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AN IMAGE FUSION ALGORITHM USING GLOBAL-LOCAL 

FEATURE AGGREGATION AND ENHANCEMENT  

Bin YANG1, Qingchun ZHENG1, Peihao ZHU1,2  

This study presents GLAFusion, a hybrid Restormer-CNN image fusion 

technique for multi-exposure and infrared-visible image fusion. To efficiently perceive 

global information from the channel aspect, the Restormer module is employed in our 

algorithm, while our algorithm can capture multi-scale local features through a fully 

connected attention network. Ultimately, the feature aggregation and improvement 

module that was created acquires the fused image. The superiority of the proposed 

GLAFusion is confirmed by designed ablation experiments and comparison studies 

with other cutting-edge algorithms.  
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1. Introduction 

To create comprehensive images with multi-modal image composite 

characteristics is the aim of image fusion. This technology is widely employed in 

the military, industrial, and surveillance domains. Following years of study and 

development, there are two main categories for image fusion: deep learning 

approaches [1][2][3] and classical methods [4][5]. Traditional methods are superior 

in computational speed, however, their modelling techniques are intricate and 

necessitate the manual creation of fusion and feature extraction procedures. This 

drawback can be avoided with the advancement of artificial intelligence with the 

use of deep learning in the field. Most deep learning algorithms use convolution to 

extract useful information. Although convolution can effectively extract local 

details, it is not good at sensing global dependencies. Therefore, the current 

advanced algorithms use Transformer [6] to realize the fusion task and achieve 

excellent results. High computational complexity is a drawback of Transformer, 

current approaches are unable to effectively sense global information while also 

utilizing multi-scale information.  

We propose a multimodal image fusion method based on global-local 

feature aggregation and enhancement which is named GLAFusion to address the 

above challenges, which can be implemented for infrared-visible and multi-

exposure image fusion tasks. To efficiently perceive the long-range dependencies 

of multimodal images, we employ a variant of Transformer, the Restormer module 

[7], to address this problem. Restormer, which was first used for high-resolution 

image restoration, uses multi-Dconv head transposed attention instead of the self-
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attention mechanism based on sliding window strategy, by computing cross-

channel cross covariance to obtain the attention features, which largely reduces the 

computational complexity. We use it for the multimodal image fusion missions. We 

design a fully connected attention network for extracting the local details of the 

multimodal images. A modified parallel-structured convolution block attention 

module (CBAM) [8] is embedded in this module, and we employ a multi-scale 

convolutional kernel in the spatial attention path to further perceive the local 

features. In addition, at the end of the model we design a feature aggregation 

enhancement module (FAEM) for the fusion of local and global information. If our 

GLAFusion reduces any of these components, it will lead to a degraded fusion 

quality. Overall, the key contributions of this work are elaborated below: 

(1) GLAFusion, a new image fusion algorithm is proposed. Restormer in the 

algorithm is used to construct long-distance dependencies, and fully connected 

attention network is designed to extract multi-scale local details. By combining 

the properties of both, our algorithm can retain both global and local information. 

(2) We designed a feature enhancement module for effective integration and 

enhancement of global information and multi-scale local details simultaneously. 

In addition, we design suitable intensity loss functions for infrared-visible and 

multi-exposure image fusion tasks, max and mean-max, respectively, and 

experimentally prove that the method can lead to better fusion quality. 

(3) Our algorithm can be implemented for infrared-visible and multi-exposure 

image fusion tasks. The superiority of the proposed GLAFusion is confirmed by 

designed ablation experiments and comparison studies with other cutting-edge 

algorithms. 

