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HARMONIC DEGREE-BASED INDEX OF SPECIAL
CHEMICAL MOLECULAR AND NANOTUBES

Wei GAOY, Mohammad R. FARAHANI?, Jia-Bao LIU®, Muhammad K.
SIDDIQUI4

Let G be a simple molecular graph without directed and multiple edges and
without loops, the vertex and edge-sets of which are represented by V(G) and E(G),
respectively. Suppose G is a connected molecular graph and vertices u,veV(G). In
this paper, we present explicit formulas for calculating the ““general harmonic index,
harmonic index and Harmonic polynomial’ of a special chemical molecular graph
“Cas(C)-CaR(C)[m,n,p] Nanotubes Junction” are given. The Cas(C)-
CaR(C)[m,n,p] Nanotubes Junction is a new nano-structure that was defined by
M.V. Diudea, on based the new graph operations (Leapfrog Le and Capra Ca) on
the cycle graph C,. In this paper, we compute the harmonic index vie two ways
namely degree-based method and via polynomial method.

Keywords: Molecular graphs, Carbon Nanocones, Cas(C)-CaR(C)[m,n,p]
Nanotubes Junction, Harmonic index, Harmonic polynomial, General
harmonic index

1. Introduction

A graph is a collection of points and lines connecting a subset of them.
The points and lines of a graph also called vertices and edges of the graph,
respectively. The vertices and edges of a graph also correspond to the atoms and
bonds of the molecular graph, respectively. If e is an edge/bond of G, connecting
the vertices/atoms u and v, then we write e=uv and say “u and v are adjacent”.
Mathematical chemistry is a branch of theoretical chemistry for discussion and
prediction of the molecular structure using mathematical methods without
necessarily referring to quantum mechanics.
Graph theory which is an important branch of applied mathematics has many
applications to modelling real world problems from science to technology.
Chemical graph theory which is a fascinating branch of graph theory has many
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applications related to chemistry. Chemical graph theory provides many
information about molecules and atoms by using pictorial representation
(chemical graph) of these chemical compounds Chemical graph theory is an
important branch of graph theory, which applies graph theory to mathematical
modeling of chemical phenomena [1-4].

A novel topological index, named the General Randi¢ Index in honor of
Professor Milan Randi¢, has been introduced by Bollobas and Erdos [6]. It is
derived from quantitative structure-property relationship (QSPR) makes a
connection between the structures [5]. Fajtlowicz defined an invariant of the
Randi¢ index called the Harmonic index.

Topological indices, as numerical parameters of molecular structures, play
a vital role in chemistry, and medicine science. It has been proved that topological
indices reflect biochemical properties (such as the melting point, boiling point,
toxicity and QSPR/QSAR study) of their corresponding compounds and drugs.
Several articles contributed to determining the topological indices of special
molecular graphs. There are many indices for a connected graph G.

The quantitative structure-property relationship (QSPR) makes a connection
between the structure and the properties of molecules. In 1975, Milan Randi¢é
proposed the first degree based structural descriptor [5] named the Randicé
Connectivity Index x(G), which is defined as:

1
x(G)=
( ) e=uv§E:(G) ‘/dudv
where dy and dy are the degrees of the vertices u and v, respectively.
Later on, Bollobas and Erdos [6] replaced the exponent _1 by any real number a
2

and defined the general Randi¢ index as:

Rk(G): Z (dudv)k

e=uveE(G)
B. Zhou and N. Trinajsti¢ [7,8] extended this concept to the general sum-

connectivity index as
X, (G)= > (d,+d,)"
uveE(G)
where « is any real number and dy denotes the degree of vertex v in G. Li and Liu
[9] proposed the first three minimum general Randi¢ indices of tree structure, and
they also determined the corresponding extremal trees. Liu and Gutman [10]
characterized several estimating on general Randi¢ index. Throughout our paper,
we always assume that « is a real number.
The first Zagreb index was formally introduced by I. Gutman and N.
Trinajsti¢ [11-13] on based structure descriptor about forty years ago (in 1972) as
the sum of the squares of the degrees of all vertices/atoms in the molecules G, in
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terms of bonds and the second Zagreb index M2(G) was conceived somewhat later
[19] and a new version of Zagreb indices named Hyper-Zagreb index was
introduced by Shirdel et al. [14].

