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KINEMATICS MODELLING OF A PLANAR PARALLEL 
ROBOT WITH PRISMATIC ACTUATORS 

Ştefan STAICU 1, Daniela Crăiţa CARP-CIOCARDIA 2, Alexandru CODOBAN 3 

Lucrarea prezentă stabileşte relaţii matriceale recurente pentru cinematica 
robotului plan paralel cunoscut 3-RPR cu acţionare pneumatică sau hidraulică. 
Cele trei picioare identice ale robotului, care sunt legate la platforma mobilă, sunt 
localizate în acelaşi plan. Cunoscând mişcarea platformei, problema de cinematică 
inversă oferă expresii matriceale şi grafice pentru deplasările, vitezele şi 
acceleraţiile celor trei sisteme active. 

Recursive matrix relations for kinematics of the commonly known 3-RPR 
planar parallel robot with pneumatic or hydraulic actuators are established in this 
paper. The three identical legs of the robot, connecting to the moving platform, are 
located in the same plane. Knowing the motion of the platform, the inverse 
kinematical problem offers matrix expressions and graphs for the displacements, 
velocities and accelerations of the three active systems. 

         Key-words: kinematics, parallel manipulator, platform 

1. Introduction 

Parallel manipulators are closed-loop mechanisms that consist of separate 
serial chains connecting the fixed base to the moving platform. Compared with 
serial manipulators, the followings are the potential advantages of parallel 
architectures: higher kinematical precision, lighter weight and better stiffness, 
greater load bearing, stabile capacity and suitable position of arrangement of 
actuators. But, from application point of view, a limited workspace and 
complicated singularities are two major drawbacks of parallel mechanisms. 

Parallel manipulators can be equipped with revolute or prismatic actuators. 
They have a robust construction and can move bodies of large dimensions with 
high velocities and accelerations. This is the reason why the devices, which 
produce translations or spherical motion to a platform, technologically are based 
on the concept of parallel manipulators [1]. 

Over the past decades, parallel manipulators have received more and more 
attention from researchers and industries. Important companies such as Giddings 
& Lewis, Ingersoll, Hexel and others have developed them as high precision 
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machine tools. Accuracy and precision in the direction of the tasks are essential 
since the robot is intended to operate on fragile objects, where positioning errors 
of the tool could end in costly damages. 

Considerable efforts have been devoted to the kinematics and dynamic 
analysis of fully parallel manipulators. Among these, the class of manipulators 
known as Stewart-Gough platform focused great attention (Stewart [2], Merlet 
[3], Parenti-Castelli and Di Gregorio [4]). They are used in flight simulators and 
more recently for Parallel Kinematics Machines. The prototype of Delta parallel 
robot (Clavel [5], Tsai and Stamper [6], Staicu and Carp-Ciocardia [7]) developed 
by Clavel at the Federal Polytechnic Institute of Lausanne and by Tsai and 
Stamper at the University of Maryland as well as the Star parallel manipulator 
(Hervé and Sparacino [8]) are equipped with three motors, which train on the 
mobile platform in a three-degrees of freedom general translation motion. 
Angeles, Gosselin, Gagné and Wang [9], [10], [11] analysed the kinematics, 
dynamics and singularities loci of Agile Wrist spherical robot with three actuators. 

Planar parallel robots are useful for manipulating an object on a plane. A 
mechanism is said to be a planar robot if all the moving links of the mechanism 
perform planar motions that are situated in parallel planes. For a planar 
mechanism, the loci of all points in all links can be drawn conveniently on a 
plane. In a planar linkage, the axes of all revolute joints must be normal to the 
plane of motion, while the direction of translation of a prismatic joint must be 
parallel to the plane of motion. 

Aradyfio and Qiao [12] examined the inverse kinematics solution for the 
three different 3-DOF planar parallel robots. Gosselin and Angeles [13] and 
Pennock and Kassner [14] each presents a kinematical study of a 3-RPR planar 
parallel robot where a moving platform is connected to a fixed base by three links, 
each leg consisting of two binary links and three parallel revolute joints. Sefrioui 
and Gosselin [15] give an interesting numerical solution in the inverse and direct 
kinematics of this kind of planar robot. 