2. Related work 

Deep learning models with excellent learning and data processing 

capabilities are suitable for processing text, images, and other tasks, which greatly 

advance the development process of multimodal image fusion technology. In 2018, 

Liu et al. [9] utilized the designed convolutional networks to obtain weight maps 

with pixel activity information of the multimodal source images to avoid artificial 

activity level measurement and the assignment of weight. In 2018, Ma et al. [10] 

performed the first application of GAN to image fusion task. Since FusionGAN 

contains only one discriminator, which cannot retain the information of multimodal 

images more comprehensively, Ma et al. [11] again proposed a dual discriminator 

GAN network in 2020, which takes the images of two modalities as inputs to two 

discriminators respectively. In 2019, Li et al. [12] used dense connection to 

construct encoder network to extract information from multimodal source images 

well. In 2020, this research group again proposed the NestFuse model [1] to extract 

source image features from multi-scale aspect and use spatial and channel attention 

fusion strategies instead of average weighting operations for better fusion of deep 
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features. In 2020, Zhang et al. [13] proposed an approach named PMGI, it 

established gradient as well as intensity paths based on the input ratio difference of 

the multimodal images, while incorporating an information interaction module 

directly into these paths to minimize information loss. In 2022, Xu et al. [3] used 

an information measurement strategy in an image fusion model to obtain the 

adaptive information retention of multimodal images, which performed well in 

several image fusion tasks. The above deep learning-based model extracts the local 

details of the source image through convolutional operations, but it is not sufficient 

for the perception of global information.  

In 2021, V. S. et al. [14] proposed IFT model to utilize Transformer for 

image fusion task to solve the issue that convolution is not able to notice global 

information. Qu et al. [15] proposed TransMEF model in 2022 to perform multi-

task learning in a self-supervised manner depending on the source image 

characteristics to optimize the feature extraction ability of their method. In 2022, 

Wang et al. [16] used pure Transformer to process infrared-visible image fusion 

task, they employed an AE-based architecture including global feature extraction, 

L1-Norm based fusion strategy, and feature reconstruction. Moreover, Rao et al. 

[17] utilized Transformer to construct GAN network, their TGFuse is based on 

optical weights and adversarial learning to fuse infrared-visible images. Most of the 

fusion methods using Transformer are affected by the computational complexity of 

Transformer, resulting in lower efficiency, and they are unable to effectively 

receive global information while also utilizing multi-scale information to its fullest 

extent. 

3. Method 

3.1. Overall framework 

To make the fused images present both detailed and global information 

better and to get a better balance between fusion quality and efficiency, we devise 

a global-local feature aggregation and enhancement multimodal image fusion 

method called GLAFusion. Our algorithm has three key components: global feature 

extraction, fully connected attention network, and FAEM. The total flow of our 

GLAFusion is shown in Fig. 1. In our GLAFusion, two images I1 and I2 with 

different modalities are concatenated channel-by-channel as input, and infrared-

visible images are taken as examples in Fig. 1. The initial shallow features are first 

obtained by a 3×3 convolutional layer, and then to acquire the global information 

and local traits of the input images. GLAFusion is divided into two branches: global 

feature extraction and fully connected attention network. We select the Restormer 

block named RB in Fig. 1 to extract global features quickly and efficiently. 

Restormer was proposed by Zamir et al. [7] for high-resolution image restoration, 

who used multi-Dconv head transposition attention instead of multi-head attention 

in the Transformer without local windowing to more quickly capturing global 
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features from the channel aspect. The purpose of our fully connected attention 

network is to acquire the local detailed features adequately. After the multi-scale 

decomposition, the detailed feature extraction module DFEM can better perceive 

the important information and general information from feature maps of different 

scales respectively and assign different weights. The full-scale skip connection can 

also minimize information loss. In addition, to achieve global and local information 

fusion and enhancement, we design the feature aggregation and enhancement 

module FAEM, and finally we can get the output image If through a 1×1 

convolutional layer. 
 

 
Fig. 1. The overall structure of GLAFusion 

3.2. Global feature extraction path 

In the exploration process, concatenating more RB does not significantly 

enhance the fusion effect of the algorithm, but will have a negative impact on the 

fusion efficiency due to the load. In order to balance the quality of fusion results 

and time consumption, we chained four RBs in GLAFusion. Fig. 2 illustrates the 

RB's particular design. The multi-Dconv head transposed attention and gated-

Dconv feed-forward network make up the majority of the RB. The former is in 

charge of detecting global information across channels, while the latter is in charge 

of refining useful information. 

