U.P.B. Sci. Bull., Series C, Vol. C, Iss. 4, 2018 ISSN 2286-3540

A WEB BASED APPLICATION DESIGN FOR PRODUCT
DATA ENGINEERING AND MANAGEMENT

Marian GHEORGHE?, Aurel TARARA?

The informational environment involves a high volume of data transfer
between web-based applications in the conditions of user’s continuous mobility.
This demands to update the applications by implementing new web technologies.
The present paper contributes to the design of a web-based application for product
data engineering and management, by integrating proper elements from modern
web technologies, in order to avoid deployment problems to web servers, to allow
flexibility and communication with other applications and hardware. The
application exposes a REST API, JWT secured to exchange data with other
applications. By means of endpoint, the backend API can be accessed in order to
request JWT tokens used to authorize the requests for access to the application
resources. The SPA approach reduces the resources usage and navigation/ data
load time by means of components reusability and partial page load.

Keywords: PDM, PDEM, API, REST, SPA, JWT, Framework, Application.
1. Introduction

The continuous growth of processed data volume has determined the
evolution of the concepts, architectures and web technologies, with a significant
impact in industrial environments.

Product Data Management, PDM, as a computer-based system for
development information infrastructure and cooperation on product design and
manufacture, is part of Product Lifecycle Management, PLM. The Product Data
Engineering and Management Application, PDEM.A0O1, is a web-based
development application of PDM that improves data reusability and integrates
constructive solutions configuration and technological validation tools, to support
the analysis and configuration of certain customized product parts [1].

Modern web development technologies have been answered to different
requests. A web API represents, at a higher level, a mechanism for code reuse,

! Professor, PhD, Doctoral School on Engineering and Management of Technological Systems,
TCM Department, University POLITEHNICA of Bucharest, Romania, E-MAIL:
marian.gheorghe@upb.ro

2 PhD Candidate, Doctoral School on Engineering and Management of Technological Systems,
University POLITEHNICA of Bucharest, Romania, e-mail; aurel.tarara@gmail.com

mailto:marian.gheorghe@upb.ro
mailto:aurel.tarara@gmail.com

14 Marian Gheorghe, Aurel Tarara

without needing to modify, understand or even see the implementation, and
instead interacting only with the programming interface [2].

Representational State Transfer, REST, as an architectural style, improves
the performance, the scalability of component interaction, the simplicity of
interface, the modifiability of components, the portability, the reliability, the
visibility of distributed systems [3].

In terms of REST APIs, recent versions of PHP frameworks can expose
endpoints that may be consumed by multiple applications, developed for different
types of devices e.g. desktop computers, laptops, mobile devices or complex
computer systems used in industrial environments.

The frameworks facilitate the web programming and make it better
organized. Frameworks increase programming productivity with the help of
framework built-in functions. Widely used frameworks have a major security
advantage since its users become long-term testers. The most popular frameworks
are free and usually come along with a support team, documentation etc. [4].
Frameworks like Laravel package a collection of third-party components together
with configuration files, service providers, prescribed directory structures and
application bootstraps [5].

Laravel is based on the model-view-controller, MVC, paradigm and
provides a scaffolding with places to put code in. Laravel starts out with a
complete directory tree to organize the code, and also includes placeholder files to
use as a starting point [6].

Modern JavaScript frameworks like Vue.js support the development of
single-page application, SPA, that changes data asynchronously with the backend
API. Vue.js allows to simply bind the data models to the representation layer. It
also allows to easily reuse components throughout the application. A special
architecture, Vuex, for centralized states allows a global application store to be
created, the place where the global application state can be stored and managed [7].

In a SPA, the entire application runs as a single web page. In this
approach, the presentation layer for the entire application has been factored out of
the server and is managed from within the browser. It shares the objective to bring
the power of a desktop app to the thin, cross-platform environment of a web
browser. SPA applications render like a desktop application, but runs in a
browser, they offer decoupled presentation layers, faster, lightweight transaction
payloads and less user wait time. The SPAs code is easier to be maintained [8].

