
U.P.B. Sci. Bull., Series C, Vol. C, Iss. 4, 2018 ISSN 2286-3540

A WEB BASED APPLICATION DESIGN FOR PRODUCT

DATA ENGINEERING AND MANAGEMENT

Marian GHEORGHE1, Aurel TARARA2

The informational environment involves a high volume of data transfer

between web-based applications in the conditions of user’s continuous mobility.

This demands to update the applications by implementing new web technologies.

The present paper contributes to the design of a web-based application for product

data engineering and management, by integrating proper elements from modern

web technologies, in order to avoid deployment problems to web servers, to allow

flexibility and communication with other applications and hardware. The

application exposes a REST API, JWT secured to exchange data with other

applications. By means of endpoint, the backend API can be accessed in order to

request JWT tokens used to authorize the requests for access to the application

resources. The SPA approach reduces the resources usage and navigation/ data

load time by means of components reusability and partial page load.

Keywords: PDM, PDEM, API, REST, SPA, JWT, Framework, Application.

1. Introduction

The continuous growth of processed data volume has determined the

evolution of the concepts, architectures and web technologies, with a significant

impact in industrial environments.

Product Data Management, PDM, as a computer-based system for

development information infrastructure and cooperation on product design and

manufacture, is part of Product Lifecycle Management, PLM. The Product Data

Engineering and Management Application, PDEM.A01, is a web-based

development application of PDM that improves data reusability and integrates

constructive solutions configuration and technological validation tools, to support

the analysis and configuration of certain customized product parts [1].

Modern web development technologies have been answered to different

requests. A web API represents, at a higher level, a mechanism for code reuse,

1 Professor, PhD, Doctoral School on Engineering and Management of Technological Systems,

TCM Department, University POLITEHNICA of Bucharest, Romania, E-MAIL:

marian.gheorghe@upb.ro
2 PhD Candidate, Doctoral School on Engineering and Management of Technological Systems,

University POLITEHNICA of Bucharest, Romania, e-mail; aurel.tarara@gmail.com

mailto:marian.gheorghe@upb.ro
mailto:aurel.tarara@gmail.com

14 Marian Gheorghe, Aurel Tarara

without needing to modify, understand or even see the implementation, and

instead interacting only with the programming interface [2].

Representational State Transfer, REST, as an architectural style, improves

the performance, the scalability of component interaction, the simplicity of

interface, the modifiability of components, the portability, the reliability, the

visibility of distributed systems [3].

In terms of REST APIs, recent versions of PHP frameworks can expose

endpoints that may be consumed by multiple applications, developed for different

types of devices e.g. desktop computers, laptops, mobile devices or complex

computer systems used in industrial environments.

The frameworks facilitate the web programming and make it better

organized. Frameworks increase programming productivity with the help of

framework built-in functions. Widely used frameworks have a major security

advantage since its users become long-term testers. The most popular frameworks

are free and usually come along with a support team, documentation etc. [4].

Frameworks like Laravel package a collection of third-party components together

with configuration files, service providers, prescribed directory structures and

application bootstraps [5].

Laravel is based on the model-view-controller, MVC, paradigm and

provides a scaffolding with places to put code in. Laravel starts out with a

complete directory tree to organize the code, and also includes placeholder files to

use as a starting point [6].

Modern JavaScript frameworks like Vue.js support the development of

single-page application, SPA, that changes data asynchronously with the backend

API. Vue.js allows to simply bind the data models to the representation layer. It

also allows to easily reuse components throughout the application. A special

architecture, Vuex, for centralized states allows a global application store to be

created, the place where the global application state can be stored and managed [7].

In a SPA, the entire application runs as a single web page. In this

approach, the presentation layer for the entire application has been factored out of

the server and is managed from within the browser. It shares the objective to bring

the power of a desktop app to the thin, cross-platform environment of a web

browser. SPA applications render like a desktop application, but runs in a

browser, they offer decoupled presentation layers, faster, lightweight transaction

payloads and less user wait time. The SPAs code is easier to be maintained [8].

The requests made by the single page application to the backend API in

order to exchange data imposes a high level of data security because these

requests can be intercepted and/ or forged. Also, session stored authentication data

A Web-based application design for product data engineering and management 15

in localStorage and sessionStorage is not persistent and is loosed if browser is

refreshed. JSON Web Tokens, JWT, can be used as a method to secure requests.

JWT, as a standard for safely passing claims in space constrained

environments, is a very compact, printable representation of a series of claims,

along with a signature to verify its authenticity. The most important aspect of this

is the standardization effort in the form of a simple, optionally validated and/or

encrypted, container format [9].

2. Objective and research method

Recent web technologies allow developers to build better applications in

terms of performance, maintainability and user experience.

Taking advantage of PHP and JavaScript frameworks, the time needed for

applications development is reduced. Frameworks integrate code packages and

plugins which add functionality to the application without consuming time to

write code.

By developing backend REST APIs, the data can be exposed to multiple

applications without rewriting the core code for each application or each type of

device used by the end user.

SPA user interfaces allow the navigation thru different sections of the

application more efficient and presents the data to the user faster since only

sections of the web page are updated and since only requests for not loaded or

affected data are made to the backend API.

