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PETRI NET MODELING OF A MACHINING ROBOT CELL 

Zohra MEHAR1, Rachid NOUREDDINE2*, Farid NOUREDDINE3 

 In this paper, we propose a new approach for modeling and analyzing faults 
in a machining robot cell. Therefore we decided to use a hybrid analysis associating a 
Petri Net (PN) to a Fault Tree and thus obtained our called Lambda Petri Net (λPN). 
This work has been implemented in the LabView environment (Laboratory Virtual 
Instrument Engineering Workbench). The Lambda Petri Net showed its modeling 
power for the developed monitoring system. Lambda Petri Nets in fault analysis allow 
natural language descriptions of process entities. A graphical method is used to 
describe the relationships between conditions and events. Mathematical generic 
properties have been used to validate our whole research technique. The simulations 
and results obtained from the state of the operating system without and with fault are 
presented and discussed. 
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1. Introduction 

The multiple reconfigurations and the complexity of modern production 
systems, such as machining robot cells, lead to the design of increasingly efficient 
monitoring support systems. Considering a robotic cell, we have been interested in 
modeling the changes in the system dynamics when one or more faults occur. The 
faults are supposed to be permanent, i.e. when a fault occurs, the system enters a 
degraded mode and will no longer return to a nominal mode without being repaired 
first. It can thus end up in a failure mode, in which the system is no longer 
operational.  

In case of failures, minimization of restart time is essential to avoid 
penalizing the productivity of the concerned cell. We therefore propose and this is 
our main objective a diagnostic system based on the use of a Petri Net implemented 
from a fault tree. Petri Nets (PN) are intelligent diagnostic models, constitute a 
graphical and mathematical tool allowing qualitative and quantitative analysis. 
They are composed of a set of places (input), transitions (output), and arcs (integer) 

 
1 PhD student, Industrial Production and Maintenance Engineering Laboratory, Institute of 

Maintenance and Industrial Safety, University of Oran 2 Mohamed Ben Ahmed, Oran, Algeria, e-
mail: mehar.zohra@univ-oran2.dz 

2*corresponding author, Prof., Industrial Production and Maintenance Engineering 
Laboratory, Institute of Maintenance and Industrial Safety, University of Oran 2 Mohamed Ben 
Ahmed, Oran, Algeria, e-mail: noureddine.rachid@univ-oran2.dz 
3 Ass. Prof., Production Engineering Laboratory, National School of Engineering in Tarbes, 
National Polytechnic Institute of Toulouse, France, e-mail: farid.noureddine@enit.fr 



90                       Zohra Mehar, Rachid Noureddine, Farid Noureddine 

  

which are effective for modeling availability and for both production and security 
systems. The analysis is performed by simulations of behavioral and explanatory 
models. PNs are capable of managing all sorts of probabilistic distributions. The 
state of a Petri Net is defined by its marking and by a distribution of tokens in 
different places. 

The most important contribution of this work lies in our designing and 
implementing of Lambda Petri Nets (λPN) which are a mathematical formalism 
that manipulates discrete variables, adequate to the framework of systems failure 
using tokens and failure rates. These failure rates are deduced from the analysis and 
modelling of the fault locations of each piece of equipment in a machining robot 
cell. 

For this purpose, our contribution was established in three steps: In the first 
step, the analysis by FT of the machining robot cell was carried out. In the second 
step, the transfer of the logic gates from the FT to the PN was completed, followed 
by the system modeling into PN. The third step consisted in transforming the PN to 
the λPN by introducing the respective failure rates, according to hierarchical 
expertise of robustness. The failure data for each component were used to calculate 
the λPN of the system. The results indicate that the λPN of the system is strongly 
influenced by the most critical components. Indeed, components with the highest 
failure rates have the greatest impact on the system's failure probability. This 
approach would allow modeling the interactions between failures as events that can 
occur simultaneously or sequentially. 

Generic properties of normative assessment have been applied. The 
mathematical properties allow the writing of incidence matrices and marking 
vectors. These qualitative and quantitative analyses were paramount to validate the 
system. Figure 1 summarizes the monitoring components and focuses on our 
contribution to the diagnostic system of the machining robot cell. We thus will 
obtain the different possible causes associated with a degree of credibility and 
degree of severity for each cause. These degrees will help managers to evaluate and 
plan maintenance actions. 

