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ONE-SIDED TAUBERIAN CONDITIONS FOR THE (N,p)
SUMMABILITY OF INTEGRALS

Umit Totur!, Muhammet Ali Okur?, Ibrahim Canak®

Let p be a function on R4 := [0, 00) which is integrable in Lebesgue’s sense
over every finite interval (0,z) for 0 < & < oo, in symbol: p € L}, .(Ry) such that P(z) =
Jo p(t)dt # 0 for each x > 0, P(0) = 0 and P(z) — oo as  — co. For a real-valued

function f € L}, (Ry), we set s(x) := [y f(t)dt and aél)(x) = P(lm) I s@)p(t)dt, = >
0, provided that P(x) > 0.
We say that fooo f(x)dz is summable by the weighted mean method determined by the

function P(zx) if there exists some s € R such that

(1)

op’(x) =s.

lim
r—r00
If the limit lim s(x) = s exists, then so does lim 01(31)(:1:) =s.
Tr—00 Tr—r0o0
In this paper, we obtain some new Tauberian conditions in terms of the weighted gen-
eral control modulo for the weighted mean method of integrals in order that the converse
tmplication hold true. Our results generalize some classical type Tauberian theorems
given for Cesdaro summability method of integrals.

Keywords: Tauberian theorem, Tauberian condition, weighted mean method of inte-
grals, general control modulo.
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1. Introduction

A number of authors such as Hardy [9], Mdricz and Rhoades [12], Tietz [16], Canak
and Totur [2, 5] obtained Tauberian theorems for the weighted mean method of summability
of sequences. Hardy [9] proved a classical two-sided bounded Tauberian theorem and Mdricz
and Rhoades [12] obtained a one-sided bounded Tauberian theorem for (N, p) summability
of sequences. Canak and Totur [2, 5] introduced some certain general one-sided bounded
Tauberian conditions for this method.

In recent years, there has been an interest on summability method of integrals. Canak
and Totur [4] proved classical type some Tauberian theorems for the Cesaro summability
method of integrals in parallel with sequences. They also proved some new Tauberian the-
orems by using the general control modulo which was defined by Dik [7] for the numerical
sequences and generalized Hardy-Littlewood type Tauberian theorem in [3]. Moreover, one-
sided and two-sided Tauberian conditions for the weighted mean method of integrals are
given by Mdricz [13] and Fekete and Mdricz [8]. Mdricz and Stadtmiiller [14] characterized
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the convergence of weighted means of a function. Totur and Okur [18] have presented alterna-
tive proofs of the Landau-type and Schmidt-type Tauberian theorems for (IV, p) summability
of integrals under some certain conditions imposed on the sequence p.

The purpose of this paper is two fold: First, we introduce the weighted Kronecker
identity and weighted general control modulo of integer order. Next, we prove more general
theorems for the weighted mean method of integrals than the classical ones mentioned above.

2. Preliminaries

Let p be a function on R := [0, 00) which is integrable in Lebesgue’s sense over every
finite interval (0,z) for 0 < < oo, in symbol: p € L}, (Ry) such that P(z) = [ p(t)dt #0
for each z > 0, P(0) = 0 and P(x) — oo as  — oco. For a real-valued function f € L, (R.),

the weighted mean of s(x) is defined by

@) = s | st )

where s(z) = [ f(t)dt. If the limit

lim 0'}(71)(11,') =35 (2)

Tr—r00

exists, then the integral
(oo}
| s 3)
0

is said to be summable by the weighted mean method determined by the function P(x), in
short; the (V, p) summable to a finite number s and we write s(z) — s (N, p). We note that
the concept of (N, p) summability here is the integral analogue of the one given in [9, page
57).

