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KERR-NEWMAN SOLUTIONS WITH ANALYTIC
SINGULARITY AND NO CLOSED TIMELIKE CURVES

Ovidiu Cristinel Stoica1

It is shown that the Kerr-Newman solution, representing a charged
and rotating stationary black hole, admits analytic extension at the singu-
larity. This extension is obtained by using new coordinates, in which the
fundamental tensor becomes smooth on the singularity ring. On the singu-
larity, the fundamental tensor is degenerate - its determinant vanishes. The
analytic extension can be naturally chosen so that the closed timelike curves
normally present in the Kerr and Kerr-Newman solutions no longer ex-
ist. On the extension proposed here the electromagnetic potential is smooth,
being thus able to provide non-singular models of charged spinning parti-
cles. The maximal analytic extension of this solution can be restrained to a
globally hyperbolic region containing the exterior universe, having the same
topology as the Minkowski spacetime. This admits a spacelike foliation in
Cauchy hypersurfaces, on which the information contained in the initial
data is preserved.
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1. Introduction

The Kerr-Newman solutions are stationary and axisymmetric solutions
of the Einstein-Maxwell equations, representing charged rotating black holes
[9, 28]. The other stationary black hole solutions can be obtained as particular
cases of the Kerr-Newman solutions. They are representative for all the black
holes, because even the non-stationary black holes tend asymptotically in time
to Kerr-Newman ones (according to the no-hair theorem). They have inter-
esting properties similar to the entropy and temperature in thermodynamics,
which were studied in [1, 2, 26, 25, 27, 24].

But they also have some unusual properties, which are in general consid-
ered undesirable. They, as any black hole solution, have a singularity, where
some of the fields reach infinite values. The singularity is in general ring-
shaped, and passing through the ring one can reach inside another universe, in
which there are closed timelike curves, i.e. time machines (which fortunately
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don’t affect the causality in the region r > 0). There is also another problem,
the black hole information paradox, which refers to the loss of information
inside the singularity, which, if would really happen, would cause serious prob-
lems, especially violation of unitary evolution, after the black hole evaporation
[5, 6].

The fundamental tensor can be singular in two main ways which are
relevant to our discussion. In the first kind of singularity, the fundamental
tensor has components which diverge as approaching the singularity. The
Kerr-Newman fundamental tensor is, in usual coordinates, of the first kind.
The second kind is that when the fundamental tensor’s components remain
smooth at the singularity (and therefore finite). In the second kind, the sin-
gularity is still present, because the fundamental tensor becomes degenerate
– i.e. its determinant becomes 0. In some cases, it is possible to change the
coordinate system in which a singularity of the first kind is represented, so
that in the new coordinates the singularity becomes of the second kind – it
becomes degenerate1.

The purpose of this article is to show that there are coordinates in which
the singularity of the Kerr-Newman fundamental tensor becomes of degenerate
type. In these coordinates, the fundamental tensor becomes smooth, and the
only way the singularity manifests is that the fundamental tensor becomes de-
generate (we have already developed, in [13, 14, 15], mathematical tools which
allow us to make differential geometry even in this situation of degenerate
fundamental tensor). In addition, we will show here that we can choose the
analytic extension so that the closed timelike curves no longer exist. More-
over, we can find solutions which are globally hyperbolic and admit spacelike
foliations in Cauchy hypersurfaces, ensuring therefore the conservation of in-
formation. The electromagnetic potential turns out to be smooth. New models
for charged spinning particles are suggested.

The Kerr-Newman solution is usually defined in R× R3, where R is the
time coordinate, and on R3 we use spherical coordinates (r, φ, θ). Let a ≥ 0
(which characterizes the rotation), m ≥ 0 the mass, q ∈ R the charge, and
let’s define the functions

Σ(r, θ) := r2 + a2 cos2 θ, ∆(r) := r2 − 2mr + a2 + q2.

