttn for all n ∈ N0, converges for some u ∈M . From Lemma 2.1 and Definition 2.2,
there exists a subsequence {tn(k)} of {tn} such that α(tn(k), u) ≥ 1 for all k. Employing (2),
for all k, we get that

p(tn(k)+1, Tu) = p(Ttn(k), Tu) ≤ α(tn(k), u)p(Ttn(k), Tu)

≤ ψ
(
a1

p(Ttn(k),tn(k))p(Tu,u)

p(tn(k),u)
+ a2p(tn(k), u)

)
< a1

p(Ttn(k),tn(k))p(Tu,u)

p(tn(k),u)
+ a2p(tn(k), u).

(12)

Letting k → ∞ in the above equality, we have p(u, Tu) = 0, that is, u = Tu. �
The assure the uniqueness of the fixed point, we will consider the following hypothesis

(U) for all t ̸= s ∈M , there exists r ∈M such that α(t, r) ≥ 1, α(s, r) ≥ 1 and α(r, Tr) ≥ 1

Theorem 2.3. The fixed point t∗ of T , in Theorem 2.1 (resp. Theorem 2.2), is unique, if
assume an additional condition (U).

Proof. By taking t = t0 we derive that α(t0, T t0) ≥ 1, by hypotheses of Theorem 2.1 (resp.
Theorem 2.2) so we obtain that t∗ is a point fixed of T , where t∗ = limn→∞ tn = limn→∞ Tnt.
We shall show that T has a unique fixed point. Suppose, on the contrary, that t∗ and s∗

are two fixed points of T such that t∗ ̸= s∗. Then, from (U) there exists z ∈ M such that
α(t∗, r) ≥ 1, α(s∗, r) ≥ 1 and α(z, Tr) ≥ 1. Since T is a α-orbital admissible, we get that
α(t∗, Tnr) ≥ 1 and α(s∗, Tnr) ≥ 1. Hence, from (2) we have

d(t∗, Tn+1r) = d(Tt∗, T (Tnr)) ≤ α(t∗, Tnr)d(Tt∗, T (Tnr))

≤ ψ
(
a1

p(t∗,T t∗)·p(Tnr,T (Tnr))
p(t∗,Tnr) + a2p(t

∗, Tnr)
) (13)

This imply that

d(t∗, Tn+1r)a2d(t
∗, Tnr) ≤ d(t∗, Tnr)
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By Theorem 2.2 we deduce that the sequence Tnr converges to a fixed point r∗ of
T . Letting n → ∞ in the above inequality, we get d(t∗, r

∗) < d(t∗, r
∗). This implies

that d(t∗, r∗) = 0 so t∗ = r∗. Similarly, we get s∗ = r∗. Hence, t∗ = s∗, which is a
contradiction. �

3. Consequences

In this section we shall present some consequences of our main theorems and illustrate
their applications as examples. First, we would like to give a definition.

Definition 3.1. Let (M,p) be a complete PMS, T :M →M be a map and ψ ∈ Ψ. Then T
will be referred to as a map of ψ-Jaggi type if there exist a1 and a2 in [0, 1) with a1+a2 < 1
so that the inequality

p(Tt, Ts) ≤ ψ

(
a1
p(t, T t) · p(s, Ts)

p(t, s)
+ a2p(t, s)

)
(14)

holds for every distinct t, s ∈M .

Theorem 3.1. Let (M,p) be a complete PMS and T : M → M be a map of ψ-Jaggi type.
If T is continuous, then T has a unique fixed point in M .

Proof. For the existence of a fixed point, it is sufficient to take α(t, s) = 1 for all t, s ∈ M .
Then, Theorem 2.1 turns to be Theorem 3.1. Uniqueness follows from Theorem 2.3, since
the condition (U) is fulfilled due to fact that α(t, s) = 1 for all t, s ∈M . �

Theorem 3.2. Let (M,p) be a complete PMS and T :M →M be a map of Jaggi type. Let
T be a continuous self-map defined on a complete partial metric space (M,p). Further, let
T satisfy the following condition:

p(Tt, Ts) ≤ α1
p(t, T t).p(s, Ts)

p(t, s)
+ α2d(t, s) (15)

for all distinct t, s ∈M ,and for some α1, α2 ∈ [0, 1) with α1 +α2 < 1. Then T has a unique
fixed point in M .

Proof. It is sufficient to set ψ(t) = kt, k ∈ [0, 1) in Theorem 3.1 with αi = kai, i = 1, 2. �

The following is an example where Theorem 3.2 is applicable to conclude that there exists
a unique fixed point.

