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BIOPHYSICAL SIGNAL PROCESSING FOR AUTOMATIC 

ANXIETY CLASSIFICATION IN A VIRTUAL REALITY 

EXPOSURE THERAPY SYSTEM 

Nicolae JINGA1, Cătălin-Dumitru PETRESCU2, Oana MITRUȚ3, Alin 

MOLDOVEANU4, Florica MOLDOVEANU5, Livia PETRESCU6 

This paper presents a signal processing framework for automatic anxiety 

level classification in a virtual reality exposure therapy system. Two types of 

biophysical data (heart rate and electrodermal activity) were recorded, pre-

processed and passed through a feature extraction procedure that provided input for 

the real-time anxiety level classification algorithm. We showcase the mathematical 

and engineering techniques behind the procedures and conclude with the challenges 

encountered in our research and future development ideas. The proposed method 

provides a good estimate of the level of anxiety while having at the same time a 

reduced level of complexity, allowing implementation on equipment with limited 

computing resources. 
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1. Introduction 

PhoVR - Immersive Treatment of Phobias through Adaptive Virtual 

Reality and Biofeedback – is a virtual reality exposure therapy system (VRET) for 

phobias therapy (acrophobia, claustrophobia and fear of public speaking) that 

integrates biophysical data (heart rate - HR and electrodermal activity - EDA) 

acquisition and aims to automatically adapt the level of exposure or inform the 

psychotherapist about the patient’s degree of anxiety so that he/she can personally 

adjust the exposure intensity. The advent of sensors technology and the 
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development of advanced mathematical methods has expanded the field of 

computer-based emotion recognition systems in various domains, as shown in the 

literature [1-7]. 

The PhoVR Control Panel ensures communication with the hardware 

equipment (Virtual Reality headset and biophysical data acquisition equipment) 

and allows real-time visualization of the recorded physiological data. The 

processing of physiological signals involves the following steps: 

• preprocessing of the acquired signal; 

• feature extraction; 

• anxiety level classification. 

2. Related work 

As the interest in the field of affective computing is constantly increasing, 

various methods for signal processing and feature extraction have been tested with 

promising results. Raw biophysical data is preprocessed in a pipeline that has the 

following steps: data filtering which removes unwanted components from the 

signal (noise smoothing, excluding high frequency intervals), downsampling, 

normalization and standardization. 

Electrodermal Activity (EDA) signal is further decomposed into Skin 

Conductance Level (SCL) and Skin Conductance Response (SCR). This step is 

usually performed by two methods: Continuous Decomposition Analysis (CDA) 

and Discrete Decomposition Analysis (DDA). CDA is the recommended method 

for the deconvolution of skin conductance data. Prior to feature extraction, a 

segmentation stage of the acquired data is recommended, by extracting parts of 

the raw biophysical signal of different lengths, called time-windows. 

Heart Rate (HR) can be obtained either from electrocardiogram (ECG) 

signal or from photoplethysmography (PPG) signal. The current trend is to mainly 

use the PPG signal because of its simple setup and large availability of devices 

that use it (fitness bracelets and smart watches). However, in some circumstances, 

accuracy of HR estimation based on PPG signal is lower than in case of ECG [8] 

especially due to its high sensitivity to motion [9] and breathing [10]. 

Consequently, HR extraction from the PPG signal is performed using complex 

algorithms [11][12][13]. Also, the reduction of motion-induced artifacts requires 

the use of additional acceleration sensors [14]. 

Among the feature extraction methods relevant in the literature, we 

mention the Fisher’s Linear Discriminant [15], Minimum redundancy-Maximum 

relevance [16], Pearson Correlation Coefficient [16][17], Stepwise Linear 

Regression [18], Fractal dimension features (FD) and Statistical Higher Order 

Crossings (HOC) [19], Fast correlation based filter (FCBF) [20], Feature fusion 

[21], Principal Component Analysis, Covariate Shift Adaptation [22]. These 
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algorithms have been applied on the DEAP (Database for Emotion Analysis using 

Physiological signals) [22] and MAHNOB-HCI [23] datasets which are public 

emotion databases used for research purposes. 

In this article, we present the procedure for extraction of the features 

required by the anxiety level classification algorithm. Our approach is focused 

mainly on reducing the complexity of signal processing algorithms involved in 

EDA and HR signal analysis in order to allow their implementation on hardware 

devices with limited computational resources (BITalino). 