It is known that the existence of the integral

Amfquzs (1)

implies (2) (see [15, page 16]). However, the converse implication is not always true.
Adding some suitable condition on s(z), which is called a Tauberian condition, one
may obtain (4) from (2). Any theorem which states that convergence of (3) follows from the
(N, p) summability of s(z) and a Tauberian condition is said to be a Tauberian theorem.
The purpose of this paper is to investigate the converse implication of (4) = (2).
The main results of this paper involve the concept of regularly varying of index a > 0
which was introduced by Karamata [11] as follows (see [1] for more details):

Definition 2.1. A positive function P is called regularly varying of index o > 0 if

. P(x)
zlggo Pl =)%Y A>0. (5)

We remind the reader that if a positive function P is regularly varying of index o« > 0
, then the following conditions are cleary satisfied (see [6]):

. P(\x)
lim su <l,for0< A<, 6
msup 5o (6)
and P
ligsip P(()\x:c)) <1, for A > 1. (7)

For integrals, an analogous definition of weighted general control modulo of oscillating
behaviors which is presented by Totur and Canak [17] for sequence of real numbers is defined
as follows.
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We define the weighted classical control modulo of s(z) by

w](go)( ) = i((x)) f(z) and the weighted general control modulo of integer order m > 1 of
s(z) by

W (@) = ") - oD (@D (x). ®)
For each integer m > 0, we define 0,(,m)(:£) and v,()m) (x) by
(m 1)
(™) (2) = 7 Jo v )p(t)dt, m>1
P s(;zc)7 m =0,

and

T (m 1)
”1(7 )(z) = { f p(t) .

where v, (z) = % Jy @) P(t)dt.
For a function f, we define

(?((gci)mf(””’ - G5 ) 1<5(f>)$f($)>
P

where (iﬁ;%)o f(x) = f(z) and (;jﬁ;% @) =2 4 1),
3. Main Results

By the following theorem, we obtain that every (IV, p) summable integral is convergent

provided wl()m)(:v) is one-sided bounded for sufficiently large x. This theorem generalizes

Theorem 2 in [3].

Theorem 3.1. Let P be regularly varying of index o > 0. If fo t)dt is (N,p) summable
to s and w(m)( )y > —-C for some C > 0, sufficiently large x and some nonnegative integer
m, then the integral fo t)dt converges to s.

Corollary 3.1. Let P be regularly varying of index a > 0. If fo t)dt is (N,p) summable
to s and w )(m) = O(1) for sufficiently large x and some nonnegatwe integer m, then the
integral fo t)dt converges to s.

By choosmg p(z) = 1 and m = 0 in Corollary 3.1, we obtain the following integral
analogue of a classical one-sided Tauberian theorem of Landau [10] which states that if a
reel sequence (s,,) is Cesaro summable and there exists a positive constant H > 0 such that
k(s —sg—1) > —H for all k =1,2,..., then (s,,) is convergent.

Corollary 3.2. If fo t)dt is Cesaro summable to s and xf(x) > —C for some C > 0,
sufficiently large x, then the integral fo t)dt converges to s.

We recall that the integral fo t)dt is said to be Cesaro summable to s if the limit
limg o0 1 fo t)dt = s.

If we take (N,p) summability of 0,()1)(:17) instead that of s(x) as a hypothesis with
same Tauberian condition in Theorem 3.1, then we get the convergence of s(z) again. By
this theorem, we generalize Theorem 3 in [3].

Theorem 3.2. Let P be reqularly varying of index o > 0. If Uék)(x) is (N,p) summable to

s for any nonnegative integer k and w,()m) (x) > —=C for some C > 0, sufficiently large z and

some nonnegative integer m, then the integral fooo ft)dt converges to s.
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We may not obtain the convergence of s(z) by weakening the conditions in Theorem

3.2 more. However we obtain (N, p) summability of s(z) by one-sided boundedness condition
of (N, p) mean of w,(,m) ().

Theorem 3.3. Let P be reqularly varying of index o > 0. If Uz(jk)(x) is (N,p) summable to

s for any nonnegative k and aél)(wl(,m)(x)) > —C for some C > 0, sufficiently large x and

some nonnegative integer m, then the integral [J° f(t)dt is (N,p) summable to s.

4. Auxiliary Results
In order to prove our main results, we need the following lemmas.

Lemma 4.1. ([18]) The following identities hold:

(i) For A>1,
s(x) — oV (x zﬂ cWA\x) — oM (z
(@) =" () = Bxay — Py 7 M)~ (@)
Az
_m / (s(t) = s(@)p(t)dt.
(i) For0<\<1,
P(\x)

) = By = POow)
1 x
—_—— —s(t t)dt.
o . @ s
Lemma 4.2 is a classical-type Tauberian theorem for the weighted mean method of
integrals.