 
Fig. 1. Block diagram of the monitoring system 
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State of the art 

 [1] Propose a new approach for both modeling and failure analysis. They 
combine graphical representations provided by Petri Nets and fuzzy logic. They 
used Petri Nets in failure analysis, allowing to replace logic gate functions in fault 
trees. Fuzzy logic allows natural language descriptions of process entities and thus 
applies these rules to diagnose breakdowns. 
 [2] Identified two distinct formalisms for analyzing failure scenarios and 
availability of considered systems. These two formalisms are Generalized 
Stochastic Petri Nets (GSPN) on the one hand and Fault Tree Driven Markov 
Processes (FTDMP) on the other hand. 
 [3] Propose a methodology to assess the probability of electrical failure of 
a floodgate by using fault tree and the implementation of stochastic Petri Nets. The 
authors constructed the stochastic Petri Net with repair by modeling the different 
operating states of the valve. 
 [4] Present how Petri Net models have been developed for a wide variety of 
manufacturing systems. The modeled system was a robot cell for the preparation 
and analysis of metallographic samples. The model is very complex and with many 
elements. They achieved the simplification of the obtained model by switching to 
colored Petri Nets (CPN). 

[5] They propose a Petri net model to validate search techniques in graphs, 
in order to improve the Worst-Case method through dynamic optimization of the 
number of involved agents. 

[6] We propose an algebraic approach to study fault diagnosis classes in a 
labeled Petri net (LPN) system based on state estimation over a sliding window of 
length h, and fault detection is performed by solving an Integer Linear 
Programming (ILP) problem. 

2. λPN Formalization 

According to [7], different PNs have particular structures, i.e. they have 
characteristics and properties that most common networks do not have. State 
graph, event graph, conflict-free PN, free-choice PN, basic PN, pure PN, self-
loop-free PN, Generalized PN, Capacity PN, Autonomous PN, Non-
autonomous PN. There are also different types of high-level Petri Nets: 
synchronized, timed, interpreted, stochastic, colored, hierarchical, continuous, 
and hybrid. 
We propose a Lambda extension of Petri Nets (λPN) specific to the modeling 
and analysis of system monitoring activities. The uncertain knowledge 
associated with these activities requires specific reasoning and modeling 
methods adapted to the various failure rates. 
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In cooperation with the ordinary Petri Net and Capacity PN, which model the 
system to be monitored, this new tool makes it possible to carry out a complete 
diagnosis of the faults locations and degradations of the system. The lambda 
Petri Net approach provides more detailed information about the operating state 
of the monitored system. 
Generally speaking, mathematical properties of a PN are: [5,8] 

1) A Petri Net (PN) is a couple {R, M} where: R is a PN, denoted by a quadruple  
R= {P, T, f, M0}                               (1) 

 M is an application from P to  . M (p) equals the number of marks in a place 
𝑝𝑝 𝜖𝜖 𝑃𝑃. 

 0: ( ) ( )F P T T P N× ∪ × →   Defines the set of directed arcs weighted by non-
negative integer values. 

2) The incidence matrix (W) of the Petri Net translates the global cost of firing a 
transition for each place.  

3) Denoted by:       W W W+ −= −   ou      Post PréW = −                             (2) 
The (i, j) element of matrix W gives the balance for a place i of the firing of the 
transition j. 

 The connecting arcs of Transitions to Places Pre (Pj, Tj) can be represented in 
a matrix with ( , ) Pré(P , )i jW i j T+ =  

 The connecting arcs of Places to Transitions Post (Pi, Tj) can be represented in 
a matrix with            ( , ) Post(P , )i jW i j T− =   

4) The marking vector of the Petri Net is constructed by the characteristic vector 
of the sequence S which is formed by the number of occurrences of each 
transition. Let S be a firing sequence, then the state obtained after firing the 
transitions of S is obtained by  

 0 (W )kM M S= + ×  (3) 