3. Data acquisition system 

The biophysical data acquisition system is used for continuous patient 

monitoring during the therapy session. For this purpose, we measured two 

parameters that are influenced by the patient’s anxiety level [24]: 

• heart rate variability - represented by the time interval between two 

successive waves (or inter-beat interval); 

• electrodermal activity - assessed by measuring skin conductance. 

Following a thorough analysis that included the technical characteristics, 

ease of use, ergonomics, and cost of the equipment, we decided to employ the 

BITalino device [25] which is a portable equipment capable of acquiring the two 

previously mentioned parameters. BITalino measures the electrical conductance 

of the skin using two electrodes placed on the medial phalanges of the index and 

middle fingers. Heart rate is assessed based on the measurement of blood volume 

variations in the capillaries using the optical plethysmography (PPG) method. 

The device is composed of a central unit based on an ATMEGA328 8-bit 

microcontroller that integrates a processor, data, and program memory as well as a 

series of peripheral devices (timers, communication interfaces, analog-to-digital 

converter). Also, at the level of the central unit, a wireless communication module 

based on the Bluetooth Low-Energy technology and a power unit using a Li-Ion 

type battery are implemented. The device allows connecting a maximum of 6 

analog and 2 digital sensors. In our application, 2 analog sensors are used: 

• EDA sensor – composed of a signal conditioning module and a cable 

equipped with two self-adherent (replaceable) Ag-AgCl electrodes; 

• PPG sensor – used to measure HR and built on the principle of optical 

plethysmography. 

The data received via the Bluetooth interface is acquired by the 

biophysical data processing application at a sampling rate of 1000 samples per 

second. The data processing application runs on the computer in parallel with the 

Control Panel, communicating with it through a WebSocket connection. It has the 

role of extracting the value of the heart rate and the two components that describe 
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the electrodermal activity (the tonic component – Skin Conductance Level (SCL) 

and the phasic component – Skin Conductance Response (SCR)). 

4. Preprocessing of the physiological signals 

The preprocessing of the acquired physiological signals has the role of 

bringing the data into a form usable by the following processing techniques.  

Unlike other physiological signal acquisition equipment (such as 

Shimmers Sensing [26] or Biopac [27]), the BITalino system does not include 

specialized firmware for extracting the heart rate information from the acquired 

PPG signal. For this reason, it was necessary to develop and implement an 

algorithm for calculating heart rate based on the PPG signal (Fig. 1). 

 
Fig. 1. Algorithm for HR extraction from the PPG signal 

The pulse duration (P1) is the interval between two successive global 

maxima of the signal. The heart rate computing algorithm can detect the 

maximum points in the signal and differentiate between the local and global ones. 

The detection of the maximum points is performed by calculating the derivative of 

the signal and locating the moments when it changes its sign from positive values 

(increasing signal) to negative values (decreasing signal). 

To clear the noises and artefacts that accompany the PPG signal, we 

filtered it using a Butterworth-type bandpass filter of order II with a bandpass 

between 0.5 and 10 Hz. 

We calculated the derivative by evaluating the difference between two 

successive samples of the signal. For detecting the maximum points, we 

implemented a simple finite-state machine, that identifies the minimum and 

maximum points based on the derivative’s change of sign. 

• State 1 – corresponds to signal sections with negative derivative (falling 

signal). In this state, the current value of the derivative is tested for sign 
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change detection and the algorithm transitions to state 1. Also, on sign 

change detection (which signals the identification of a minimum point), 

the current value of the signal is stored in a variable Vmin. 

• State 2 – corresponds to signal sections with positive derivative (rising 

signal). In this state, the current value of the derivative is tested for sign 

change detection and transitions back to state 1. Once a sign change is 

detected (corresponding to the identification of a maximum point), the 

difference between the current value of the signal (Vmax) and the previous 

minimum value present in the variable Vmin is calculated.  This difference 

represents the amplitude of the rising signal segment that precedes the 

identified maximum point – ΔV. 

The differentiation between a local maximum and a global one is 

performed by comparing the amplitude of the rising segment of the signal ΔV 

preceding the detected maximum with the difference between the highest and the 

lowest value of the signal recorded in the last 1.25 seconds noted with AMP. The 

duration of the interval was chosen so that it certainly contains a pulse. 

A maximum is considered global and is taken as a benchmark in 

determining the pulse duration if ΔV ≥ AMP. The following figure shows an 

example in which two maximum points are classified based on the previously 

stated criterion (Fig. 2). 