Lemma 4.2. Let P be reqularly varying of index o > 0. If fooo f(t)dt is (N,p) integrable

to s and Pa)
@)z =0 ©)

for some C > 0 and sufficiently large x, then the integral fooo f)dt converges to s.

Proof. The condition %f(x) > —C implies — L s(z) < C']I;((Z)) for some C' > 0 and suffi-

ciently large x. From Lemma 4.1 (i), we have
P(Ax
P(A\zx) — P(z)

P(A\x)
P(x)’

s(x) —oV(z) <

( (e (Az) — oV (x)) + Clog

for A > 1.
Since P is regularly varying of index «, it is plain that for all A > 1 and sufficiently
large x,

N POw) 3
2 — 1) = P(hx) — P(z) — 20 — 1)

As the limit of azgl)(a:) exists, we obtain

(10)

lim sup (s(m) — 01(,1)()\3&)> < limsup <C’ log P()\x))

for some C' > 0. Taking the limit of both sides as A — 1T, we get
lim sup (s(x) - oél)(x)> <0 (11)
Tr—r00

by the hypothesis that P is regularly varying of index «.
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In a similar way from Lemma 4.1 (ii), we get

o 1
11$Ir_1>101.}f (s(x) - aé )(x)) > 0. (12)
Therefore, the proof is completed by (11) and (12). O

The following lemma provides an identity which is called the weighted Kronecker
identity.

Lemma 4.3. s(z) — 0'[()1)<.'17) = vp(x) where vy(z) = % Jo f()P(t)dt.

Proof. From (1), we have

which completes the proof. O

P d
Lemma 4.4. For each integer m > 0, ﬁfa(m)(l‘) = Ul(,m) ().

p(x) dz P

Proof. If we take the derivative of o5 (z), we obtain

d m p((E) m—1 m
—of"(@) = e (og, (2) — o )(x)> .
By Lemma 4.3, we obtain iU(m)(a:) = p(z) vp*(x). This completes the proof. O
’ dx P P(z) P
Lemma 4.5. For each m > 0 integer,
. P(x) d P(x)
i —p(x) = x) — vp(x).
O S = o () ) )
1) 00 () — pmtD) () = 2\ D (mt1)
(ii) vy™(z) — v, (x) (D) e ().
Proof. (i) If we take the derivative of the weighted Kronecker identity, then we obtain
plx) [* s(z)p(x) d
el B tp(t)dt + ———— | = — . 1
)= (a2 [ sopoar+ “HHD) - L) (13)
Multiplying both sides of (13) by P(z) and using the weighted Kronecker identity, we get
d
P(z)——vp(w) = P(x)f(2) - p(a)vy(@). (14)

Then dividing both sides of (14) by p(z), we have the proof of (i).
(ii) Applying orf,m)(x) to Lemma 4.3 and taking the derivative of both sides, we have

d m m—+1 d m—+1
—o(™(z) — %01(7 () = %vz() (). (15)
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Then multiplying both sides of (15) by 1;((;”)) and using Lemma 4.4, we have the proof of

(ii). O

. P(z) d P(z) d
L 4.6. F h integer k> 1, olF) [ L — — Lo ().
emma or each integer k > 1, o, (p(x) dxvp(x)> () e (z)

Proof. If we take the weighted mean of order k of the both sides of the identity in Lemma

4.5 (i), we get
o (P@) d N k() — o)

Also taking m = k — 1 in Lemma 4.5 (ii), we obtain v(k )(m) - vl(,k) (x) = %%vﬁ)(z).
This completes the proof of Lemma. O

In the following lemma, we now give a different representation of the weighted general
control modulo of integer order of functions.

Lemma 4.7. For each integer m > 1, w(m)( )= (1;((5)) %) v,(,m 1)( ).

Proof. We establish the proof by the method of induction. Taking m = 1 in (8) and using

Lemma 4.5 (i), we get w,(,l)(x) = 1;((5)) —vp(z). Assume that the assertion is true for m = k.
Therefore we obtain,
o) (z) d ) (k—1) 16
o) = (22 (@) (16)

Taking m = k + 1 in (8) and using (16), we get

P(x)
(k+1) (k 1) (k)
wy T (x) = ( @) )k — vy, (ac)) .