Generic properties of a PN are: liveness, deadlocks, reversibility, repetitive 
components, effectiveness, reachability, and safety, [5,9]. 
We started this work with a thorough examination of the monitoring components; 
more precisely we focused on the diagnostic system with qualitative external inputs 
(Fault Tree (FT)). As an output, we will find the possible causes associated with 
fault location. These locations will help the managers to assess and plan 
maintenance actions. In the overall classification of monitoring methods and 
models, we have concentrated on monitoring methods with models, exactly on the 
methods by functional and material modeling (FT and PN).  
We propose a new tool called Lambda Petri Net (λPN). This Network describes the 
functioning of systems that are not autonomous. Their operation is conditioned by 
failure rates. A Lambda Petri Net consists of two parts: a static part and a dynamic 
one. The static part defines the structure of the lambda Petri Net, where the data is 
stored, and how the data interacts with each other. The dynamic part defines the 
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initial state of the system. Indeed, the same lambda Petri Net will not have the same 
behavior depending on its initial state, so it is important to separate the two 
concepts. 
The modeling of our diagnostic system can be done by different types of Petri Nets 
(ordinary PN, high-level PN), assuming that the possible faults are known a priori 
and modeled by specific mechanisms. Our approach deals with Lambda Petri Net 
modeling at the level of the transitions. 
To model the monitoring function, we use an extension of the PN, which integrates 
through the lambda aspect the failure rate in the monitored system. The λPN is 
oriented for modeling a base of failure rate rules which follows from the logical 
expression of the fault tree of the monitored system. The λPN tool models the set 
of the logical reasoning of the FT, according to the specific concepts of a logical 
expression. The analysis aspect offers refined information at the level of each defect 
by the transfer of fault signals.  
The main advantage of Petri Lambda Nets is their strong mathematical foundations. 
In addition, a great deal of software programs make it possible to simulate and 
analyze Lambda Petri Nets. Using lambda Petri Nets in industrial systems has 
several advantages in terms of reduced wiring and ease of monitoring and 
maintenance. Inputs and outputs in λPN allow easy modeling and access to the 
markings of all places at any time. These elements make λPN an effective and 
adequate tool for our modeling needs to get simulation support.  
The disadvantages of Lambda Petri Nets is their modeling complexity, which lead 
to producing errors. When using λPN, the delays are no longer negligible and must 
be taken into account, especially when the quality service of the Network changes 
over time which results in non-periodic activation moments. 
3. Transfer PN-FT 

FT is a method of deductive analysis used in dependability, [10,11]. This 
method analyzes the reliability, availability, and security of more widely used 
systems, [12]. FT is the simplest and most used technique to assess reliability, [13-
15].  

According to [16,17], a fault tree in general is divided into two categories: 
coherent and non-coherent. A coherent fault tree consists only of logical operations 
“AND” and “OR”, while a non-coherent tree also contains other logical operations. 

This article is mainly concerned with the application of Petri Net modeling 
to coherent fault tree analysis [18]. 

The use of knowledge from a Fault Tree with the Petri Nets principle 
through the reasoning must be done qualitatively but also quantitatively to provide 
effective analysis, like the case in industrial applications, [19,20]. 
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A logical relationship exists between Petri Nets and fault trees. The 
formalism used in our work allows to implement the PN from the FT. We thus use 
a formalism that associates each gate of the FT as a symbolization of the PN. 
1) The “AND” logic gate is as follows, figure 2: 
 

 
Fig. 2. Transformation of the « AND » logical gate of the FT into the PN 

2) The “OR” logic gate is as follows, figure 3: 
 

 
Fig. 3. Transformation of the « OR » logical gate of the FT into the PN 

4. Case study 

4.1 Problem 
Our case study has been conducted in collaboration with the Machining 

Robot Cell of the Production Engineering Laboratory of the National Engineering 
School in Tarbes (ENIT), France. Our machining robot cell in Figure 4 is composed 
of: 
 A KUKA KR120 robot,  
 An electro spindle,  
 A milling tool, 
 The part to be machined in its clamping feature,  
 The lubrication system.  