The requests made by the single page application to the backend API in
order to exchange data imposes a high level of data security because these
requests can be intercepted and/ or forged. Also, session stored authentication data

A Web-based application design for product data engineering and management 15

in localStorage and sessionStorage is not persistent and is loosed if browser is
refreshed. JSON Web Tokens, JWT, can be used as a method to secure requests.

JWT, as a standard for safely passing claims in space constrained
environments, is a very compact, printable representation of a series of claims,
along with a signature to verify its authenticity. The most important aspect of this
is the standardization effort in the form of a simple, optionally validated and/or
encrypted, container format [9].

2. Objective and research method

Recent web technologies allow developers to build better applications in
terms of performance, maintainability and user experience.

Taking advantage of PHP and JavaScript frameworks, the time needed for
applications development is reduced. Frameworks integrate code packages and
plugins which add functionality to the application without consuming time to
write code.

By developing backend REST APIs, the data can be exposed to multiple
applications without rewriting the core code for each application or each type of
device used by the end user.

SPA user interfaces allow the navigation thru different sections of the
application more efficient and presents the data to the user faster since only
sections of the web page are updated and since only requests for not loaded or
affected data are made to the backend API.

The objective of present research is to develop a web based application for
product data engineering and management, by implementing modern web
technologies, in order to avoid deployment problems to web servers with
integrated new technologies, and to allow the communication with other
applications and hardware.

The present research has been approached with regard to proper reference
elements: selection of the PHP and JavaScript frameworks, definition of the
backend and frontend APIs, etc.

3. Application design
Reference elements

Laravel 5.6 and Vue.js 2.5.7 have been chosen as the frameworks used for
objective application backend and frontend APIs.

16 Marian Gheorghe, Aurel Tarara

It has been established that the considered application will expose a
package of end points in order to exchange data with other applications and a SPA
approach is considered for the frontend API.

The backend API follows a model-view-controller, MVC, architecture
made available by Laravel framework with the following main components:
application data models, controllers that manage the data operations - create,
read, update, delete, etc. - and exposed endpoints. Database connection and
operations are simplified by Laravel and the ORM, Object-relational mapping,
tool named Eloquent.

The application design base has been chosen as a suit of key functionalities
that provides the user the ability to manage the product data.

The core functions of the application and their implementation approach
are presented in Table 1.

Table 1
Application core functions and their implementation

Function Implementation

JWT tokens are implemented to allow the secure communication

Users authentication between the frontend and the backend APIs

Users role/ permissions | Gates and policies are implemented to restrict the application
system functionality by considering the user role

The frontend API allow project data to be defined by means of
Product data definition | components and user interfaces. The backend API will allow the data
CRUD, create, read, update, delete functionality

Advanced search by Advanced search functionality is possible by means of models’
product attributes relationships

Product data version Timestamps are registered in the database when data update action is
control called. Product data version will be automatically incremented

Product data is marked in the database as for information, in study,
released, or built. Validation from users with higher rank is
necessarily to change the data mark.

Product data lifecycle
control

Collaborative design is provided by means of product data

Product data sharing transmittal based on email functions

The implementation of the application functionality considers the application
scalability in terms of communication with other application or hardware. The
backend API responses will be returned in JSON format.

A Web-based application design for product data engineering and management 17

Obijective application backend API

In relation to Laravel base structure, the considered backend API is
structured as presented in Table 2.