Then, we define the Kerr-Newman fundamental tensor by

gtt = −∆(r)− a2 sin2 θ

Σ(r, θ)
, grr =

Σ(r, θ)

∆(r)
, gθθ = Σ(r, θ) (1)

1It may happen that the fundamental tensor becomes regular after the coordinate trans-
formation, but in this case it follows that the singularity was not genuine, it was due to
the fact that the coordinates in which the regular fundamental tensor was represented are
singular. This is the case of the Eddington-Finkelstein coordinates, which proved that the
singularity of the event horizon is only apparent [3, 4].
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gφφ =
(r2 + a2)2 −∆(r)a2 sin2 θ

Σ(r, θ)
sin2 θ, gtφ = gφt = −2a sin2 θ(r2 + a2 −∆(r))

Σ(r, θ)
(2)

all other components of the fundamental tensor being equal to 0 [28].
By making q = 0 we obtain the Kerr solution [7, 8], while by making

a = 0 we get the Reissner-Nordström solution [12, 10]. By making both q = 0
and a = 0 we obtain the Schwarzschild solution, which when m = 0 gives the
empty Minkowski spacetime (see Table 1).

a > 0 a = 0
q 6= 0 Kerr-Newman Reissner-Nordström
q = 0 Kerr Schwarzschild

Table 1. The various stationary black hole solutions, as par-
ticularizations of the Kerr-Newman solution.

2. Extending the Kerr-Newman spacetime at the singularity

Theorem 2.1. The Kerr-Newman fundamental tensor admits an analytic ex-
tension at r = 0 (where the fundamental tensor is degenerate, with analytic,
and not singular components).

Proof. We will find a coordinate system in which the fundamental tensor is
analytic, although degenerate. Recall that the event horizons of the black hole
are given by the real solutions r± of the equation ∆(r) = 0. It is enough to
make the coordinate change in a neighborhood of the singularity – in the block
III, as it is usually called ([11], p. 66). This is the region r < r− if r− is a
real (and positive) number. If the equation ∆(r) = 0 has no real solutions, the
singularity is naked, and we can take the entire domain.

We choose the coordinates τ , ρ, and µ, so that
t = τρT

r = ρS

φ = µρM,
θ = θ

(3)

with S,T,M ∈ N are natural numbers, to be determined in order to make the
fundamental tensor analytic. The expression of the fundamental tensor when
passing from coordinates (xa) to the new coordinates (xa

′
) is given by

ga′b′ =
∂xa

∂xa′
∂xb

∂xb′
gab, (4)
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where Einstein’s summation convention is used. In our case, the Jacobian of
the coordinate transformation is

∂(t, r, φ, θ)

∂(τ, ρ, µ, θ)
=



∂t

∂τ

∂t

∂ρ

∂t

∂µ

∂t

∂θ
∂r

∂τ

∂r

∂ρ

∂r

∂µ

∂r

∂θ
∂φ

∂τ

∂φ

∂ρ

∂φ

∂µ

∂φ

∂θ
∂θ

∂τ

∂θ

∂ρ

∂θ

∂µ

∂θ

∂θ


=


ρT TτρT−1 0 0
0 SρS−1 0 0
0 MµρM−1 ρM 0
0 0 0 1

 . (5)

The components can be arranged as in Table 2.

·/∂τ ·/∂ρ ·/∂µ ·/∂θ
∂t/· ρT TτρT−1 0 0
∂r/· 0 SρS−1 0 0
∂φ/· 0 MµρM−1 ρM 0
∂θ/· 0 0 0 1

Table 2. The Jacobian components of the coordinate change.

We want to make sure that the new expression of the fundamental tensor
becomes smooth even on the ring singularity. For this, we want that all the
terms in the right hand side of equation (4) are smooth. To ensure this, we
have to make sure that the Jacobian components cancel the singularities of
the fundamental tensor’s components, even when cos θ = 0.

