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AN IMAGE FUSION ALGORITHM USING GLOBAL-LOCAL
FEATURE AGGREGATION AND ENHANCEMENT

Bin YANG?, Qingchun ZHENG?, Peihao ZHU?

This study presents GLAFusion, a hybrid Restormer-CNN image fusion
technique for multi-exposure and infrared-visible image fusion. To efficiently perceive
global information from the channel aspect, the Restormer module is employed in our
algorithm, while our algorithm can capture multi-scale local features through a fully
connected attention network. Ultimately, the feature aggregation and improvement
module that was created acquires the fused image. The superiority of the proposed
GLAFusion is confirmed by designed ablation experiments and comparison studies
with other cutting-edge algorithms.
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1. Introduction

To create comprehensive images with multi-modal image composite
characteristics is the aim of image fusion. This technology is widely employed in
the military, industrial, and surveillance domains. Following years of study and
development, there are two main categories for image fusion: deep learning
approaches [1][2][3] and classical methods [4][5]. Traditional methods are superior
in computational speed, however, their modelling techniques are intricate and
necessitate the manual creation of fusion and feature extraction procedures. This
drawback can be avoided with the advancement of artificial intelligence with the
use of deep learning in the field. Most deep learning algorithms use convolution to
extract useful information. Although convolution can effectively extract local
details, it is not good at sensing global dependencies. Therefore, the current
advanced algorithms use Transformer [6] to realize the fusion task and achieve
excellent results. High computational complexity is a drawback of Transformer,
current approaches are unable to effectively sense global information while also
utilizing multi-scale information.

We propose a multimodal image fusion method based on global-local
feature aggregation and enhancement which is named GLAFusion to address the
above challenges, which can be implemented for infrared-visible and multi-
exposure image fusion tasks. To efficiently perceive the long-range dependencies
of multimodal images, we employ a variant of Transformer, the Restormer module
[7], to address this problem. Restormer, which was first used for high-resolution
image restoration, uses multi-Dconv head transposed attention instead of the self-
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attention mechanism based on sliding window strategy, by computing cross-
channel cross covariance to obtain the attention features, which largely reduces the
computational complexity. We use it for the multimodal image fusion missions. We
design a fully connected attention network for extracting the local details of the
multimodal images. A modified parallel-structured convolution block attention
module (CBAM) [8] is embedded in this module, and we employ a multi-scale
convolutional kernel in the spatial attention path to further perceive the local
features. In addition, at the end of the model we design a feature aggregation
enhancement module (FAEM) for the fusion of local and global information. If our

GLAFusion reduces any of these components, it will lead to a degraded fusion

quality. Overall, the key contributions of this work are elaborated below:

(1) GLAFusion, a new image fusion algorithm is proposed. Restormer in the
algorithm is used to construct long-distance dependencies, and fully connected
attention network is designed to extract multi-scale local details. By combining
the properties of both, our algorithm can retain both global and local information.

(2) We designed a feature enhancement module for effective integration and
enhancement of global information and multi-scale local details simultaneously.
In addition, we design suitable intensity loss functions for infrared-visible and
multi-exposure image fusion tasks, max and mean-max, respectively, and
experimentally prove that the method can lead to better fusion quality.

(3) Our algorithm can be implemented for infrared-visible and multi-exposure
image fusion tasks. The superiority of the proposed GLAFusion is confirmed by
designed ablation experiments and comparison studies with other cutting-edge
algorithms.

2. Related work

Deep learning models with excellent learning and data processing
capabilities are suitable for processing text, images, and other tasks, which greatly
advance the development process of multimodal image fusion technology. In 2018,
Liu et al. [9] utilized the designed convolutional networks to obtain weight maps
with pixel activity information of the multimodal source images to avoid artificial
activity level measurement and the assignment of weight. In 2018, Ma et al. [10]
performed the first application of GAN to image fusion task. Since FusionGAN
contains only one discriminator, which cannot retain the information of multimodal
images more comprehensively, Ma et al. [11] again proposed a dual discriminator
GAN network in 2020, which takes the images of two modalities as inputs to two
discriminators respectively. In 2019, Li et al. [12] used dense connection to
construct encoder network to extract information from multimodal source images
well. In 2020, this research group again proposed the NestFuse model [1] to extract
source image features from multi-scale aspect and use spatial and channel attention
fusion strategies instead of average weighting operations for better fusion of deep
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features. In 2020, Zhang et al. [13] proposed an approach named PMGI, it
established gradient as well as intensity paths based on the input ratio difference of
the multimodal images, while incorporating an information interaction module
directly into these paths to minimize information loss. In 2022, Xu et al. [3] used
an information measurement strategy in an image fusion model to obtain the
adaptive information retention of multimodal images, which performed well in
several image fusion tasks. The above deep learning-based model extracts the local
details of the source image through convolutional operations, but it is not sufficient
for the perception of global information.