By setting a=/ of the general Randi¢ index and a=/ and a=2,
respectively, then it becomes the second Zagreb index M2(G), the first Zagreb
index M1(G) and the first Hyper-Zagreb index and Second Hyper-Zagreb index:

M,G)= > (d,+d,). M,G)= > (d,xd,)

e=uv ek (G) e=uveE (G)
HM,(G)= Y (d,+d,)" . HM,(G)= > (d,d,)
e=uveE(G) e=uveE (G)

In 1980, Fajtlowicz defined an invariant of the Randi¢ index called the harmonic
index, as
2

e=uveE(G) du + dv

H(G)=

He examined the possible relations between countless graph invariants. With
single exception H(G) did not attract anybody’s attention, especially not chemists.
Recently, Hosmani et al. [15] explored the chemical applications of the harmonic
index. They revealed that harmonic index is also a useful tool in predicting the
heats of vaporizations and critical temperatures of alkanes.
Iranmanesh et.al [16] were the first to introduce the harmonic polynomial of a
caterpillar graph G of diameter 4 as follows:
H(Gx)= ) 2x®ed
e=weE(G)

where H(G)=j01 H(G, x)dx.

Favaron et al. [17] manifested the relation between the eigenvalues and
harmonic index of molecular graphs. Zhong [15] reported the minimum and
maximum values of the harmonic index for connected molecular graphs and trees,
and the corresponding extremal molecular graphs are also described. Wu et al.
[16] derived the minimum value of the harmonic index with the minimum degree
at least two. Liu [18] yielded the relationship between the diameter and the
harmonic index of molecular graphs.

Very recently, Yan et al. [19] introduced the general harmonic index for
extending harmonic index in more chemical engineering applications which can
be stated as:

@)= ¥ (o)

uveE(G)
where a is any real number and dy denotes the degree of vertex v in G.
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In this paper, we present explicit formulas for calculating the “general
harmonic index, harmonic index and Harmonic polynomial” of a special chemical
molecular graph “Cas(C)-CaR(C)[m,n,p] Nanotubes Junction” are given.

2. Applications of Topological Indices:

The Randi¢ index is a topological descriptor that has related with a great
deal of the synthetic qualities of the atoms and has been discovered parallel to
processing the boiling point and Kovats constants of the particles. The first and
second Zagreb index were found to be helpful for calculation of the aggregate
7T electron energy of the particles inside particular rough articulations. These are
among the graph invariants who were proposed for estimation of skeleton of
stretching of the carbon-atom.

During the most recent two decades, the analysts contemplated certain
substance diagrams and arrange and processed their particular indices. W. Gao
and M. R. Farahani figured degree-based indices of synthetic structures by
utilizing an edge separated technique. Gao et al. in 2017 contemplated concoction
structures in medications and some medication structures and processed the
overlooked topological indices. As of late, Baig et al. in 2015 computed the
topological descriptors of the concoction graphs of carbon graphite and precious
stone cubic carbon structures and furthermore showed their graphical portrayal.
These applications and writing survey inspired us to investigate some new
substance diagrams and gem structures and process their topological records.

An information topological index based on Randic M. molecular connectivity
index was constructed and calculated for 58 alkyl cycloalkanes. The information
topological index, Randic connectivity index and number of carbon atoms were
correlated with 11 kinds of thermodynamic and physico-chemical properties such
as gaseous standard formation heat, gaseous standard entropy, gaseous standard
formation free energy, boiling point, critical temperature, critical pressure, critical
volume, evaporation heat, density, capacity and surface tension of the alkyl
cycloalkanes.

3. Methods:

For the computation of our results we utilize the strategy for
combinatorial registering, vertex partition strategy, edge partition technique,
graph hypothetical instruments, scientific systems, degree counting strategy and
entirety of degrees of neighbor’s strategy. In addition, we utilize the matlab for
scientific estimations and confirmations. We likewise utilize maple for plotting
these numerical results.
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4. Main Results

The aim of this section is to compute the general harmonic, harmonic
indices and Harmonic polynomial for a special chemical molecular graph
“Cas(C)-CaR(C)[m,n,p] Nanotubes Junction.” The Cas(C)-CaR(C)[m,n,p]
Nanotubes Junction is a new nano-structure that was defined by M.V. Diudea
[20], on based the new graph operations on the cycle graph Cn, namely : Leapfrog
Le and Capra Ca.

Figw. 1. An example of “Leapfrog Le(Cs)” graph operation.