 
Fig. 2. The structure of RB 
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3.3. Fully connected attention network 

To roundly capture the local traits in multimodal images, we design a 

multiscale fully connected attention network, which mainly consists of skip 

connections and attention mechanism, its structure can be understood in Fig. 1. The 

structure of the DFEM is shown in Fig. 3. 
 

 
Fig. 3. The structure of DFEM 

 

DFEM starts with a 3×3 convolutional layer. In this part, we employ ReLU 

activation function. Then we first obtain four feature maps with different sizes by 

downsampling three times. After each downsampling, the feature maps’ width and 

height both decrease to half of the processed counterparts, and then the local 

features are perceived by the designed attention mechanism. The multiscale 

decomposed feature maps are used as inputs to the attention mechanism, which is 

split into a spatial attention path SAP and a channel attention path CAP, and these 

two have a parallel structure. The attention weights of channels and regions are 

obtained respectively, and ultimately multiplies the input features pixel-by-pixel by 

a residual connection to obtain the multiscale attention feature maps. In particular, 

to extract local information more comprehensively during the processing of features 

at different scales, we set two different sizes of convolution kernels in SAP, 7×7 

and 3×3, respectively. α and β are both set to 0.5 in this paper, and they are 

weighting parameters of the channel and spatial attention. 

3.4. Feature aggregation and enhancement module 

In order to fuse the extracted global and local information in more detail, 

we design a feature aggregation and enhancement module FAEM, and the detailed 

structure can be seen from Fig. 1. FAEM is mainly composed of two layers of 

ordinary 3×3 convolution and a layer of depth-wise convolution with skip 

connection. After the first convolution layer, we adopt Instancenorm operation, 

which only normalizes each channel of each sample. Compared with Batchnorm, it 

is computationally simple and facilitates more effective retention of feature 

information. Depth-wise convolutional skip connections are used to emphasize 

feature details. 
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3.5. Loss functions 

The total loss of GLAFusion can be expressed as: 
 

i g sL L L L = + +         (1) 

( )i f 1 2 1
M ,L I I I HW= −             (2) 

( )g f 1 2
1

max ,L I I I HW=  −          (3) 

( )( ) ( )( )s f 1 f 21 SSIM , 1 SSIM ,L I I I I = − + −       (4) 
 

Three components comprise total loss L, strength loss Li, structure loss Ls 

and gradient loss Lg. The weighting parameters that control Li and Lg are μ and ν. 

‖∙‖1 denotes L1-norm. M(∙) is a pixel-by-pixel operation strategy of two modal 

images, we adopt the max strategy for the infrared-visible image fusion task, 

because both images may contain extensive intensity information in different 

scenarios. And we adopt the mean-max strategy for the multi-exposure image 

fusion task because most of the luminance information exists in the overexposed 

images. ∇ denotes the gradient operator, the height and width of the input image are 

denoted by H and W, SSIM(∙) is the structural similarity metric, θ and σ are 

parameters that control the percentage share of each. 

4. Experimental details and analysis of results 

4.1. Experimental setup and comparison methods 

41 pairs of images from the TNO [18] dataset were used to train the infrared-

visible image fusion task during the training phase. The multi-exposure image 

fusion task was trained using 32 pairs of images from the MEFB [19] dataset. To 

get enough training data, the chosen training images were cropped into 128×128 

image segments with a stride of 24. This resulted in the acquisition of 17002 pairs 

of multi-exposure image segments and 13366 pairs of infrared-visible image 

segments. 16 epochs and a batch size of 40 are specified. Using an exponential 

decay method and Adam optimizer, we optimized our GLAFusion by setting the 

initial learning rate and decay rate to 0.0004 and 0.9, respectively. The weighting 

parameters μ and ν are 2 and 5, respectively, and both θ and σ are 0.5. The 

experimental hardware facilities are NVIDIA GeForce RTX3090 GPU and Intel(R) 

Xeon(R) W-2245 CPU, the deep learning framework is TensorFlow. 