Many authors have been interested in the reliability field of cutting tools and in 
modeling the surface roughness of machined parts. 
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Fig. 4. Machining robot cell 

 [21] Have studied and modeled a new basic hazard function called GEV 
proportional hazard function. This generalized function with extreme values is 
obtained thanks to the Gumbel function and the property of being non-monotonic, 
an increasing then decreasing function, thus capable of taking into account the 
cutting tool behavior with different mechanisms of self-repair and self-recovery 
after a tiny breakage. The authors introduce parameters considering operating and 
environmental conditions, including vibration signals, material hardness, and 
lubrication/cooling. Their results show the impact of all these variables on the 
surface roughness of machined parts. 
Vibration signal: Two types of vibration occur during machining that are sustained 
and self-sustained vibrations. Self-sustained vibrations are characterized by an 
absence of periodic external forces but depend on the chip formation process. On 
the other hand, sustained vibrations originate from periodic external forces such as 
those acting on the part during intermittent cutting. 
[22] Have studied similar cutting tool conditions and the acceleration amplitude of 
tool vibrations in the axial, radial, and tangential directions. Table 1 shows the 
impact of experimental values of acceleration amplitude of vibration (Root Mean 
Square (RMS) value) in axial (Vx), radial (Vy), and tangential (Vz) directions on 
the surface roughness (Ra). The worst case is the variation in Vy(g). 
Material hardness: Both a decrease in the used material hardness and the reliability 
of the applied heat treatment lead to the deterioration of the surface roughness. 
[23] Have studied the influence of cutting tool conditions and material hardness on 
surface roughness. Their obtained results are given in Table 1. 
Lubrication/cooling conditions: High cutting temperature during machining can 
lead to unacceptable surface quality. Compared to dry cutting, the 
lubrication/cooling conditions lead to a significant improvement in surface 
roughness. 
[24] Show all the impacts of cutting conditions on surface roughness and tool wear 
in the turning process. The contribution of cooling/lubrication is around 14%. 
[21] Studied the influence of vibrations, material hardness defects, and lubrication. 
The results are presented in Table 1. 
We can deduce that all the contributions of the variables deteriorate the basic hazard 
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function. 
                                                                                                                                      Table 1.  
                                                Machining parameters considered    

Cutting conditions 
Cutting speed Vc (m/min) Feed rate f (mm/rev) Depth of cut d (mm) 

250 0.1 0.5 
Vibration impact on the surface roughness 

 Vx (g) Vy (g) Vz (g) Ra (µm) 
Experiment 1 0,37 3,92 1,63 1,51 
Experiment 2 0,39 4,84 1,65 1,73 

Material hardness impact on the surface roughness 
 Hardness (HB) Ra (µm) 

Experiment 1 130 1,53 
Experiment 2 240 1,35 

Lubrication/cooling conditions 
Vibration signal (covariate X1) Material hardness (covariate X2) Lubrication (covariate X3) 

1 1( ) 1,15Xϕ β =  2 2( ) 1,13Xϕ β =  3 3( ) 0,86Xϕ β =  

4.2 FT Analysis 
The Fault Tree (FT) of the robot cell was the centerpiece of our PN-based 

strategy and is presented in figure 5. The analysis and research of the dreaded event 
in our FT also referred to as the tree top event, highlights the non-conforming piece 
(a), Figure 5, in the robot cell. 

If we search for the cause of an undesirable event, it can be due to a fault on 
this very element or to a fault on any other element of the system. 

We used CABTREE software to build and process our fault trees. We have 
limited our study to two levels, which show the first elementary elements, as shown 
in figure 5. 
 First level: Defective KUKA KR 120 Robot, Faulty Spindle, Faulty Tool, 

Failing Piece, Malfunctioning Lubrication System (the lubrication item is 
mainly a pump). 

 Second level: Faulty Feed rate (f), Faulty Depth of cut (d), Vibration in axial 
(Vx) directions, Vibration in radial (Vy) directions, Vibration in tangential (Vz) 
directions, Faulty Cutting speed (Vc), Break on the Tool, Bad positioning of the 
Piece, Failing Hardness, Low Flow, Bad Liquid of the lubrication pump. 