Table 2
Backend API base structure
Name Description
Models
User Describes and interacts with database users table
Content Describes and interacts with database content table

Describes and interacts with database assembly characteristics

Caract_as

- table

Describes and interacts with database auxiliary parts characteristics

Caract_aux

= table

Controllers

AuthController Contains methods for authentication
ContentController Contains methods to create, update, delete, etc. content data

Contains methods to create, update, etc. assembly characteristics
data

Contains methods to create, update, delete, etc. auxiliary parts
characteristics data

API routes
api Contains REST API routes

CaractasController

CaractauxController

Laravel MVC approach and Eloguent allows a more efficient interaction
and database information retrieval. The models describe the database tables
structures and separate accessible or protected data by using fillable and hidden
arrays of data. The user model defined for the considered application is as
follows:

namespace App;

use Tymon\JWTAuth\Contracts\JWTSubject;

use Illuminate\Notifications\Notifiable;

use llluminate\Foundation\Auth\User as Authenticatable;

class User extends Authenticatable implements JWTSubject {
use Notifiable;
protected $fillable = ['username’, name, 'surname’, rank, 'position’, email, ‘avatar', 1;

18 Marian Gheorghe, Aurel Tarara

To be noted that the User model includes support methods for the JWT
authentication made possible by installing the Tymon JWT-auth package.
Authentication methods are defined in the AuthController as follows:
namespace App\Http\Controllers;
use llluminate\Support\Facades\Auth;
use llluminate\Http\Request;

class AuthController extends Controller {
public function __construct() {
$this->middleware(‘auth:api', ['except' => [login]));
}
public function login() {
S$credentials = request(['username’, ‘password);

return $this->respondWithToken($token);
}

public function me() {
return response()->json(auth(‘api')->user());

}
public function logout() {

auth(‘api’)->logout();
return response()->json(['message’ => Logged out7);

}

public function refresh() {
return $this->respondWithToken(auth()->refresh());

}
protected function respondWithToken($token){

return response()->json([
‘access_token' => $token,
'user' => $this->guard()->user(),

¥
public function guard() {

return \Auth::Guard(‘api'); }

}
The login method receives a set of credentials and verifies that the

credentials are registered in the database. If success a JWT access token is
generated, this allows users to send request from the frontend API that will
authorize data exchange.

The resource controllers allow data operations in relationship with REST
verbs as GET, PUT, PATCH and DELETE. The responses generated are in JSON
format.

The application ContentController includes index, store, show, update and
destroy methods as follows:

A Web-based application design for product data engineering and management 19

namespace App\Http\Controllers;
use llluminate\Http\Request;
use App\Content;
use App\Http\Resources\ContentResource;
class ContentController extends Controller {
public function index() {
return ContentResource::collection(Content::all());
}
public function store(Request $request) {
S$this->validate($request, [
'name’ => 'required|string|max:100Junique:contents’,
‘idno’ => 'required|numeric|max:255%,
‘drawing’ => 'required|stringjmax:255',
'type' => 'required|string|max:255',
'description’ => ‘required|stringjmax:255',]);
}
public function show(Content $content) {
return new ContentResource($content);

}
public function update(Request $request, $id){

}

public function destroy(Role $role) {
$role->delete();
return response()->json(null, 204);

The backend API exchanges data with the frontend APl by means of
guarded endpoints as follows:

Route::group(['prefix' => "auth'], function ($router) {
Route::post('login’, 'AuthController@login’);
Route::post('logout’, ‘AuthController@logout");
Route::post(‘refresh’, ‘AuthController@refresh’);
Route::post('me’, 'AuthController@me’);

b

Route::group(['middleware' => 'jwt.auth’],
function($router) {Route::apiResource(/user', 'UserController);

Route::apiResource(/content, '‘ContentController);
b

The first group of end points allows request to be sent in order to get an
access JWT token, to logout users, to refresh an expired token and to get the

20 Marian Gheorghe, Aurel Tarara

authenticated user. The second group of end points allows application data
exchange.

Objective application frontend API

The frontend of the considered application is a SPA developed using
Vue.js framework in conjunction with Vue Router and Vuex to allow SPA routing
and global data storage. The frontend API base structure is developed as presented
in Table 3.