In the comparison experiments, we take six advanced algorithms, NestFuse 

[1], PMGI [11], SDNet [2], SwinFusion [20], U2Fusion [3] and YDTR [21], as our 

comparison algorithms. We take standard deviation (SD), average gradient (AG), 

information entropy (EN), visual information fidelity (VIF), and spatial frequency 

(SF) as objective evaluation metrics. 
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4.2. Comparative experiment of infrared-visible image fusion 

20 pairs of randomly chosen images from the TNO dataset serve as the test 

data in this section. The results of the quantitative comparisons made using the TNO 

dataset, where the data are the average scores of each method, are displayed in Table 

1. It is evident that GLAFusion gets the best results across four assessment metrics: 

SD, AG, EN, and SF. In two metrics, SD and SF, our GLAFusion performs much 

better than the other algorithms. In VIF, SwinFusion obtains the suboptimal value 

whereas NestFuse obtains the optimum value, GLAFusion shows a flaw, but also 

got a score of 0.7179, just after SwinFusion. 
Table 1 

Quantitative comparison experiments on the TNO dataset 

 NestFuse PMGI SDNet SwinFusion U2Fusion YDTR Ours 

SD 41.6492 38.3224 33.1786 39.6015 36.1611 28.2380 57.7209 

AG 3.5720 3.2136 4.1168 3.7013 4.4322 2.5831 4.7753 

EN 7.0879 7.0328 6.6993 6.8916 6.9743 6.4909 7.4490 

SF 9.1424 7.8971 10.3806 9.4779 10.3999 6.9900 12.5749 

VIF 0.8967 0.6443 0.5852 0.7770 0.6236 0.6327 0.7179 
 

Fig. 4 displays the qualitative comparison findings of GLAFusion and other 

algorithms on the TNO dataset.  

 
Fig. 4. Qualitative comparison on the TNO dataset 

Both SwinFusion and YDTR effectively preserve the structural information, 

although some scenes lack contrast details. PMGI retains certain contrast features 

of the infrared image but fails to provide clear target edges. NestFuse, SDNet, 

U2Fusion, and our proposed GLAFusion all show the capacity for extracting 

texture and contrast information in multimodal images. Furthermore, NestFuse and 

GLAFusion exhibit superior scene representation capabilities. 

4.3. Comparative experiment of multi-exposure image fusion 

The quantitative comparison experiments carried out on the MEFB dataset 

are displayed in Table 2. GLAFusion consistently gets the highest value on the 

metrics of SD, AG, EN, and SF. Notably, in terms of SF, GLAFusion outperforms 

SwinFusion by a margin of 30.36%. Regarding VIF, our algorithm obtains the 
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suboptimal value of 1.2381 while NestFuse remains at the top with a score of 

1.3779. 
Table 2 

Quantitative comparison experiments on the MEFB dataset 

 NestFuse PMGI SDNet SwinFusion U2Fusion YDTR Ours 

SD 67.8103 57.1727 55.5664 67.7289 59.4382 59.4509 70.3737 

AG 4.4711 4.7873 4.9596 5.5490 4.7279 3.8850 6.5639 

EN 7.5038 7.3944 7.4339 7.3435 7.3952 7.2271 7.6519 

SF 15.5704 15.4876 16.7919 17.5602 14.8902 14.1629 22.8929 

VIF 1.3779 0.9746 1.1915 1.1865 1.2149 1.2030 1.2381 
 

We select three representative fused images from the test data in the MEFB 

dataset to demonstrate qualitative comparisons. Fig. 5 reveals that the overexposed 

image's brightness information is efficiently preserved by NestFuse and YDTR, but 

the underexposed image's textural details are less noticeable. For instance, the lake 

surface features in the second row of Fig. 5 are not sufficiently displayed by the 

fusion findings of NestFuse and YDTR.  

 

 
Fig. 5. Qualitative comparison on the MEFB dataset 

Other algorithms successfully retain a significant amount of edge 

information. However, SwinFusion exhibits a slight lack of contrast in its fusion 

result, and U2Fusion fails to capture sufficient brightness information from the 

overexposed image, resulting in a slightly darker fusion effect. PMGI, SDNet, and 

GLAFusion appropriately preserve both brightness information and rich texture 

details. 