Example 3.1. Let M be the set of real numbers in [0, 1] and p : M → M be the partial
metric defined by p(t, s) = max{t, s}. Let us define the map T :M →M so that Tx = t/10.

We claim that T is a map of Jaggi type. Let a1 = 1/5 and a2 = 1/5. Let t and s
be two distinct points in M . Assume that max{t, s} = t. Since t and s are distinct, we get
x ̸= 0. Then we have

p(Tt, Ts) =
t

10
≤ s+ t

5
=

1
5 · t · s
t

+
1

5
· t = a1

p(t, T t).p(s, Ts)

p(t, s)
+ a2p(t, s).

Notice that p(t, T t) = t and p(s, Ts) = s. Since the elements in {t, s} can be renamed so that
the maximum becomes t again, the inequality above can be repeated in any case. Therefore,
T is a map of Jaggi type. By Theorem 3.2, we conclude that there exists a unique fixed
point. It is straightforward to observe that the point 0 is the fixed point of T .
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3.1. Consequences in the setting of metric spaces endowed with a partial
order

In the subsection, we list some more consequences of our main result in the setting
of metric spaces endowed with partial orders. This trend was initiated by [54, 48] and take
great attention of several authors who has worked on the metric fixed point theory and its
applications. We shall prove that Theorem 2.3 conclude various existing fixed point results
on a metric space endowed with a partial order. For this purpose, we, first, recollect some
basic concepts.

Definition 3.2. For a partially ordered non-empty set (M,≼), the self-mapping T :M →M
T is called nondecreasing with respect to ≼ if

t, s ∈M, t ≼ s =⇒ Tt ≼ Ts.

Definition 3.3. A sequence {tn} in a partially ordered set (M,≼) is called nondecreasing
with respect to ≼, if tn ≼ tn+1 for all n.

Definition 3.4. Let (M,≼) be a partially ordered set and d be a metric on M . We say that
(M,p,≼) is regular if for every nondecreasing sequence {tn} ⊂M such that tn → x ∈M as
n→ ∞, there exists a subsequence {tn(k)} of {tn} such that tn(k) ≼ x for all k.

Suppose that (M,≼) is a partially ordered set and d be a metric on M . We say that
(M,≼) have a property of (S) if it fulfills the following condition

(S) for all s, t ∈M there exists r ∈M such that t ≼ r and s ≼ r,

For the simplicity, we shall use the notation (M,p,≼) to represent the partially or-
dered set (M,≼) equipped with a metric d. The triple (M,p,≼) is called metric spaces
endowed with a partial order.

Theorem 3.3. Let (M,p,≼) be a partial metric spaces endowed with a partial order, where
(M,p) is complete. Let T :M →M be a nondecreasing mapping with respect to ≼. Suppose
that there exists a function ψ ∈ Ψ such that

d(Tt, Ts) ≤ ψ(R(t, s), (16)

for all t, s ∈M with t ≽ s, where

R(t, s) = a1
p(t, T t) · p(s, Ts)

p(t, s)
+ a2p(t, s). (17)

Suppose also that the following conditions hold:

(i) there exists t0 ∈M such that t0 ≼ Tt0;
(ii) T is continuous or (M,≼, d) is regular.

Then, T has a fixed point. Moreover, if (M,≼) have a property of (S), the observed fixed
point is unique.

Proof. Let α :M ×M → [0,∞) be a mapping such that

α(t, s) =

{
1 if x ≼ y or x ≽ y,
0 otherwise.

It straightforward that T :M →M is an (α-ψ)-Jaggi type, that is,

α(t, s)d(Tt, Ts) ≤ ψ(R(t, s)),

for all t, s ∈M . From condition (i), the definition of α yields that α(t0, T t0) ≥ 1.
Moreover, for all t, s ∈M , from the monotone property of T , we have

α(t, s) ≥ 1 =⇒ x ≽ y or x ≼ y =⇒ Tx ≽ Ty or Tx ≼ Ty =⇒ α(Tt, Ts) ≥ 1.

Consequently, T is α−orbital admissible.
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For a last step, we examine the following cases: If T is continuous, the existence of a
fixed point follows from Theorem 2.1. Suppose now that (M,≼, d) is regular. Let {tn} be
a sequence in M such that α(tn, tn+1) ≥ 1 for all n and tn → x ∈ M as n → ∞. Due to
regularity, there is a subsequence {tn(k)} of {tn} such that tn(k) ≼ x for all k. Hence, we
have α(tn(k), x) ≥ 1 for all k. So, the existence of a fixed point follows from Theorem 2.2.