Logic gates can model the Boolean function F of the dreaded event of our 
FT. In our work, we used the "OR" logic gate. To illustrate our approach, we 
consider the logical equation F of the fault tree: 
𝐹𝐹

=  �
(𝑏𝑏1 𝑂𝑂𝑂𝑂 𝑏𝑏2 𝑂𝑂𝑂𝑂 𝑏𝑏3 𝑂𝑂𝑂𝑂 𝑏𝑏4 𝑂𝑂𝑂𝑂 𝑏𝑏5) 𝑂𝑂𝑂𝑂

(𝑐𝑐1 𝑂𝑂𝑂𝑂 𝑏𝑏3 𝑂𝑂𝑂𝑂 𝑏𝑏4 𝑂𝑂𝑂𝑂 𝑏𝑏5) 𝑂𝑂𝑂𝑂 (𝑑𝑑1 𝑂𝑂𝑂𝑂 𝑏𝑏3 𝑂𝑂𝑂𝑂 𝑏𝑏4 𝑂𝑂𝑂𝑂 𝑏𝑏5) 𝑂𝑂𝑂𝑂 (𝑒𝑒1 𝑂𝑂𝑂𝑂 𝑒𝑒2) 𝑂𝑂𝑂𝑂 (𝑓𝑓1 𝑂𝑂𝑂𝑂 𝑓𝑓2)� 
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The ( ) OR+ ⇔  operator represents the union of logical variables {a, b, c, d, 
e, f, b1, b2, b3, b4, b5, c1, d1, e1, e2, f1, f2}.  

𝐹𝐹 =

�(𝑏𝑏1 + 𝑏𝑏2 + 𝑏𝑏3 + 𝑏𝑏4 + 𝑏𝑏5)����������������� +
𝑏𝑏

(𝑐𝑐1 + 𝑐𝑐3 + 𝑏𝑏4 + 𝑏𝑏5)������������� +
𝑐𝑐

(𝑑𝑑1 + 𝑏𝑏3 + 𝑏𝑏4 + 𝑏𝑏5)��������������� +
𝑑𝑑

(𝑒𝑒1 + 𝑒𝑒2)������� +
𝑒𝑒

(𝑓𝑓1 + 𝑓𝑓2)�������
𝑓𝑓

�
�������������������������������������������������������������������

𝑎𝑎

 

                                                                                                                                            
(4) 
Such as: 
b = b1 + b2 + b3 + b4 + 
b5 

d = d1 + b3 + b4 + b5 f = f1 + f2 

c = c1 + b3 + b4 + b5 e = e1 + e2  
 [ ]F b c d e f= + + + +  (5) 

 F a=  (6) 

 
Fig. 5.  Fault Tree of the robot cell, corresponding to F 

4.3 Analysis by λPN 
The machining robot cell is shown in figure 4. Its operation using the PN 

appears in figure 6. Our PN model is represented by 17 places and 28 transitions, 
respectively denoted from P1 to P17 and the transitions from T1 to T28. The 
number of tokens in Pi place represents the number of failures in the robot cell. The 
transition Ti located between the places Pi are transitions for all the actions 
performed by the robot cell, with all their connections. This transition is immediate. 
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The number of tokens in place Pi corresponds to the number of faulty elements in 
our robot cell. The weights of the arcs are indicated on the model next to the arcs. 
The absence of a firing means that the arc in question is implicitly weighted at 1. 

Our PN can represent the successive assembly and disassembly of a single 
element (P1). Thus, there are two-state processes (Stop-Start), and the passage from 
one state to the other mobilizes a resource, symbolized by the token contained in 
the arcs, which was added between the places and the transitions. Containing a 
source place (P1) and a source transition (T1), this transition is always sensitized 
but with a capacity counter (Cap(P1) = 5).  

Additional capacity has been given to the PN as in the generalized PN; there 
is no limitation on the number of tokens per place. Capacity Petri Net is a PN in 
which capacity that are strictly positive whole numbers, is associated with the 
places. The firing of an input transition of a place Pi which capacity is a Cap(Pi), is 
only possible if the firing does not lead to a number of tokens in Pi greater than 
Cap(Pi). 

In our example given in figure 6, firing T1 leads to 5 tokens in P1. T1 can 
thus no longer be fired.  