 

 
Fig. 2. Classification of two maximum points 

 

The data acquisition equipment (BITalino) cannot be configured to use 

different sampling rates on each channel. For this reason, the sampling frequency 

must be chosen in such a way as to effectively allow the acquisition of the signal 

with the widest frequency band. 
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The PPG signal used to determine the heart rate has a base frequency in 

the range of 0.75 - 3 Hz, significantly higher than the components of the 

electrodermal response. Moreover, for the correct determination of the interval 

between two successive pulses, we need to analyze the segments of the signal that 

show very rapid variations in time, which requires a high sampling frequency. For 

this reason, it is the PPG signal that determines the frequency at which both 

signals will be acquired, namely 1000 samples per second. 

The EDA signal sampled 1000 times per second will be difficult to process 

because it is a slow signal, and its analysis is performed over long time intervals 

that would contain a very large number of samples. For this reason, it is necessary 

to reduce the sampling frequency to a value adapted to its dynamics, namely 20 

samples/second. 

The resampling of the EDA signal is done by a decimation process where 

we keep a single sample at every 50 acquired samples. To avoid the aliasing 

phenomenon introduced by reduction of the sampling frequency, a preliminary 

filtering of the signal is necessary. Filtering is performed using a 4th order 

Butterworth low-pass filter with a pass frequency of 10 Hz (Nyquist frequency of 

the resampled signal). 

5. Feature extraction 

During this stage, we performed the real-time implementation of the 

algorithms for calculating the characteristic values of the EDA and HR signals 

(extracted from the PPG signal). 

The separation of tonic and phasic components from the resampled EDA 

signal is performed using a set of two filters, a low-pass filter for estimating the 

tonic component and a high-pass filter for the phasic component.  

Both filters have a pass frequency of 0.05 Hz and are implemented as 

finite impulse response filters designed using a Hamming window with a size of 

401 samples. The high-pass filter was designed as a complementary filter to the 

first one, having the transfer function: 
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The frequency characteristics of the filters are presented in the following 

figure (Fig. 3): 
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Fig. 3. Frequency characteristics of the filters 

Both EDA preprocessing (filtering, resampling, and component 

separation) and PPG signal preprocessing for heart rate extraction are performed 

in real-time as the data packets are received from the BITalino acquisition system. 

6. Anxiety level classification 

The biophysical signal characteristics computed in real time are received 

by a classifier whose role is to estimate the level of anxiety perceived by the 

subject during the virtual reality therapy session. 

Most implementations of anxiety level classifiers are based on neural 

networks that are trained to find an estimate of anxiety level based on the 

biophysical features presented at the input. 

Due to the high computational resources required by neural networks 

implementation, we chose an alternative approach based on a regression model: 

( ) ecxfy += ,                                                            () 

where: 

y – represents the dependent variable (anxiety level); 

x – the vector containing independent variables (biophysical features); 

c – the vector of model parameters; 

e – represents an additive error term; 

Because there are unlimited possibilities to create the model function, we 

chose to use a second order approximation of the non-linear multivariable 

function f using Taylor series: 

)()()()()()( 0 axxHaxxafaxafy TT −−+−+=                            () 
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where )(af  and )(aH  are the gradient vector, respectively Hessian matrix of the 

estimation function )(xf  evaluated in the reference point a . If the reference point 

is chosen 0=a , due to the symmetry of the Hessian matrix, the regression model 

can be rewritten as the following quadratic function: 

 γxβxxαy

P

i

ji

ji
Pj
Pi

jiji ++= 
=


=
= 1

1
1

,




                                             () 

where kx  are the characteristic values of the biophysical signals and jiα , , 

iβ  and γ  are the coefficients of the estimator determined by an experimental 

identification procedure described in [28]. 

The value calculated by this estimation function is a number between 0 

and 10, where 0 corresponds to a situation where the patient is completely relaxed 

and 10 indicates an extreme level of anxiety. Anxiety is classified into three levels 

(Low, Medium, or High) based on the value of the estimation function, as follows: 
 

• Low Level –in the range [0,3] 

• Medium Level –in the range (3,7) 

• High Level - in the range (7,10] 
 

To avoid the instability of the computed anxiety rate, the classifier 

analyzes the estimated anxiety level for each window in the signal for the 

previous 10 seconds and selects the level that has the highest frequency of 

occurrence. 

We performed a set of experiments in which the subjects were exposed to 

phobic stimuli of varying degrees of intensity. During the experiments, the 

biophysical parameters (EDA and HR) were recorded and after each exposure to 

stimuli, the subjects self-assessed their level of anxiety. 

The parametric identification procedure aimed to determine the set of 

numerical values that lead to the closest estimate of the anxiety level relative to 

the self-assessed one during the experiments. 