Some examples of graph operations (Leapfrog Le and Capra Ca) are shown in
Figs. 1 and 2 and readers can see the references [21-32].
Now, consider Cas(C)-CaR(C)[m,n,p] Nanotubes Junction ¥m,n,p A, such that
the 3-Dimensional lattice of Cas(C)-CaR(C)[m,n,p] Nanotubes Junction are
shown in Fig. 3. In this paper we name the first member Cas(C)[1,1,1] or Cas(C)
as the based unit (see Figs. 3 & 4), since all member of Cas(C)[m,n,p] Nanotubes
are combine this unit.

Fig. 2. An example of “Capra Ca(C.)” graph operation.
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From Fig. 3, one can see that 6 x 4=24 vertices/atoms of Cas(C) unit have degree
2 (red colored vertices in Fig. 3), and there are 2 x 4=8 vertices/atoms with degree
3 in any split of Cas(C) (yellow colored vertices in Fig. 3) and Cas(C) unit has 6
splits. Finally there are 8 common vertices between 3 joist splits of Cas(C)
(obviously with degree 3 and colored by white). These imply that Cas(C) unit has
24+6x8+8=80 (|V(Cas(C))|)vertices/atoms and the number of edges/bonds of
Cas(C) unit is equal to

|E(Cas(C))|=w —15[2%24+3x56]=216.

Thus following M.V. Diudea [24] we denote the number of Cas(C) units in the
first rows and column in these Nanotubes by integer number m, n and p.
Therefore, in general case of this nano-structure Cas(C)-CaR(C)[m,n,p], there are
mxnxp Cas(C) units and there exist

|[V(Cas(C)-CaR(C)[m,n,p])|=80xmxnxp=80mnp number of vertices/atoms

(vm,n,p el).

Also, from the structure of Cas(C)-CaR(C)[m,n,p] Nanotubes Junction
vm,n,p e, in Fig. 4, one can see that the number of edges/bonds of Cas(C)-
CaR(C)[m,n,p] is equal to

|[E(Cas(C)-CaR(C)[m,n,p])|=216xmxnxp+4(m-1)(n-1)(p-1)=220mnp-4mn-4mp-
4np+4m+4n+4p-4.

Fig. 3. The based unit Cas(C)-CaR(C)[1,1,1] of the Cas(C)-CaR(C)[m,n,p] Nanotubes
Junction Vm,neN.

For computing these Degree-based indices and polynomial, let us to
partition the vertex set and edge set of this Nanotubes, such that 6<k<4, 26<i<24,
and 6°<j<4%[33-35]:

Vi={veV(G)| dv=k},
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Ei={e=uv eE(G)|dy+d\=i},
Ej*={uv cE(G)|duxdy=i}.

Fig. 4. A-Dimensional lattice of Cas(C)-CaR(C)[m,n,p] Nanotubes Junction v¥m,n,p eN.

Now, in this Cas(C)-CaR(C)[m,n,p] Nanotubes Junction , one can see that
e V(Cas(C) dv=2 or 3. So, we have the vertex partitions with their cardinalities
as follows.
V3={veV(Cas(C))| dv=3}
Vo={v eV(Cas(C))| dv=2}.

Table: 1
Vertex partition for a small case
Vertex partition Vs Vs
Cardinality 56 24

And the edge partitions of Cas(C) unit with their cardinalities are as follows.

Es-Es ~{uveE(Cas(C))|dy-2 & dy-3}
Es-Eo ~{uveE(Cas(C))|du=0v=3}.
Table: 2
Edge partition for a small case
Edge partition Es=E¢" Ee=Eq"
Cardinality 2%| V2|=48 168
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In the general case G=Cas(C)-CaR(C)[m,n,p] Nanotubes Junction, one
can see that vve V(Cas(C)-CaR(C)[m,n,p]) dv=2 or 3, too and we have the vertex
and edge partitions with their cardinalities as follows ( ¥m,n,p e ).