In 2021, V. S. et al. [14] proposed IFT model to utilize Transformer for
image fusion task to solve the issue that convolution is not able to notice global
information. Qu et al. [15] proposed TransMEF model in 2022 to perform multi-
task learning in a self-supervised manner depending on the source image
characteristics to optimize the feature extraction ability of their method. In 2022,
Wang et al. [16] used pure Transformer to process infrared-visible image fusion
task, they employed an AE-based architecture including global feature extraction,
L1-Norm based fusion strategy, and feature reconstruction. Moreover, Rao et al.
[17] utilized Transformer to construct GAN network, their TGFuse is based on
optical weights and adversarial learning to fuse infrared-visible images. Most of the
fusion methods using Transformer are affected by the computational complexity of
Transformer, resulting in lower efficiency, and they are unable to effectively
receive global information while also utilizing multi-scale information to its fullest
extent.

3. Method
3.1. Overall framework

To make the fused images present both detailed and global information
better and to get a better balance between fusion quality and efficiency, we devise
a global-local feature aggregation and enhancement multimodal image fusion
method called GLAFusion. Our algorithm has three key components: global feature
extraction, fully connected attention network, and FAEM. The total flow of our
GLAFusion is shown in Fig. 1. In our GLAFusion, two images I1 and > with
different modalities are concatenated channel-by-channel as input, and infrared-
visible images are taken as examples in Fig. 1. The initial shallow features are first
obtained by a 3x3 convolutional layer, and then to acquire the global information
and local traits of the input images. GLAFusion is divided into two branches: global
feature extraction and fully connected attention network. We select the Restormer
block named RB in Fig. 1 to extract global features quickly and efficiently.
Restormer was proposed by Zamir et al. [7] for high-resolution image restoration,
who used multi-Dconv head transposition attention instead of multi-head attention
in the Transformer without local windowing to more quickly capturing global
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features from the channel aspect. The purpose of our fully connected attention
network is to acquire the local detailed features adequately. After the multi-scale
decomposition, the detailed feature extraction module DFEM can better perceive
the important information and general information from feature maps of different
scales respectively and assign different weights. The full-scale skip connection can
also minimize information loss. In addition, to achieve global and local information
fusion and enhancement, we design the feature aggregation and enhancement
module FAEM, and finally we can get the output image If through a 1x1
convolutional layer.
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Fig. 1. The overall structure of GLAFusion
3.2. Global feature extraction path

In the exploration process, concatenating more RB does not significantly
enhance the fusion effect of the algorithm, but will have a negative impact on the
fusion efficiency due to the load. In order to balance the quality of fusion results
and time consumption, we chained four RBs in GLAFusion. Fig. 2 illustrates the
RB's particular design. The multi-Dconv head transposed attention and gated-
Dconv feed-forward network make up the majority of the RB. The former is in
charge of detecting global information across channels, while the latter is in charge
of refining useful information.
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3.3. Fully connected attention network

To roundly capture the local traits in multimodal images, we design a
multiscale fully connected attention network, which mainly consists of skip
connections and attention mechanism, its structure can be understood in Fig. 1. The
structure of the DFEM is shown in Fig. 3.
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Fig. 3. The structure of DFEM

DFEM starts with a 3x3 convolutional layer. In this part, we employ ReLU
activation function. Then we first obtain four feature maps with different sizes by
downsampling three times. After each downsampling, the feature maps’ width and
height both decrease to half of the processed counterparts, and then the local
features are perceived by the designed attention mechanism. The multiscale
decomposed feature maps are used as inputs to the attention mechanism, which is
split into a spatial attention path SAP and a channel attention path CAP, and these
two have a parallel structure. The attention weights of channels and regions are
obtained respectively, and ultimately multiplies the input features pixel-by-pixel by
a residual connection to obtain the multiscale attention feature maps. In particular,
to extract local information more comprehensively during the processing of features
at different scales, we set two different sizes of convolution kernels in SAP, 7x7
and 3x3, respectively. o and £ are both set to 0.5 in this paper, and they are
weighting parameters of the channel and spatial attention.