The objective of present research is to develop a web based application for

product data engineering and management, by implementing modern web

technologies, in order to avoid deployment problems to web servers with

integrated new technologies, and to allow the communication with other

applications and hardware.

The present research has been approached with regard to proper reference

elements: selection of the PHP and JavaScript frameworks, definition of the

backend and frontend APIs, etc.

3. Application design

Reference elements

Laravel 5.6 and Vue.js 2.5.7 have been chosen as the frameworks used for

objective application backend and frontend APIs.

16 Marian Gheorghe, Aurel Tarara

It has been established that the considered application will expose a

package of end points in order to exchange data with other applications and a SPA

approach is considered for the frontend API.

The backend API follows a model-view-controller, MVC, architecture

made available by Laravel framework with the following main components:

application data models, controllers that manage the data operations - create,

read, update, delete, etc. - and exposed endpoints. Database connection and

operations are simplified by Laravel and the ORM, Object-relational mapping,

tool named Eloquent.

The application design base has been chosen as a suit of key functionalities

that provides the user the ability to manage the product data.

The core functions of the application and their implementation approach

are presented in Table 1.

Table 1

Application core functions and their implementation

Function Implementation

Users authentication
JWT tokens are implemented to allow the secure communication

between the frontend and the backend APIs

Users role/ permissions

system

Gates and policies are implemented to restrict the application

functionality by considering the user role

Product data definition

The frontend API allow project data to be defined by means of

components and user interfaces. The backend API will allow the data

CRUD, create, read, update, delete functionality

Advanced search by

product attributes

Advanced search functionality is possible by means of models’

relationships

Product data version

control

Timestamps are registered in the database when data update action is

called. Product data version will be automatically incremented

Product data lifecycle

control

Product data is marked in the database as for information, in study,

released, or built. Validation from users with higher rank is

necessarily to change the data mark.

Product data sharing
Collaborative design is provided by means of product data

transmittal based on email functions

The implementation of the application functionality considers the application

scalability in terms of communication with other application or hardware. The

backend API responses will be returned in JSON format.

A Web-based application design for product data engineering and management 17

Objective application backend API

In relation to Laravel base structure, the considered backend API is
structured as presented in Table 2.

Table 2

Backend API base structure

Name Description

Models

User Describes and interacts with database users table

Content Describes and interacts with database content table

… …

Caract_as
Describes and interacts with database assembly characteristics

table

Caract_aux
Describes and interacts with database auxiliary parts characteristics

table

Controllers

AuthController Contains methods for authentication

ContentController Contains methods to create, update, delete, etc. content data

… …

CaractasController
Contains methods to create, update, etc. assembly characteristics

data

CaractauxController
Contains methods to create, update, delete, etc. auxiliary parts

characteristics data

API routes

api Contains REST API routes

Laravel MVC approach and Eloquent allows a more efficient interaction

and database information retrieval. The models describe the database tables

structures and separate accessible or protected data by using fillable and hidden

arrays of data. The user model defined for the considered application is as

follows:

namespace App;

use Tymon\JWTAuth\Contracts\JWTSubject;

use Illuminate\Notifications\Notifiable;

use Illuminate\Foundation\Auth\User as Authenticatable;

class User extends Authenticatable implements JWTSubject {

use Notifiable;

protected $fillable = ['username', name, 'surname', rank, 'position', email, 'avatar',];

…
}

18 Marian Gheorghe, Aurel Tarara

To be noted that the User model includes support methods for the JWT

authentication made possible by installing the Tymon JWT-auth package.

Authentication methods are defined in the AuthController as follows:
namespace App\Http\Controllers;

use Illuminate\Support\Facades\Auth;

use Illuminate\Http\Request;

class AuthController extends Controller {

public function __construct() {

$this->middleware('auth:api', ['except' => ['login']]);

}

public function login() {

$credentials = request(['username', 'password']);

…

return $this->respondWithToken($token);

}

public function me() {

return response()->json(auth('api')->user());

}

public function logout() {

auth('api')->logout();

return response()->json(['message' => Logged out']);

}

public function refresh() {

return $this->respondWithToken(auth()->refresh());

}

protected function respondWithToken($token){

return response()->json([

'access_token' => $token,

'user' => $this->guard()->user(),

…

}

public function guard() {

return \Auth::Guard('api'); }

}

The login method receives a set of credentials and verifies that the

credentials are registered in the database. If success a JWT access token is

generated, this allows users to send request from the frontend API that will

authorize data exchange.

The resource controllers allow data operations in relationship with REST

verbs as GET, PUT, PATCH and DELETE. The responses generated are in JSON

format.