 
Fig. 6. Petri Net before firing of transitions 

Our objective is to control and automate the considered FT system using its 
PN model and using lambda failure rates. To do this, it is necessary to convert the 
PN model shown in Figure 8 into its equivalent λPN model. The possible 
transformation from ordinary PN to high-level λPN is shown in figures 7 and 8. 

Our λPN before firing of transitions is shown in figure 7. 
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Fig. 7. λPN before firing of transitions 

Our λPN after firing of transitions is shown in figure 8. 

 
Fig. 8. λPN after firing of transitions 

Transitions (T1, T2, ... T28) of the Petri Net are materialized by sensors. 
The messages used on the transitions are failure rates between 0 and 1. This 
communication type allows a relatively simple modeling of all states of the system 
dynamical behaviors. Table 2 describes the significance of each place and the 
different failure rates used in the Lambda Petri Net of our system are shown in table 
3. 

Table 2.  
Significance of the places  

Places Significance of each place 
P1 Non-conforming piece 
P2 Defective KUKA KR 120 robot 
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P3 Faulty spindle 
P4 Faulty tool 
P5 Failing piece 
P6 Malfunctioning lubrication system (pump) 
P7 Faulty feed rate (f) 
P8 Faulty depth of cut (d) 
P9 Vibration in axial (Vx) directions 
P10 Vibration in radial (Vy) directions 
P11 Vibration in tangential (Vz) directions 
P12 Faulty cutting speed (Vc) 
P13 Break on the tool 
P14 Bad positioning of the piece 
P15 Failing hardness 
P16 Low flow 
P17 Bad liquid 

5. LabView Implementation  

We have applied our fault tree transformation technique (FT) in a Lambda 
Petri Net (λPN). We used the LabView environment platform for modeling and 
simulation. LabView is based on a graphical development environment of 
«National Instruments», and is mainly used for instrument control and industrial 
automation. 

5.1 FT – LabView Implementation 
We have proposed the implementation in the LabView environment of the 

Lambda Petri Net of the case study with failure rates of the different FT 
components. Our model is shown in the following figures 9 and 10. 
1) The implementation-modeled AND-λPN under LabView will be as follows, 

figure 9: 

 
Fig. 9. Transformation of the « AND » logical gate of the FT into the λPN 
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2) The implementation-modeled OR-λPN under LabView will be as follows, figure 10: 

 
Fig. 10. Transformation of the « OR » logical gate of the FT into the λPN 

5.2 λPN - LabView Implementation 

We have associated the λPN to a LabView state machine. The resulting 
structure is shown in figures 11 and 14. The front panel is the user interface of VIs 
(Virtual Instruments) in our system. It is shown in figures 11 and 14 and describes 
an analysis application called Dominant Failure Mode. The λPN: contains 17 places 
that are circular LEDs (Light Emitting Diodes) emitting 2 phases of light, white and 
grey, and 28 transitions. Each place presents an event of our FT and describes its 
state: inputs (commands) and outputs (indicators) of the program. String Indicators 
model these states and another String Indicator displays the state of our system 
(State of the non-conforming piece). This indicator is used to display Normal or 
Abnormal Operation. 

Our application consists of a box that contains a Digital Indicator for the 
sum of the different failure rates of our FT. It also includes two other Digital 
Indicators, the first one to display the highest failure rate of level 1 to the FT and 
the second to display the highest failure rate of level 2 to the FT. 11 Numeric 
Controls and 5 Digital Indicators are materialized by failure rates. The different 
failure rates are values between 0 and 1. 

The inputs variables are the failure rate of each component. They are 
labelled as «Numeric Control» in LabView and the results appear as «Digital 
Indicator» on the front panel. 
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Fig. 11. Front panel under LabView of the PN system - Modeling without fault 

The block diagram, figure 12, represents the application program written in 
the form of a data flow diagram. This figure illustrates how command and indicator 
are materialized by digital displays for a state 0 or 1 in the block diagram of 
LabView. 