The least power of ρ on the ring singularity, in each of the fundamental
tensor’s components listed in equations (1), and (2) are respectively

Oρ (gtt) = −2S, (6)

Oρ (gφφ) = −2S, (7)

Oρ (gtφ) = Oρ (gφt) = −2S, (8)

these components being obtained by dividing polynomial expressions in ρ by
Σ(r, θ). None of the other components can become singular on the ring singu-
larity.

The least power of ρ in each of the Jacobians components from Table 2
are given in Table 3.

Let’s take the fundamental tensor’s components and see if the singulari-
ties are canceled by the components of the Jacobian.

We check each component gab of the fundamental tensor by looking up
the rows labeled by ∂xa/· and ∂xb/· in Table 3.

For example, the term
∂t

∂ρ

∂t

∂τ
gtt (9)
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·/∂ρ ·/∂τ ·/∂µ ·/∂θ
∂t/· T T − 1 0 0
∂r/· 0 S− 1 0 0
∂φ/· 0 M− 1 M 0
∂θ/· 0 0 0 0

Table 3. The least power of ρ in the Jacobian components of
the coordinate change.

satisfies

Oρ

(
∂t

∂ρ

∂t

∂τ
gtt

)
= (T − 1) + T − 2S, (10)

hence T needs to satisfy 2T ≥ 2S + 1.
From equations (6), (7), and (8) is easy to see that we have to do this

only for the components of the fundamental tensor with indices t and φ. From
the equation (4) we see that we are interested only in the rows ∂t/· and ∂φ/·
from the Table 3. It follows then that each of the components of the Jacobian
having the form ∂t/· and ∂φ/· has to contain ρ to at least the power S, to
cancel the singularities of the fundamental tensor’s components. It follows
that the conditions  S ≥ 1

T ≥ S + 1
M ≥ S + 1,

(11)

where S,T,M ∈ N, ensure the smoothness (and the analyticity for that matter)
of the fundamental tensor on the ring singularity, in the new coordinates. In
the new coordinates, none of the fundamental tensor’s components become
infinite at the singularity. �

Remark 2.1. The Kerr-Newman solution has a ring singularity, where r = 0
and cos θ = 0. By using Kerr-Schild coordinates, we can see that it can be
analytically extended through the disk defined by r = 0 to another spacetime
region which looks similar, but is not isometric to the region with r > 0, since
there r < 0 (see Fig. 1). On the other hand it is easy to check that, if we use
our coordinates with even S, T, and M, then the analytic extension to ρ < 0
gives a region which is isometric to that with ρ > 0, with the isometry given
by identifying the points (ρ, τ, µ, θ) and (−ρ, τ, µ, θ).

Remark 2.2. Our global solution described in the Remark 2.1 shows that, for
even S, T, and M, we can eliminate the region where r < 0. In this case, the
closed timelike curves known to appear in the standard Kerr and Kerr-Newman
solutions, are no longer present. Therefore, if these closed timelike curves were
considered as violating the causality, to avoid them we just take S, T, and M

to be even and make the identification of (ρ, τ, µ, θ) and (−ρ, τ, µ, θ).
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Figure 1. The Kerr (and Kerr-Newman) solution, in Kerr-Schild
coordinates. The standard solution admits an analytic continuation
beyond the disk r = 0, into another spacetime which contains closed
timelike curves. If we take in our solution S, T, and M to be even,
we can identify isometrically the regions ρ < 0 and ρ > 0, and obtain
by this a removal of the wormhole and of the closed timelike curves.

Remark 2.3. If a→ 0, then we recover the Reissner-Nordström solution. The
neck r = 0 connecting the two regions r > 0 and r < 0 converges to a point,
as well as the ring singularity delimiting it. This point is the r = 0 singularity
of the Reissner-Nordström solution, and it still can be viewed as connecting
the region r > 0 with a region r < 0. This can be now put in relation with
the extension through singularity of some of the Reissner-Nordström solutions
developed in [17], which suggest that for odd S the singularity connects the
spacetime region r > 0 with a region r < 0.