4.4. Ablation analyses 

GLAFusion is mainly composed of a global feature extraction path, a fully 

connected attention network, and FAEM, which enables our model to better 

perceive and fuse global and local information. To verify the role of each part, we 

design four different model structures and conduct comparative experiments on the 

TNO dataset and MEFB dataset: (1) There is no FAEM in the model. (2) There is 
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no global feature extraction path in the model. (3) There is no fully connected 

attention network in the model. (4) Ours. 
Table 3 

Quantitative comparison of methods with diverse network structures 

 TNO MEFB 

 (1) (2) (3) Ours (1) (2) (3) Ours 

SD 44.9376 47.8127 58.6625 57.7209 57.0489 60.6821 62.2851 70.3737 

AG 3.6841 3.9630 4.7502 4.7753 5.2787 5.3473 6.2517 6.5639 

EN 7.1892 7.2550 7.3527 7.4490 7.4761 7.5352 7.5640 7.6519 

SF 9.8753 10.5106 12.2652 12.5749 18.1982 18.4532 21.5420 22.8929 

VIF 0.7773 0.7594 0.6830 0.7179 1.3080 1.2481 1.0610 1.2381 
 

The findings of the quantitative comparison of the TNO and MEFB datasets 

are displayed in Table 3. GLAFusion obtains the suboptimal value on SD and the 

optimal performance on AG, EN, and SF on the TNO dataset. GLAFusion gets the 

best outcomes on the SD, AG, EN, and SF metrics on the MEFB dataset. From the 

perspective of visual effects, these models have achieved good effects, but there are 

still differences in the details. We can see that in the first row of fusion results in 

Fig. 6, the contrast of the person in our GLAFusion is more prominent. 

 
Fig. 6. Qualitative comparison of methods with different network structures 

 

We use different intensity loss functions Li for the infrared-visible and the 

multi-exposure image fusion tasks, for the former we adopt the pixel maximum 

value preservation strategy(max) and for the latter we adopt the joint action strategy 

of pixel maximum preservation and pixel averaging(mean-max). We designed three 

different sets of intensity loss function strategies to verify why we do this: (a): 

mean-max, (b): mean, (c): max. In Table 4, (c) algorithm using the max strategy 

yields the optimal performance on SD, VIF and EN on the TNO dataset. However, 

(a) algorithm using the mean-max strategy obtains the optimal value on the three 

metrics EN, SF and VIF on the multi-exposure dataset MEFB. 
Table 4 

Quantitative comparison of methods with different Li 

 TNO MEFB 

 mean-max mean max max mean mean-max 

SD 39.5179 14.5535 57.7209 78.6036 20.7455 70.3737 
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AG 4.8957 5.3499 4.7753 5.8443 6.7421 6.5639 

EN 7.0240 5.7582 7.4490 7.1321 6.2118 7.6519 

SF 12.7957 14.3901 12.5749 21.2367 22.7846 22.8929 

VIF 0.6246 0.4683 0.7179 1.0844 0.7567 1.2381 

 

When Li with max strategy is used to train the model for infrared-visible 

image fusion (refer to the first row of Fig. 7), the fusion results can better emphasize 

the target information, however the results obtained with mean strategy lose too 

much contrast information. For multi-exposure image fusion (see the second line of 

Fig. 7), (a) algorithm using max strategy results in excessive brightness information 

and loses part of the texture features. The results of multi-exposure image fusion 

using mean strategy yields the same results as infrared-visible image fusion, too 

much contrast information is lost, and the target cannot be highlighted. The results 

obtained using the mean-max strategy can properly preserve texture and brightness 

information. The above ablation analysis validates the criticality of the components 

of GLAFusion. And we can conclude that Li using max strategy is more 

appropriately used for training infrared-visible image fusion tasks, while Li using 

mean-max strategy is more appropriately used for training multi-exposure image 

fusion tasks. 