From Lemma 4.5 (ii), we obtain

v - (382), (Brr) - (3),, o

Thus, we conclude that Lemma 4.7 is true for each integer m > 1. ]

Lemma 4.8. For each integer m >0 and k > 1, Ul(,k) (wl(ym) () = wém)(oz(,k) (x)).
Proof. From Lemma 4.4, 4.6 and 4.7 we obtain,

@ = (o), G ase)

Therefore we get,

A @) = (S ) ) (")
On the other hand by using Lemma 4.4 and 4.7, we obtain,
@) = (S E) (G V).
Hence we get,
AP = (T ) A (19)
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5. Proofs

Proof of Theorem 3.1
Suppose that s(x) is (N, p) summable to s. Therefore oz(,l)(x) is (N, p) summable to same
value. By the difference of s(x) and or](gl)(x), from Lemma 4.3, we get v,(z) is (N,p) sum-
mable to 0. Using the definition of the weighted general control modulo of integer order
m > 1, we obtain

oy (wi" V() = O(N, p). (19)

If we use Lemma 4.7 and the hypothesis wf;”) () > —C for some C > 0 and sufficiently

large x, then we have

m) () = @) d [ (Pz) d oDy | >
S = ((m) i), ”)Z “ 2
Applying Lemma 4.1 (i) to o5” (w™ ™V (2)) we get
O,]()l)(w;l()mfl)(x)) _ U£2)(w§)m 1)(1))
P(A\x)

- W (2 @D (0a) = o @i (@)))

PP |, i (/ oI >>dz) plt)dt.

Using Lemma 4.6 and 4.7 and the condltlon (20), we get

O_I()l)(wz()mfl)(x)) _ 01(72)(0‘)1()1%71)(1,))
& 0@ (um=D \z)) — 0@ (WMD) (&
P()\lE)*P(:Z?)( p ( p (Az)) 2 ( p (z)))
+C'log ];((/\;;) .

Since P is regularly varying of index «, it is plain that for all A > 1 and sufficiently large x,
A < P(\x) < 3\

. 21
20 —1) = P(Ax) — P(x) — 2(A*—1) (21)
y (19) and (21), for all A > 1,
. P(\z) 2 -1 2 -1
lim e TR o @ 0a) — e (@) = 0. (22)
Taking lim sup of both sides as x — oo, we obtain
lim sup (aél)(wémfl)(a:)) — oéz)(wx(,mfl)(x)»
T—r00
(/\f) 2 m—1 2 m—1
. P(\x)
+limsup C'lo :
Taking (22) into account, we obtain
_ _ . P(Az)
1), (m—1 2 1
hfff;ip( o (@i V(@) = o (wi )(:v))) < limsup C'log 57
Since P is regularly varying, taking the limit of both sides as A — 17, we get
timsup (o (w0 (@) — 0P (Wi () < 0. (23)

Tr—r00
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In a similar way from Lemma 4.1 (ii), we get

lim inf (ag)(w(m*l)(x)) s (w,gm*l)(x))) > 0. (24)

r—00 p

Combining (23) and (24), we obtain that

ol (w{mY (2)) = o(1).

Therefore, from (8) we get wz(,m_l)(:c) > —(C) for some Cy > 0. Using Lemma 4.7, we obtain

p(x) do

Using (8), we obtain
oy (wy" P () = O(N, p). (26)

Applying Lemma 4.1 (i) and (ii) to cr,(,l)(wz(,m_g) (x)) with similar steps, we get

ol (W™= (2)) = o(1).

Continuing in this way, we obtain that
oy (M () = o(1).