Recently, more general approaches have been presented. Daniali et al. [16] 
present a study of velocity relationships and singular conditions for general planar 
parallel robots. Merlet [17] solved the forward pose kinematics problem for a 
broad class of planar parallel manipulators. Williams et al. [18] analysed the 
dynamics and the control of a planar three-degrees-of-freedom parallel 
manipulator at Ohio University while Yang et al. [19] concentrate on the 
singularity analysis of a class of 3-RRR planar parallel robots developed in its 
laboratory. Bonev, Zlatanov and Gosselin [20] describe several types of singular 
configurations by studying the direct kinematics model of a 3-RPR planar parallel 
robot with actuated base joints. 

A recursive method is introduced in the present paper, to reduce 
significantly the number of equations  and  computation  operations by using a set  
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of matrices for the kinematics model of the 3-RPR planar parallel robots. 

2. Kinematics analysis 

Having a closed-loop structure, the planar parallel robot 3-RPR is a special 
symmetrical mechanism composed of three planar kinematical chains of variable 
length with identical topology, all connecting the fixed base to the moving 
platform (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Its movable platform and base form two congruent equilateral triangles. 
The centres 111 ,, CBA  of three fixed pivots define the geometry of a fixed base 

while the three moving revolute joints 333 ,, CBA  define the geometry of the 
moving platform. Each leg or modulus consists of two links with two revolute 
joints and one prismatic joint in-between. Together, the mechanism consists of 
seven moving links, six revolute joints and three prismatic joints. Grübler 
mobility equation predicts that the device has certainly three degrees of freedom. 

In the present kind of robot (RPR) we consider the moving platform as the 
output link while the pistons 32 AA , 32BB , 32CC  as the input links. In order to 
analyse this robot, we attach to the fixed base a Cartesian frame )( 0000 Tzyx  
having the origin located at the triangle centreO , the axis 0z  perpendicular to the 
base and the axis 0x  pointing along the direction 11AC . Another mobile reference 
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  Fig. 1. The 3-RPR planar parallel robot 
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frame GGG zyx  is attached to the moving platform. The origin of this coordinate 
central system is located just at the centre G of the moving triangle (Fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To simplify the graphical image of the kinematical scheme of the 
mechanism, in the followings we will represent the intermediate reference 
systems by only two axes, so as one proceeds in most of robotics papers [1], [3], 
[9]. The axis kz  is represented for each component element kT . It is noted that a 
relative rotation by the angle 1, −kkϕ  or a relative translation of the body kT  by 

1, −kkλ  must be always pointing about or along the direction of the axis kz . 
In what follows we consider that the moving platform is initially located at 

a central configuration where the platform is not rotated with respect to the fixed 
base while the mass centre G is at the origin O of the fixed frame. 

One of the three active legs (for example leg A) consists of a fixed revolute 
joint and a moving cylinder 1, of length l1, which has a rotation about the axis Az1  
with the angle A

10ϕ , the angular velocity AA
1010 ϕω =  and the angular acceleration 

AA
1010 ϕε = . A prismatic joint is as well as a piston 2 of length 2l , linked to the 

frame AAA zyx 222 , which has a relative motion with the displacement A
21λ , the 

velocity AAv 2121 λ=  and the acceleration AA
2121 λγ = . Finally, a revolute joint is 

introduced at a planar moving platform, which is schematised as an equilateral 
triangle having the edge 3rl = . 
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Fig. 2. Kinematical scheme of the first leg A of the mechanism 
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At the central configuration we consider also that all the legs are initially 
extended at equal lengths 0l  while the angles of orientation of the fixed pivots are 
given by 

6
,

6
5,

2
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πββββ ==== CBA                                         (1) 

Pursuing the first leg A in the 4321 AAAOA  way, we obtain the following 

matrices of transformation [21]: 
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Analogous relations can be written for the other two legs of the 
mechanism. Three relative displacements CBA

212121 ,, λλλ  of the active links are the 

joint variables that give the input vector TCBA ][ 21212121 λλλλ =  of the 
instantaneous position of the mechanism in the first study configuration. But, in 
the inverse geometric problem, we can consider that the position of the 
mechanism is completely given by the coordinates GG yx 00 ,  of the mass centre G 
of the moving platform and by the orientation angle φ of the movable frame 