 
Fig. 7. Qualitative comparison of methods with different Li 

In GLAFusion, both parameters θ and σ of SSIM were set to 0.5 and we 

performed ablation experiments on the TNO dataset. We set up three sets of 

experiments, case1: θ = 0.3, σ = 0.7, case2: θ = 0.7, σ = 0.3, Ours: θ = 0.5, σ = 0.5. 

The fusion analysis results of the algorithms for the three cases are shown in Table 

5.  
Table 5 

Ablation experiment on parameter setting of SSIM loss function 

 Case1 Case2 Ours 

SD 55.8469 55.4886 57.7209 

AG 5.2320 4.2974 4.7753 

EN 7.3630 7.3933 7.4490 

SF 14.0443 11.1831 12.5749 

VIF 0.7164 0.7039 0.7179 
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From Table 5, it can be seen that when both θ and σ are set to 0.5, the fusion 

result achieves the optimal values in all the three metrics of SD, EN, and VIF, and 

the overall performance is the best. 

4.5. Efficiency analysis 

We compared the running efficiency of GLAFusion with other advanced 

algorithms on infrared-visible image datasets and multi-exposure image datasets. 

All algorithms were run on CPU. The fusion time-consuming analysis is presented 

in Table 6. We can see that the running efficiency of SDNet dominates on any of 

the datasets. Compared to other algorithms, SwinFusion runs worse in terms of 

efficiency. In terms of computational efficiency, our algorithm also does not 

perform well. However, experiments prove that our GLAFusion performs better in 

balancing fusion quality and efficiency. 
Table 6 

Efficiency comparison of our GLAFusion with other advanced algorithms (unit: s) 

 NestFuse PMGI SDNet SwinFusion U2Fusion YDTR GLAFusion 

TNO 5.0768 0.6543 0.1403 20.9490 1.1673 2.4646 3.8846 

MEFB 8.6980 1.1622 0.2477 40.0986 2.1806 13.9933 6.0192 

5. Conclusions 

We propose a global-local feature aggregation and enhancement method for 

multimodal image fusion in this paper, and it can be applied to handle infrared-

visible image fusion tasks and multi-exposure image fusion tasks. We construct 

global feature extraction paths through an efficient Restormer module to perceive 

global information at the channel level. Then we utilize a fully connected attention 

network to extract local detailed features from the multi-scale feature maps. 

Moreover, in aiming at the fusion and enhancement of global and local information, 

we design a simple and effective feature aggregation and enhancement module 

(FAEM). In quantitative and qualitative comparison experiments with six other 

advanced algorithms on multiple datasets, our algorithm demonstrates certain 

advantages and generalization capabilities. Network structure ablation experiments 

validate the potency of each module. Loss function ablation analyses validate that 

the intensity loss function using the max strategy in our approach is more 

appropriately used for training infrared-visible image fusion tasks, while the 

intensity loss function using the mean-max loss function strategy is more 

appropriately used for training multi-exposure image fusion tasks. Although our 

approach has made some progress in balancing fusion quality and efficiency, in 

future work, we will conduct further research on how to improve the efficiency of 

the algorithm. 

Acknowledgement: This work was supported by the National Natural 

Science Foundation of China (62073239). 



258                                             Bin Yang, Qingchun Zheng, Peihao Zhu 

 

R E F E R E N C E S 

[1]. H. Li, X. J. Wu, T. Durrani. “NestFuse: An infrared and visible image fusion architecture based on nest 

connection and spatial/channel attention models”, IEEE Transactions on Instrumentation and 

Measurement, vol. 69, no. 12, 2020, pp. 9645-9656. 

[2]. H. Zhang, J. Ma. “SDNet: A versatile squeeze-and-decomposition network for real-time image fusion”, 

International Journal of Computer Vision, vol. 129, no. 10, 2021, pp. 2761-2785. 

[3]. H. Xu, J. Ma, J. Jiang, et al. “U2Fusion: A unified unsupervised image fusion network”, IEEE Transactions 

on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, 2020, pp. 502-518. 