For the uniqueness, let t, s ∈M . By assumption (S) of the theorem, there exists r ∈
M such that t ≼ r and s ≼ r, which yields that α(x, r) ≥ 1 and α(y, r) ≥ 1. Consequently,
we conclude the uniqueness of the fixed point by Theorem 2.3. �

3.2. Consequences in the setting of the cyclic contractive mappings

In this subsection, we shall consider some consequences of our main results in setting
of cyclic mapping. Studying the existence and uniqueness of a fixed point of certain cyclic
contractive mappings turns to be one of the most exciting trend in the last decade. This
direction was initiated by Kirk et.al. [44]and followed by a number of authors (see e.g.
[62, 41, 42] and the related references therein).

Here, we shall indicate that our main result, Theorem 2.3, infer a fixed point theorems
for cyclic contractive mappings.

Theorem 3.4. Suppose that {Ai}2i=1 are nonempty closed subsets of a complete partial
metric space (M,p) and T : N → N is a given mapping with N = A1 ∪ A2. If the the
following conditions are fulfilled

(I) T (A1) ⊆ A2 and T (A2) ⊆ A1;
(II) there exists a function ψ ∈ Ψ such that

d(Tt, Ts) ≤ ψ(R(t, s)), for all (t, s) ∈ A1 ×A2,

where R(t, s) is defined as in (17),

then, T has a unique fixed point that belongs to A1 ∩A2.

Proof. We shall divide the proof in 5 steps. Step 1. the pair (N, p) forms a complete metric
space since A1 and A2 are closed subsets of (M,p).

Step 2. We shall prove that T is a Jaggi-(α − ψ) type. For this purpose, we specify
the mapping α : N ×N → [0,∞) as

α(t, s) =

{
1 if (t, s) ∈ (A1 ×A2) ∪ (A2 ×A1),
0 otherwise.

Regarding (II) and α, we are able to write

α(t, s)d(Tt, Ts) ≤ ψ(M(t, s)),

for all t, s ∈ Y . In other words, T is an Jaggi-(α− ψ) type.
Step 3. We assert that T is α−admissible. Suppose that (t, s) ∈ N×N with α(t, s) ≥

1. For the case (t, s) ∈ A1×A2, from (I), (Tt, Ts) ∈ A2×A1, which yields that α(Tt, Ts) ≥ 1.
For the other case, (t, s) ∈ A2 ×A1, again from (I), (Tt, Ts) ∈ A1 ×A2, which implies that
α(Tt, Ts) ≥ 1. So, we find that α(Tt, Ts) ≥ 1 whenever α(t, s) ≥ 1.

Step 4. Note that for any a ∈ A1, from (I), we get (a, Ta) ∈ A1 × A2, and thus
α(a, Ta) ≥ 1.

Step 5. We claim that (M,p) is regular. Suppose that {tn} is a sequence in M such
that α(tn, tn+1) ≥ 1 for all n and tn → t ∈ M as n → ∞. On account of the definition of
the α mapping, we find

(tn, tn+1) ∈ (A1 ×A2) ∪ (A2 ×A1), for all n.
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Since (A1 ×A2) ∪ (A2 ×A1) is a closed set with respect to the Euclidean metric, we derive
that

(t, t) ∈ (A1 ×A2) ∪ (A2 ×A1),

which yields that t ∈ A1 ∩A2. Consequently, we have α(tn, t) ≥ 1 for all n.
To finalize the proof, suppose that t, s ∈ Fix(T ). From (I), we find that t, s ∈ A1∩A2.

As a result, we deduce that α(t, r) ≥ 1 and α(s, r) ≥ 1, for any r ∈ Y . Thus, condition (U)
is fulfilled.

Thus, all the hypotheses of Theorem 2.3 are fulfilled that guarantees the existence
and uniqueness of a fixed point of T in A1 ∩A2 (from (I)). �

3.3. Conclusion and Final Remarks

It is clear that the given consequences of our main results in this paper is not complete.
One can give more consequences by re-considering the auxiliary functions α,ψ and even by
changing the abstract space with a standard metric. Notice that all fixed point theorems in
partial metric spaces are valid in metric spaces. It is clear that the converse is not true.
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di Matematica dell’Università di Trieste. 36 (1–2) (2004) 17–26.



62 Erdal Karapınar
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