3. The electromagnetic field

One distinctive feature of our extension is that it has smooth electromag-
netic potential and electromagnetic field. This may be important in particular
when using the Kerr-Newman black holes to model charged particles.
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The electromagnetic potential of the Kerr-Newman solution is the 1-form

A = − qr

Σ(r, θ)
(dt− a sin2 θdφ), (12)

which becomes, in our coordinates,

A = − qρS

Σ(r, θ)
(ρTdτ + TτρT−1dρ− a sin2 θρMdµ), (13)

because from the Table 2 it follows that

dt = ρTdτ + TτρT−1dρ (14)

dr = SρS−1dρ (15)

and
dφ = MµρM−1dρ+ ρMdµ. (16)

The singularity of the electromagnetic potential A at ρ = 0 and cos θ = 0
is removed in our case, since T > S and M > S, from the conditions (11).
Similarly, since the electromagnetic field F = dA, we conclude that the elec-
tromagnetic field F is smooth too.

4. The global solution

The Penrose-Carter diagrams of our solution depend on the various com-
binations of the parameters a, q,m. For the Schwarzschild solution they were
presented in [16], and for the Reissner-Nordström in [17]. In general it is admit-
ted that the Kerr and Kerr-Newman solutions have Penrose-Carter diagrams
similar to those for the Reissner-Nordström solution, although there are some
differences due to the fact that the symmetry is not spherical, but axisymmet-
ric, that the singularity is ring-shaped, and of the closed timelike curves in
the region r < 0. Since our solution can eliminate the closed timelike curves
(Remark 2.1), we expect a better similarity with the Reissner-Nordström case,
and consequently similar Penrose-Carter diagrams. This would allow similar
spacelike foliations of the spacetime as those presented in [17] for the Reissner-
Nordström case, except that the singularity is ring-shaped (see Figure 2). The
foliations are obtained exactly as in the Reissner-Nordström case [17], by using
the same Schwarz-Christoffel mappings. As in that case, to obtain maximal
globally hyperbolic extensions, we don’t take the maximal analytic continua-
tions of the solutions for a2 + q2 ≥ m2 beyond the Cauchy horizons. To avoid
these horizons, we limit the foliations to globally hyperbolic regions containing
the exterior universe.

5. The significance of the analytic extension at the singularity

The analytic extension beyond the singularity obtained here completes
the series of results obtained for the Schwarzschild [16] and Reissner-Nordström
[17] solutions. As in those simpler cases, it becomes clear that the singularity
can coexist with the geometric and topological structures of the spacetime, in
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Figure 2. A. Space-like foliation of the naked Kerr-Newman so-
lution (a2 + q2 > m2). B. Space-like foliation of the extremal Kerr-
Newman solution with a2 + q2 = m2. C. Space-like foliation of the
non-extremal Kerr-Newman solution (a2 + q2 < m2).

a way which doesn’t destroy the information contained in the fields. As in
the other cases, we can extrapolate for the case when the black hole is not
eternal, e.g. when it evaporates. This is because the Kerr-Newman solution
is, according to the no-hair theorem, representative for all kinds of black holes.

The fact that the fundamental tensor is allowed to become degenerate is
not a problem, because, as shown in [13, 14, 15, 18, 19, 21, 20, 22, 23], we have
now the mathematical apparatus to deal with this kind of singularities.

In conclusion, despites the singularities present inside the black holes,
there is no reason to consider that the Kerr-Newman black holes destroy causal-
ity, the evolution equations and the information conservation. Moreover, we
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obtained charged singularities with smooth electromagnetic potential, leading
to models of charged particles for which the electromagnetic potential and field
are non-singular. The Kerr-Newman black holes are the most general station-
ary solution. The no-hair theorem makes them typical for our universe. They
are typical even for the evaporating black holes, because the foliations pre-
sented here allow smooth modifications of the parameters m, q, and a, while
preserving the topology. This is why we can be more optimistic about the
singularities of the black holes in general.
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