[4]. H. Li, K. Ma, H. Yong, et al. Fast multi-scale structural patch decomposition for multi-exposure image 

fusion. IEEE Transactions on Image Processing, vol. 29, 2020, pp. 5805-5816. 

[5]. L. Jian, R. Rayhana, L. Ma, et al. “Infrared and visible image fusion based on deep decomposition network 

and saliency analysis”, IEEE Transactions on Multimedia, vol. 24, 2021, pp. 3314-3326. 

[6]. A. Vaswani, N. Shazeer, N. Parmar, et al. “Attention is all you need”, Advances in Neural Information 

Processing Systems, 2017, 30. 

[7]. S. W. Zamir, A. Arora, S. Khan, et al. “Restormer: Efficient transformer for high-resolution image 

restoration”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 

(CVPR). 2022, pp. 5728-5739. 

[8]. S. Woo, J. Park, J. Y. Lee, et al. “Cbam: Convolutional block attention module”, Proceedings of the 

European conference on computer vision (ECCV), 2018, pp. 3-19. 

[9]. Y. Liu, X. Chen, J. Cheng, et al. “Infrared and visible image fusion with convolutional neural networks”, 

International Journal of Wavelets, Multiresolution and Information Processing, vol. 16, no. 03, 2018, 

pp. 1850018. 

[10]. J. Ma, W. Yu, P. Liang, et al. “FusionGAN: A generative adversarial network for infrared and visible image 

fusion. Information Fusion”, Information Fusion, vol. 48, 2019, pp. 11-26. 

[11]. J. Ma, H. Xu, J. Jiang, et al. “DDcGAN: A dual-discriminator conditional generative adversarial network 

for multi-resolution image fusion”, IEEE Transactions on Image Processing, vol. 29, 2020, pp. 4980-

4995. 

[12]. H. Li, X. Wu. “DenseFuse: A fusion approach to infrared and visible images”, IEEE Transactions on Image 

Processing, vol. 28, no. 5, 2018, pp. 2614-2623.  

[13]. H. Zhang, H. Xu, Y. Xiao, et al. “Rethinking the image fusion: A fast unified image fusion network based 

on proportional maintenance of gradient and intensity”, Proceedings of the AAAI conference on 

artificial intelligence, vol. 34, no. 07, 2020, pp. 12797-12804. 

[14]. V. Vs, J. M. Jose Valanarasu, P. Oza, et al. “Image fusion transformer”, 2022 IEEE International 

conference on image processing (ICIP). IEEE, 2022, pp. 3566-3570. 

[15]. L. Qu, S. Liu, M. Wang, et al. “Transmef: A transformer-based multi-exposure image fusion framework 

using self-supervised multi-task learning”, Proceedings of the AAAI conference on artificial 

intelligence, vol. 36, no. 2, 2022, pp. 2126-2134. 

[16]. Z. Wang, Y. Chen, W. Shao, et al. “SwinFuse: A residual swin transformer fusion network for infrared and 

visible images”, IEEE Transactions on Instrumentation and Measurement, vol. 71, 2022, pp. 1-12. 

[17]. D. Rao, T. Xu, X. Wu. “TGFuse: An infrared and visible image fusion approach based on transformer and 

generative adversarial network”, IEEE Transactions on Image Processing, 2023. 

[18]. A. Toet. “The TNO multiband image data collection”, Data in brief, vol. 15, 2017, pp. 249-251. 

[19]. X. Zhang, “Benchmarking and comparing multi-exposure image fusion algorithms”, Information Fusion, 

vol. 74, 2021, pp. 111-131. 

[20]. J. Ma, L. Tang, F. Fan, et al. “SwinFusion: Cross-domain long-range learning for general image fusion 

via swin transformer”, IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 7, 2022, pp. 1200-1217. 

[21]. W. Tang, F. He, Y. Liu. “YDTR: Infrared and visible image fusion via Y-shape dynamic transformer”, IEEE 

Transactions on Multimedia, vol. 25, 2022, pp. 5413-5428. 

 