Since s(z) is (N, p) summable to s, we have 01(,1) (vp(x)) = o(1). Also from Lemma 4.5 (ii), 4.6
and 4.7, we get that v,(z) = o(1). Finally, from Lemma 4.3 we conclude that s(x) converges
tos. O

Proof of Theorem 3.2
Assume that U]()k)(:c) is (N, p) summable to s. Taking the weighted mean of the both sides
of the identity in Lemma 4.3, then we obtain vl(,k)(x) is (N,p) summable to 0. Using this
result in (8), we get that

oD (@D () = 0(N, p). (27)

From Lemma 4.7 and the hypothesis wz(;m)(x) > —C for some C' > 0 and sufficiently large
x, then we have

o) ) () = 21 4 g ((P@ d) _1v§,’"‘1><x>> > . (28)

p(x) do? p(z) dx

Applying Lemma 4.2 to a,(gkﬂ)(w,()m*l)(x)) and using Lemma 4.6 and conditions (27), (28),
we obtain

oD (wim D (2)) = o1),

By (8), we obtain aék)(wém_l)(m)) > —(C4 for some C; > 0. Using Lemma 4.7 and the

hypothesis w,(,m) (z) > —C for some C' > 0 and sufficiently large = again, we get that

oo =B (B9) pr)oc oo

From (8), we obtain
oy (w2 (@) > O(N, p). (30)

Applying Lemma 4.2 to 01(,k) (w,(,m_z)(x)) and using Lemma 4.6, we obtain

oy D (wi™ ) () = o(1).
Continuing in the same vein, we obtain

o (WM (2)) = o(1).
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Since O‘I(;k)(a'}) — s(N,p), we get that v,(,kﬂ)(x) = 0(1). Using Lemma 4.5 (ii), 4.6 and 4.7,
we have v;,k) (x) = o(1). Using the weighted mean of order k of the identity in Lemma 4.3,
we get Uz(,k)(x) — s(N,p). If we do these steps k — 1 times, we obtain ajgl)(x) — s(N,p).

If we take the weighted mean of the both sides of the identity in Lemma 4.3, then we

obtain vz(,l)(:r) is (N, p) summable to 0 and we have

o2 (wy" V(@) = O(N, p). (31)
By Lemma 4.7 and the hypothesis wz(,m) (z) > —C for some C > 0 and sufficiently large z,
then we have

0(1)(W(m)(x)) _ P(x) ia(l) ((P($) d > - U](Dml)(x)> > (. (32)

v o) i’ \\ o) do

Applying Lemma 4.2 to 01()2)(%(777171) (x)) and using Lemma 4.6 and conditions (31) and (32),
we obtain that

01(72)(0./1(7"1_1)(33)) = o(1).
By (8), we get Jél)(w,()mil)(x)) > —(C4, for some C; > 0. By using Lemma 4.7 and the
hypothesis w,()m) (x) > —C, for some C > 0 and enough large x again, we get that

oD (@) = TE L 0 <<P(x) ) _Q”ZSM(:")) e W

- p(x) dx P p(x) dzx

From (8), we obtain
aéQ)(wlgm_Q) (x)) = O(N, p). (34)

Applying Lemma 4.2 to 01(72)(%()771—2) (x)) with using (33), (34) and Lemma 4.6, we obtain
that
7wy (@) = o(1).
If we continue in the same vein, then we get that
o (w(2)) = o(1).

From the (N,p) summability of o,(,l)(x) to s and Lemma 4.3, we get 01(,2)(111,(;10)) = o(1).

Using Lemma 4.5 (ii), 4.6 and 4.7, we get that v,(,l)(a:) = 0(1). Finally, using the weighted
mean of the identity in Lemma 4.3 we get 0,(,1) (x) = s. Therefore the conditions in Theorem

3.1 holds and proof is completed. [

Proof of Theorem 3.3
From Lemma 4.8 and the hypothesis oél)(w,(gm) (z)) > —C for some C > 0, we obtain

wi™ (o (x)) > ~C, (35)
for some C > 0. Since Uzgk)(x) is (N,p) summable to s, from Theorem 3.1 and condition
(35), we get

Uék_l)(x) — s(N,p). (36)
Also from Lemma 4.8 and the same hypothesis, we get
wy™ (oD (@) = =C, (37)
for some C' > 0. Hence, from Theorem 3.1, conditions (36) and (37), we get
o2 (z) = s(N,p). (38)

If we continue in the same vein, then we get

J[()l) (z) — s(N,p). (39)
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From Lemma 4.8 and the same hypothesis, we get

wi(,m) (01(31) (x)) > —C, (40)

for some C' > 0. Finally, from Theorem 3.1, conditions (39) and (40), we get s(x) — s(N, p).
This completes the proof. [
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