3.4. Feature aggregation and enhancement module

In order to fuse the extracted global and local information in more detail,
we design a feature aggregation and enhancement module FAEM, and the detailed
structure can be seen from Fig. 1. FAEM is mainly composed of two layers of
ordinary 3x3 convolution and a layer of depth-wise convolution with skip
connection. After the first convolution layer, we adopt Instancenorm operation,
which only normalizes each channel of each sample. Compared with Batchnorm, it
is computationally simple and facilitates more effective retention of feature
information. Depth-wise convolutional skip connections are used to emphasize
feature details.



252 Bin Yang, Qingchun Zheng, Peihao Zhu

3.5. Loss functions
The total loss of GLAFusion can be expressed as:

L=pul +vL +L (1)

L=l ML) AW @

L, =1, -max(jv1.],|v1,])], /HW 3)

L, =6(1-SSIM(I,, 1))+ o (1-SSIM(I, 1,)) (4)

Three components comprise total loss L, strength loss L, structure loss Ls
and gradient loss Lg. The weighting parameters that control L and Lg are x and v.
Il denotes L1-norm. M(:) is a pixel-by-pixel operation strategy of two modal
images, we adopt the max strategy for the infrared-visible image fusion task,
because both images may contain extensive intensity information in different
scenarios. And we adopt the mean-max strategy for the multi-exposure image
fusion task because most of the luminance information exists in the overexposed
images. V denotes the gradient operator, the height and width of the input image are
denoted by H and W, SSIM(") is the structural similarity metric, 8 and o are
parameters that control the percentage share of each.

4. Experimental details and analysis of results
4.1. Experimental setup and comparison methods

41 pairs of images from the TNO [18] dataset were used to train the infrared-
visible image fusion task during the training phase. The multi-exposure image
fusion task was trained using 32 pairs of images from the MEFB [19] dataset. To
get enough training data, the chosen training images were cropped into 128x128
image segments with a stride of 24. This resulted in the acquisition of 17002 pairs
of multi-exposure image segments and 13366 pairs of infrared-visible image
segments. 16 epochs and a batch size of 40 are specified. Using an exponential
decay method and Adam optimizer, we optimized our GLAFusion by setting the
initial learning rate and decay rate to 0.0004 and 0.9, respectively. The weighting
parameters x and v are 2 and 5, respectively, and both 6 and o are 0.5. The
experimental hardware facilities are NVIDIA GeForce RTX3090 GPU and Intel(R)
Xeon(R) W-2245 CPU, the deep learning framework is TensorFlow.

In the comparison experiments, we take six advanced algorithms, NestFuse
[1], PMGI [11], SDNet [2], SwinFusion [20], U2Fusion [3] and YDTR [21], as our
comparison algorithms. We take standard deviation (SD), average gradient (AG),
information entropy (EN), visual information fidelity (VIF), and spatial frequency
(SF) as objective evaluation metrics.



An image fusion algorithm using global-local feature aggregation and enhancement 253

4.2. Comparative experiment of infrared-visible image fusion

20 pairs of randomly chosen images from the TNO dataset serve as the test
data in this section. The results of the quantitative comparisons made using the TNO
dataset, where the data are the average scores of each method, are displayed in Table
1. Itis evident that GLAFusion gets the best results across four assessment metrics:
SD, AG, EN, and SF. In two metrics, SD and SF, our GLAFusion performs much
better than the other algorithms. In VIF, SwinFusion obtains the suboptimal value
whereas NestFuse obtains the optimum value, GLAFusion shows a flaw, but also

got a score of 0.7179, just after SwinFusion.
Table 1
Quantitative comparison experiments on the TNO dataset
NestFuse PMGI SDNet SwinFusion U2Fusion YDTR Ours
SD  41.6492 38.3224 33.1786 39.6015 36.1611 28.2380 57.7209

AG 3.5720 3.2136 4.1168 3.7013 4.4322 2.5831 4.7753
EN 7.0879 7.0328 6.6993 6.8916 6.9743 6.4909 7.4490
SF 9.1424 7.8971 10.3806 9.4779 10.3999 6.9900 12.5749
VIF  0.8967 0.6443 0.5852 0.7770 0.6236 0.6327 0.7179

Fig. 4 displays the qualitative comparison findings of GLAFusion and other
algorlthms on the TNO dataset.
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Fig. 4. Qualitative comparison on the TNO dataset

Both SwinFusion and YDTR effectively preserve the structural information,
although some scenes lack contrast details. PMGI retains certain contrast features
of the infrared image but fails to provide clear target edges. NestFuse, SDNet,
U2Fusion, and our proposed GLAFusion all show the capacity for extracting
texture and contrast information in multimodal images. Furthermore, NestFuse and
GLAFusion exhibit superior scene representation capabilities.