The application ContentController includes index, store, show, update and

destroy methods as follows:

A Web-based application design for product data engineering and management 19

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Content;

use App\Http\Resources\ContentResource;

class ContentController extends Controller {

public function index() {

return ContentResource::collection(Content::all());

}

public function store(Request $request) {

$this->validate($request, [

'name' => 'required|string|max:100|unique:contents',

'idno' => 'required|numeric|max:255',

'drawing' => 'required|string|max:255',

'type' => 'required|string|max:255',

'description' => 'required|string|max:255',]);

}

public function show(Content $content) {

return new ContentResource($content);

}

public function update(Request $request, $id){

…

}

public function destroy(Role $role) {

$role->delete();

return response()->json(null, 204);

}

}

The backend API exchanges data with the frontend API by means of

guarded endpoints as follows:

Route::group(['prefix' => 'auth'], function ($router) {

Route::post('login', 'AuthController@login');

Route::post('logout', 'AuthController@logout');

Route::post('refresh', 'AuthController@refresh');

Route::post('me', 'AuthController@me');

});

Route::group(['middleware' => 'jwt.auth'],

function($router) {Route::apiResource('/user', 'UserController');

…

Route::apiResource('/content', 'ContentController');

});

The first group of end points allows request to be sent in order to get an

access JWT token, to logout users, to refresh an expired token and to get the

20 Marian Gheorghe, Aurel Tarara

authenticated user. The second group of end points allows application data

exchange.

Objective application frontend API

The frontend of the considered application is a SPA developed using

Vue.js framework in conjunction with Vue Router and Vuex to allow SPA routing
and global data storage. The frontend API base structure is developed as presented
in Table 3.

Table 3

Application backend API base structure
Name Description

General files

app.js Application main file

init.js Authentication methods, JWT token request and storage

routes.js Contains application routes

sore.js Main Vuex store file

Components

Users.vue Contains the template, methods etc. for users interface

…. …

Content.vue Contains the template, methods etc. for content interface

Modules

init.js App initialization store module file

… …

content.js Content store module file

The main page contents the HTML classic declarations, meta fields, style

sheets and JavaScript files links. To be noted that SPA behavior is assured by the

main component where the rest of the APP components are rendered. The page

code is as follows:

<!doctype html>

<html lang="{{ app()->getLocale() }}">

<head> … </head>

<body>

<div class="container" id="app">

 <main-app></main-app>

</div>

<script src="{{ asset('js/app.js') }}"></script>

A Web-based application design for product data engineering and management 21

</body>

</html>

The content of the application components respects the following model:

<template>

//html layout

</template>

<script>

export default { data() { //component data },},

methods: { // component methods }, },

computed: { //component computed properties}}

</script>

<style> // styles </style>

Performance of the developed application

During the development and use of the considered application, relevant

observations have been made, as follows.

The application is highly maintainable, due to the logical and

decentralized structure of frontend code separation from the backend and MVC

pattern, allowing development of user interfaces without modifying the backend

API code and structure.

The application exposes a REST API, JWT secured to exchange data with

other applications which adds flexibility to the application. By means of endpoint,

the backend API can be accessed in order to request JWT tokens. The tokens are

used to authorize the requests for access to the application resources.

In industrial environment of E-House development and building [10], in

the case of an operational application, PDEM.A02, less requests are sent to the

backend. Vuex store assures data persistence and change between components and

asynchronous requests allow retrieval of partial data from database. To retrieve

parts data from the database, sends three less requests to the backend than the

classic application, and no new requests if the page is refreshed.

The SPA approach reduces the resources usage and navigation/ data load

time by means of components reusability and partial page load. Forms are reused

thru the application. In case of adding or editing information only form elements

are updated in the page. The rest of page and information does not change.

4. Conclusions

The objective application has been designed based on new concepts and

web technologies.

22 Marian Gheorghe, Aurel Tarara

The application is highly maintainable, and newer functionality can be

added more efficiently by installing code packages supported by Laravel and

Vue.js frameworks.

Generally, the implementation of modern web technologies improves the

application, minimizes the resources usage, reduces the development time, and

allows the system to exchange data more efficiently thru the REST API, secured

with JWT tokens.

Acknowledgement

This work has been supported by the Sectorial Operational Program for

Human Resource Development, financed from the European Social Fund and the

Romanian Government under the contract number POSDRU/159/1.5/ S/132397.

R E F E R E N C E S

[1]. A. Tarara, M. Gheorghe, Development of a product data engineering and management web

based application, U.P.B. Sci. Bull., Series D, Vol. 78, Issue 1, pp. 279 – 290, ISSN 1454-

2358, 2016.

[2]. J. Stylos, Making APIs more usable with improved API design, documentation and tools, PhD

Thesis, Carnegie Mellon Univeersity, 2009.

[3]. F. Doglio, Pro REST API development with Node.js, Apress, 2015.

[4]. N. Prokofyeva, V. Boltunova, Analysis and Practical Application of PHP Frameworks in

Development of Web Information Systems, J. of Procedia Computer Science, 2017, Vol.

104 Iss. C, 51-56.

[5]. M. Stauffer, Laravel up & running, O`Reilly Media, 2016.

[6]. M. Bean, Laravel 5 Essentials, Packt Publishing, 2015.

[7]. O. Filipova, Learning Vue.js 2, Packt Publishing, 2016.

[8]. S. Emmit, SPA Design and Architecture, Manning Publications, 2016.

[9]. S. Peirott, The JWT Handbook, Auth0, 2017.

[10]. ***, Product Portfolio, IMSAT E-House Solution Division.