Table 3
Application backend API base structure

Name Description

General files
app.js Application main file
init.js Authentication methods, JWT token request and storage
routes.js Contains application routes
sore.js Main Vuex store file

Components
Users.vue Contains the template, methods etc. for users interface
Content.vue Contains the template, methods etc. for content interface

Modules

init.js App initialization store module file
content.js Content store module file

The main page contents the HTML classic declarations, meta fields, style
sheets and JavaScript files links. To be noted that SPA behavior is assured by the
main component where the rest of the APP components are rendered. The page
code is as follows:

<!doctype html>
<html lang="{{ app()->getLocale() }}">
<head> ... </head>
<body>
<div class="container" id="app">
<main-app></main-app>
</div>
<script src="{{ asset(‘js/app.js) }}"></script>

A Web-based application design for product data engineering and management 21

</body>
</html>

The content of the application components respects the following model:

<template>
//html layout
</template>
<script>
export default { data() { /component data },},
methods: { // component methods }, },
computed: { //component computed properties}}
</script>
<style> // styles </style>

Performance of the developed application

During the development and use of the considered application, relevant
observations have been made, as follows.

The application is highly maintainable, due to the logical and
decentralized structure of frontend code separation from the backend and MVC
pattern, allowing development of user interfaces without modifying the backend
API code and structure.

The application exposes a REST API, JWT secured to exchange data with
other applications which adds flexibility to the application. By means of endpoint,
the backend API can be accessed in order to request JWT tokens. The tokens are
used to authorize the requests for access to the application resources.

In industrial environment of E-House development and building [10], in
the case of an operational application, PDEM.AQ2, less requests are sent to the
backend. Vuex store assures data persistence and change between components and
asynchronous requests allow retrieval of partial data from database. To retrieve
parts data from the database, sends three less requests to the backend than the
classic application, and no new requests if the page is refreshed.

The SPA approach reduces the resources usage and navigation/ data load
time by means of components reusability and partial page load. Forms are reused
thru the application. In case of adding or editing information only form elements
are updated in the page. The rest of page and information does not change.

4. Conclusions

The objective application has been designed based on new concepts and
web technologies.

22 Marian Gheorghe, Aurel Tarara

The application is highly maintainable, and newer functionality can be
added more efficiently by installing code packages supported by Laravel and
Vue.js frameworks.

Generally, the implementation of modern web technologies improves the
application, minimizes the resources usage, reduces the development time, and
allows the system to exchange data more efficiently thru the REST API, secured
with JWT tokens.

Acknowledgement

This work has been supported by the Sectorial Operational Program for
Human Resource Development, financed from the European Social Fund and the
Romanian Government under the contract number POSDRU/159/1.5/ S/132397.

REFERENCES

[1]. A. Tarara, M. Gheorghe, Development of a product data engineering and management web
based application, U.P.B. Sci. Bull., Series D, Vol. 78, Issue 1, pp. 279 — 290, ISSN 1454-
2358, 2016.

[2]. J. Stylos, Making APIs more usable with improved API design, documentation and tools, PhD
Thesis, Carnegie Mellon Univeersity, 2009.

[3]. F. Doglio, Pro REST API development with Node.js, Apress, 2015.

[4]. N. Prokofyeva, V. Boltunova, Analysis and Practical Application of PHP Frameworks in
Development of Web Information Systems, J. of Procedia Computer Science, 2017, Vol.
104 Iss. C, 51-56.

[5]. M. Stauffer, Laravel up & running, O Reilly Media, 2016.

[6]. M. Bean, Laravel 5 Essentials, Packt Publishing, 2015.

[7]. O. Filipova, Learning Vue.js 2, Packt Publishing, 2016.

[8]. S. Emmit, SPA Design and Architecture, Manning Publications, 2016.

[9]. S. Peirott, The JWT Handbook, Auth0, 2017.

[10]. ***, Product Portfolio, IMSAT E-House Solution Division.