4.3. Comparative experiment of multi-exposure image fusion

The quantitative comparison experiments carried out on the MEFB dataset
are displayed in Table 2. GLAFusion consistently gets the highest value on the
metrics of SD, AG, EN, and SF. Notably, in terms of SF, GLAFusion outperforms
SwinFusion by a margin of 30.36%. Regarding VIF, our algorithm obtains the
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suboptimal value of 1.2381 while NestFuse remains at the top with a score of
1.3779.

Table 2
Quantitative comparison experiments on the MEFB dataset
NestFuse PMGI SDNet SwinFusion  U2Fusion YDTR Ours
SD 67.8103  57.1727  55.5664 67.7289 59.4382 59.4509  70.3737
AG 44711 4.7873 4.9596 5.5490 4.7279 3.8850 6.5639
EN 7.5038 7.3944 7.4339 7.3435 7.3952 7.2271 7.6519
SF 15.5704 15.4876  16.7919 17.5602 14.8902 14.1629  22.8929
VIF 1.3779 0.9746 1.1915 1.1865 1.2149 1.2030 1.2381

We select three representative fused images from the test data in the MEFB
dataset to demonstrate qualitative comparisons. Fig. 5 reveals that the overexposed
image's brightness information is efficiently preserved by NestFuse and YDTR, but
the underexposed image's textural details are less noticeable. For instance, the lake
surface features in the second row of Fig. 5 are not sufficiently displayed by the
fusion findings of NestFuse and YDTR.
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Fig. 5. Qualitative comparison on the MEFB dataset
Other algorithms successfully retain a significant amount of edge
information. However, SwinFusion exhibits a slight lack of contrast in its fusion
result, and U2Fusion fails to capture sufficient brightness information from the
overexposed image, resulting in a slightly darker fusion effect. PMGI, SDNet, and
GLAFusion appropriately preserve both brightness information and rich texture
details.

4.4. Ablation analyses

GLAFusion is mainly composed of a global feature extraction path, a fully
connected attention network, and FAEM, which enables our model to better
perceive and fuse global and local information. To verify the role of each part, we
design four different model structures and conduct comparative experiments on the
TNO dataset and MEFB dataset: (1) There is no FAEM in the model. (2) There is
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no global feature extraction path in the model. (3) There is no fully connected

attention network in the model. (4) Ours.
Table 3
Quantitative comparison of methods with diverse network structures
TNO MEFB

1) 2) 3) Ours 1) 2) 3) Ours
SD 449376 47.8127 58.6625 57.7209 | 57.0489 60.6821 62.2851 70.3737
AG 3.6841 39630 47502 47753 | 52787 53473  6.2517  6.5639
EN  7.1892  7.2550 73527  7.4490 | 7.4761 7.5352  7.5640  7.6519
SF 9.8753 10.5106 12.2652 12.5749 | 18.1982 18.4532 21.5420 22.8929
VIF  0.7773 0.7594 0.6830 0.7179 1.3080 1.2481 1.0610 1.2381

The findings of the quantitative comparison of the TNO and MEFB datasets
are displayed in Table 3. GLAFusion obtains the suboptimal value on SD and the
optimal performance on AG, EN, and SF on the TNO dataset. GLAFusion gets the
best outcomes on the SD, AG, EN, and SF metrics on the MEFB dataset. From the
perspective of visual effects, these models have achieved good effects, but there are
still differences in the details. We can see that in the first row of fusion results in
Fig. 6, the contrast of the person in our GLAFusion is more prominent.
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Fig. 6. Qualitative comparison of methods with different network structures

We use different intensity loss functions L; for the infrared-visible and the
multi-exposure image fusion tasks, for the former we adopt the pixel maximum
value preservation strategy(max) and for the latter we adopt the joint action strategy
of pixel maximum preservation and pixel averaging(mean-max). We designed three
different sets of intensity loss function strategies to verify why we do this: (a):
mean-max, (b): mean, (c): max. In Table 4, (c) algorithm using the max strategy
yields the optimal performance on SD, VIF and EN on the TNO dataset. However,
(a) algorithm using the mean-max strategy obtains the optimal value on the three
metrics EN, SF and VIF on the multi-exposure dataset MEFB.