V3={v eV(Cas(C)-CaR(C)[m,n,p])| dv=3}
Vo={v eV(Cas(C)-CaR(C)[m,n,p])| dv=2}

Table: 3
Vertex partition for general case
Vertex partition | Vs Vs
Cardinality 4(2mp+2np+2mn) 8(10mnp-mp-np-mn)
Es=Es ={uv eE(Cas(C)-CaR(C)[m,n,p])|duv=2 & dv=3}
Es=Eo"={uv eE(Cas(C)-CaR(C)[m,n,p])|duv=0=3}.
Table: 4
Edge partition for general case
Edge partition | Es=Es" Ee=Eq"
Cardinality 8(2mp+2np+2mn) |E(Cas(C)-CaR(C)[m,n,p])|-16(mp+np+mn)
=220mnp-20mn-20mp-20np+4m+4n+4p-4

Now, according to the definitions of above mention degree-based indices
of a molecular graph G, we see that

K

2

H(G)= { j =2X(G)=
UVEEZ(G) du +dv

Hx(Cas(C)-CaR(C)[m,n,p] )=2*6Wx4(55mnp-5mn-5mp-5np+m-+n-+p-1)
+25500x 16(mp+np-+mn)

Also, this implies that the harmonic index of G=Cas(C)-CaR(C)[m,n,p]
Nanotubes Junction is equal to

He)= Y 2

e=uveE(G) du + d

v

2 2
:uvzel:is[du +dv j+uv;6[du erv ]
_2IE], 2|Eq]
5 6
:6.4(mp+np+mn)++% (55mnp-5mn-5mp-5np+m+n+p-1)

~73.333mnp-0.2666(mp+np+mn)+1.333(M+n+p-/).m

Finally, the harmonic polynomial of G=Cas(C)-CaR(C)[m,n,p] Nanotubes
Junction is equal to
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HGx)=2 Y xiwrdod

uveE(TUC,)

=2 z Xd(u)+d(v)—l +2 z Xd(u)er(v)—l

uveks uvekg

=8(2mp +2np +2mn) x 2x*** +4(55mnp —5mn —5mp —5np + m+n+ p—1)x 2x

3+3-1

=32(mp+np+mn)x*+8(55mnp—5mn—5mp—5np+m+n+ p-1)x°.
Also, reader can see that
H(G) = [ H(G x)dx

= j:(sz(mp+np+mn)x4 +8(55mnp—5mn—5mp—5np+m+ n+ p—l) x5)

_ 32(mp+np+mn)x° . 4(55mnp—5mn—5mp—5np+m+n+ p—1)x° |1
5 3 g
_ 32(mp+np+mn) . 4(55mnp —5mn—5mp—5np+m+n+ p—1)
5 3
_ 4(55mnp+m+n+p-1) 4(mn+mp-+np)

3 15
~73.333mnp-0.2666(mp+np+mn)+1.333(m+n+p-/).m

5. Comparison of H(G) for G=Cas(C)-CaR(C)[m,n,p]

Table: 5
Comparison for small values of nh, m,p
[n,m,p] [1,1,1] [2,2,2] [3,3,3] [4,4,4] [5,5,5]
H(G) 74.33 102.68 148.3 198.6 255.6

For the comparison of H(G) numerically for Cas(C)-CaR(C)[m,n,p], we
have computed for different values of m, n, p. Now from Table 5, we can easily
see that all indices are in increasing order as the values of n, m, p are increasing.

6. Concluding remarks

In this paper we have computed harmonic index for different nanotubes.
Also we compute the numerical value of index for different values of m,n,p. It is
easy to see that the harmonic index is in increasing order.

The Harmonic index has many interesting properties. Among these is the
property of fair discriminating power, but it is not a unique molecular descriptor.
Pairs of graphs with identical values of the Harmonic index and Harmonic
polynomial have been detected. The Harmonic index and its polynomial were also
tested in the QSPR modeling of physical properties of the alkanes and molecular
graphs and trees, and extremal molecular graphs. They revealed that harmonic
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index is also a useful tool in predicting the heats of vaporizations and critical
temperatures of alkanes.

Acknowledgments

The authors are thankful to Prof. Mircea V. Diudea and Prof. Csaba Nagy
from Faculty of Chemistry and Chemical Engineering Babes-Bolyai University
(Romania) and Prof. Ottorino Ori from Actinium Chemical Research, Via Casilina
(Italy) for their helpful comments and suggestions.

Project Supported by the Natural Science Foundation for the Higher Education
Institutions of Anhui Province of China (Grant Nos. KJ2015A178, KJ2015A256,
KJ2015A331).

List of notations

X (G ) Connectivity Index

Rk (G) general Randié index

X, (G) general Connectivity Index
M, (G) the first Zagreb index

M, (G) the second Zagreb index
HM, (G) first Hyper-Zagreb index
HM, (G) Second Hyper-Zagreb index
H (G) harmonic index

H (G, X) the harmonic polynomial
H, (G) the general harmonic index
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