The quadratic function has 7 characteristics of the acquired biophysical 

signals as input parameters. The 7 features selected following the preliminary tests 

(carried out in the first stage of the project) are summarized in the following table 

(Table 1): 
Table 1 

Characteristics of the biophysical signals 

Parameter Name Description 

x1 HR_mav Average duration of pulses 

x2 HR_std 
The standard deviation of the 

pulse duration 

x3 SCR_mav The average of the absolute 
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values of the phasic component – 

SCR 

x4 SCL_mar 

The mean of the tonic component 

values relative to the baseline 

value 

x5 SCR_mar 

The mean of the phasic 

component values relative to the 

baseline value 

x6 GSR_wamp 

Willison amplitude of the EDA 

signal (not decomposed into 

components) 

x7 SCR_wamp 
Willison amplitude of the phase 

component 

 

The value of the quadratic function corresponding to the classifier is 

evaluated in real time, as the parameters of the biophysical signals become 

available. 

After performing some tests, we identified two deficiencies of the 

biophysical data acquisition system: 

The first problem is related to the quality of the signal provided by the 

optical sensor used to measure heart rate. This problem is generated by the 

sensor’s fixing system on the finger which does not ensure stable contact 

especially when the subject moves the hand on which the sensor is connected.  

Another problem that arose during the experiments was the impossibility 

of measuring the electrodermal response in the case of certain subjects who 

presented a very high conductance level. BITalino device offers a conductance 

measurement range between 0 and 25 µS that is suitable for most people, but 

other alternatives that allow the dynamic adaptation of the minimum/maximum 

values are being sought. 

Since the number of subjects participating in the initial experiments was 

small (the dataset used for parameters identification consisted of 105 items), it is 

possible that the level of generalization of the classifier may not be high enough. 

For this reason, we aim to improve its performance by adjusting the 

parameter values as more information is acquired while using the system. Thus, 

the current version of the system records the values of the physiological 

parameters throughout the therapy sessions. Biophysical parameters are acquired 

and recorded at a rate of 1000 samples/second to allow additional features to be 

computed later (if this can help increase classification accuracy). 

Apart from the physiological parameters, the system records the moments 

of time when the patients perform different tasks in the virtual reality exposure 

scenarios. These moments correspond to a peak exposure to the phobic stimuli 

and recording the corresponding timestamps allows the localization of the 

segments in the biophysical signals that reflect the patients' response to stimuli. 
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Also, after performing each task, a self-assessment of the degree to which the 

patients were able to control their emotions is recorded. 

All this recorded information (evolution of the biophysical parameters, 

timestamps for performing tasks and self-assessments of the degree of emotion 

control) will be used later to improve the accuracy and degree of generalization of 

the anxiety level classifier. 

The procedure for improving the classifier involves re-identifying the 

coefficients of the anxiety level estimation function using an extended dataset 

consisting of all the information acquired during the use of the system by as many 

patients as possible. Using data that describes the physiological response of many 

different individuals has the effect of increasing the generalizability of the 

classifier. 

We also aim to implement the classifier in an alternative version based on 

a neural network. This will be possible only when the amount of acquired 

information contains at least several thousand elements because the training of 

neural networks can only be done correctly under these conditions. 

7. Conclusions and future work 

Considering the desire to market the PhoVR system to individual users 

with a mild-to-moderate phobia, our aim is to reduce the purchase cost of the 

system together with its accessories. One of the substantial costs of acquisition is 

the biophysical data acquisition hardware. The proposed solution represents an 

adaptation of the anxiety level estimation method presented in [28] to allow real 

time implementation on a low-cost signal acquisition device (BITalino). The main 

contributions of the proposed solution are the algorithm for HR estimation and 

replacing the off-line Discrete Decomposition Analysis with a real time filtering 

for extracting Tonic and Phasic components of the EDA signal. Feature extraction 

and anxiety level classification were not modified because are simple to be 

implemented in real time with low computational effort. 

In the experiments performed, the HR signal was acquired in an 

experimental protocol which involved positioning the left hand (used for the 

placement of the sensors) on a stable surface (a table) and avoiding movements 

during the experiment. To eliminate these constraints that can influence the 

therapy sessions, we will test various sensors that have a more stable fixing 

mechanism (as those integrated in medical equipment for monitoring heart rate 

and/or oxygen saturation). We will also investigate the use of sensors containing 

multiple optical detectors that have high immunity to contact pressure variations. 

The use of this type of sensor will require adapting the signal processing 

algorithm so that it can integrate the information provided by several detectors. 
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