Table 4
Quantitative comparison of methods with different L
TNO MEFB
mean-max mean max max mean mean-max

SD 39.5179 14.5535 57.7209 78.6036 20.7455 70.3737
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AG 4.8957 5.3499 4.7753 5.8443 6.7421 6.5639
EN 7.0240 5.7582 7.4490 7.1321 6.2118 7.6519
SF 12.7957 14.3901 12.5749 21.2367 22.7846 22.8929
VIF 0.6246 0.4683 0.7179 1.0844 0.7567 1.2381

When L; with max strategy is used to train the model for infrared-visible
image fusion (refer to the first row of Fig. 7), the fusion results can better emphasize
the target information, however the results obtained with mean strategy lose too
much contrast information. For multi-exposure image fusion (see the second line of
Fig. 7), (a) algorithm using max strategy results in excessive brightness information
and loses part of the texture features. The results of multi-exposure image fusion
using mean strategy yields the same results as infrared-visible image fusion, too
much contrast information is lost, and the target cannot be highlighted. The results
obtained using the mean-max strategy can properly preserve texture and brightness
information. The above ablation analysis validates the criticality of the components
of GLAFusion. And we can conclude that L; using max strategy is more
appropriately used for training infrared-visible image fusion tasks, while L; using
mean-max strategy is more appropriately used for training multi-exposure image
fusion tasks.

1 1 mean-max mean max

Fig. 7. Qualitative comparison of methods with different L;

In GLAFusion, both parameters ¢ and ¢ of SSIM were set to 0.5 and we
performed ablation experiments on the TNO dataset. We set up three sets of
experiments, casel: # =0.3,0=0.7, case2: = 0.7, 0 = 0.3, Ours: § = 0.5, ¢ = 0.5.
The fusion analysis results of the algorithms for the three cases are shown in Table
5.

Table 5
Ablation experiment on parameter setting of SSIM loss function
Casel Case2 Ours
SD 55.8469 55.4886 57.7209
AG 5.2320 4.2974 47753
EN 7.3630 7.3933 7.4490
SF 14.0443 11.1831 12.5749

VIF 0.7164 0.7039 0.7179
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From Table 5, it can be seen that when both & and o are set to 0.5, the fusion
result achieves the optimal values in all the three metrics of SD, EN, and VIF, and
the overall performance is the best.

4.5. Efficiency analysis

We compared the running efficiency of GLAFusion with other advanced
algorithms on infrared-visible image datasets and multi-exposure image datasets.
All algorithms were run on CPU. The fusion time-consuming analysis is presented
in Table 6. We can see that the running efficiency of SDNet dominates on any of
the datasets. Compared to other algorithms, SwinFusion runs worse in terms of
efficiency. In terms of computational efficiency, our algorithm also does not
perform well. However, experiments prove that our GLAFusion performs better in

balancing fusion quality and efficiency.
Table 6
Efficiency comparison of our GLAFusion with other advanced algorithms (unit: s)
NestFuse PMGI SDNet SwinFusion U2Fusion YDTR GLAFusion
TNO 5.0768  0.6543 0.1403 20.9490 1.1673 2.4646 3.8846
MEFB  8.6980 1.1622 0.2477 40.0986 2.1806 13.9933 6.0192

5. Conclusions

We propose a global-local feature aggregation and enhancement method for
multimodal image fusion in this paper, and it can be applied to handle infrared-
visible image fusion tasks and multi-exposure image fusion tasks. We construct
global feature extraction paths through an efficient Restormer module to perceive
global information at the channel level. Then we utilize a fully connected attention
network to extract local detailed features from the multi-scale feature maps.
Moreover, in aiming at the fusion and enhancement of global and local information,
we design a simple and effective feature aggregation and enhancement module
(FAEM). In quantitative and qualitative comparison experiments with six other
advanced algorithms on multiple datasets, our algorithm demonstrates certain
advantages and generalization capabilities. Network structure ablation experiments
validate the potency of each module. Loss function ablation analyses validate that
the intensity loss function using the max strategy in our approach is more
appropriately used for training infrared-visible image fusion tasks, while the
intensity loss function using the mean-max loss function strategy is more
appropriately used for training multi-exposure image fusion tasks. Although our
approach has made some progress in balancing fusion quality and efficiency, in
future work, we will conduct further research on how to improve the efficiency of
the algorithm.
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