GGG zyx . The orthogonal rotation matrix of the moving platform, from the 
reference system 000 zyx  to GGG zyx , is 
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Further, we suppose that the position vector of the centre G, respectively 
TGGG yxr ]0[ 000 =  and the orientation angle φ, which are expressed by the 

following analytical functions 
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can describe the general absolute motion of the moving platform. 
From the rotation conditions of the moving platform 
 

Rccbbaa TTT === 303030303030 ,                                    (6) 
 

taking, for example, 
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we obtain the following relations between angles: 
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where one denoted 
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Actually, these vector equations means that there is only one inverse 
geometrical solution for the manipulator, namely: 
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We will develop the inverse kinematics problem and determine the 

velocities and accelerations of the manipulator, supposing that the planar motion 
of the moving platform is known. Firstly, we compute the linear and angular 
velocities of each leg in terms of the angular velocity 30 uG φω =  and of the 

centre’s velocity GG rv 00 =  of the moving platform. 
The motions of the component elements of each leg (for example the leg 

A) is characterized by the following skew symmetrical matrices: 
A
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which are associated to the absolute angular velocities given by the following 
recursive relations 
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The following relations give the velocities A
kv 0  of the joints Ak .  
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The equations of geometrical constraints (8) and (9) can be derived with respect to 
the time to obtain the following matrix conditions of connectivity [22}  
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φωω =+ AA
3210  ,                                                   (15) 

where 3
~u  is a skew-symmetric matrix associated to the unit vector 3u  pointing in 

the positive sense of the axis z. We obtain, from these equations, the relative 
velocities AAA v 322110 ,, ωω  as functions of the angular velocity of the platform and 
of the velocity of the mass centre G. But, the conditions (15) give the complete 
Jacobian matrix of the manipulator. This matrix is a fundamental element for the 
analysis of the robot workspace and for the particular configurations of the 
singularities where the manipulator becomes uncontrollable. 

Since i
10ϕ  is a passive variable in the kind of the planar robot with 

prismatic actuators, it should be eliminated from the equations (11). So, summing 
the squares of these equations there results: 
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where the “zero” position 0,0,0 00
0

0
0 === φGG yx  corresponds to the joints 

variables T]000[0
10=λ . 

A new matrix relation is obtained by calculating the derivative of equation (15) 
with respect to the time, namely  
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As for the relative accelerations AAA
322110 ,, εγε  of the robot, the 

derivatives with respect to the time of the equations (15) give the following 
conditions of connectivity [25] 
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If the other two kinematical chains of the robot are pursued, analogous 
relations can be easily obtained. 

The relationships (15) and (19) represent the inverse kinematics model of 
the planar parallel robot. 

The following recursive relations give the angular accelerations A
k0ε  and 

the accelerations A
k0γ  of the joints Ak . 
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As application let us consider a manipulator which has the following 
characteristics: 

                            ,3.0,
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.3,2.0,1.0,3 210 stmllmlrl =Δ====                         (21) 
Using the MATLAB software, a computer program was developed to 

solve the inverse kinematics of the robot. Finally, the displacements (Fig. 3), the 
velocities (Fig. 4) and the accelerations (Fig. 5)  of the  three  prismatic  actuators  
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were plotted versus time, using this program. 

 
Fig. 3. Displacements of the three actuators 

 

 
Fig. 4. Velocities of the three actuators 

 

 

Fig. 5. Accelerations of the three actuators 
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We remark that the displacements of the platform are small with respect to 
the mechanism’s sizes. The discontinuities of the accelerations of the component 
elements lead to the generation of the chocks in the joints. 

3. Conclusions 

Within the inverse kinematical analysis, some exact relations that give the 
time-history evolution of the displacements, velocities and accelerations of each 
element of the parallel robot have been established in the present paper. 

The simulation by the presented program certifies that one of the major 
advantages of the current matrix recursive formulation is a reduced number of 
additions or multiplications and consequently a smaller processing time of 
numerical computation. Also, the proposed method can be applied to various 
types of complex robots, when the number of the components of the mechanism is 
increased. 
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