 
Fig. 12. LabView block diagram of the λPN system 

6. Simulations and results 

As shown in figure 13, the simulation of the proposed diagnostic system 
was carried out in three essential steps. First, we assessed the failure rates of all 
system components and then we used LabView to perform the simulation, allowing 
to observe the distribution of the system states. Finally, in the third step, we 
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successively identified the marking of the Lambda Petri Net simulation, obtained 
its generic properties for automatic checking, determined its incidence matrix and 
obtained its marking vector needed to validate the model. 

 
Fig. 13. Steps of the proposed diagnostic system 

6.1 Failure rate 
According to the hierarchical expertise of robustness and thanks to the 

values given in table 1, the failure data for each component is given in the following 
table 3. Vibrations are the most critical events. Vibrations in radial direction have 
the greatest value of failure rate (λ 10 = 0.006). 

                                                                                                                                  Table 3.  
Failure rate of level 2 and dreaded event – FT - λPN     

Level 2- FT - λPN 
λ 7 0.0001 λ 13 0.0003 
λ 8 0.0001 λ 14 0.0003 
λ 9 0.0004 λ 15 0.0002 
λ 10 0.0006 λ 16 0.0002 
λ 11 0.0005 λ 17 0.0003 
λ 12 0.0001   

According to equations (4), (5), and (6) and Table 3, we obtained the 
following failure rates shown in table 4. The faulty tool is the most critical event 
with a failure rate λ 4 = 0.0018. 

                                                                                                                                     Table 4. 
                         Failure rate of level 1 and dreaded event – FT - λPN 

Level 1- FT - λPN 
λ 2 λ 3 λ 4 λ 5 λ 6 

0.0017 0.0016 0.0018 0.0005 0.0005 
Dreaded Event - FT – λPN 

λ 1 0.0061 

6.2 LabView Simulation 
The obtained simulations and results are shown in figure 14. We use tokens 

in the graph places to signal the state of each resource at a given moment, it is 
marked in gray. 
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At the second FT level and corresponding to its failure rate, the component 
« Vibration in radial (Vy) directions » is in failure mode, therefore the 
corresponding state is activated.  

According to the diagnostic characteristics of FT and equations (4), (5), (6), 
the dreaded event is λ1 = 0.0061. After comparing all failure rates of level 1, the 
highest failure rate is λ4 = 0.0018, so the highest level 2 failure rate is λ10 = 0.0006. 
- So respectively, place (P10) is colored gray, and its signal is in state 1. 
- If the place (P10) is faulty then (P4) is initially faulty and then (P1) is faulty. 

These two places are colored in gray, and their signal is in state 1. If there is a 
faulty place, the triggered diagnostic process makes the system fail. So the 
capacity Cap(P4) =1 of place (P4) is displayed as 1 and the finite capacity 
Cap(P1) =5 of place (P1) is displayed as 1. 

- To carry out a deductive analysis in our λPN, we proceed by firing transition 
(T1), and then place (P1) has a token. If there is a token in place (P1), then we 
have to go to transition (T4) directly. If (T4) is fired then place (P8) has a token. 
If place (P8) has a token, then (P10) also has a token after firing transition (T10). 
This diagnostic process is obtained through the return arcs building our Lambda 
Petri Net. 

 
Fig. 14. Front panel under LabView of the λPN system - Modeling with fault 
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6.3 Marking 
Our interest at this level lies in the control of the machining robot cell 

presented in figure 4. Its fault tree is given in figure 5, and is associated with the 
λPN of figure 7. The result after the firing according to the faults is the model shown 
in figure 8. We also defined the marking here to interpret the Lambda Petri Net 
simulation results. It allows us to understand the behavior of the system, identify 
the states of the system at different times and track its evolution by following 
transitions. 
According to equation (1), we have: 
- The initial marking of our λPN, corresponding to figure 10, is M0 = [00000000000000000]. 
- The marking of our λPN after the firing, corresponding to figure 12, is M1 = 

[10010000010000000]. 
P = {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17} 
T = {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, 
T20, T21, T22, T23, T24, T25, T26, T27, T28} 

6.4 Generic Properties of Lambda Petri Nets 
In order to check the consistency of the model and detect possible 

undesirable behaviors we used the generic properties. Generic properties are 
fundamental characteristics of Petri Nets that allow the analysis of their behavior. 
These properties include Boundedness; Safeness; Liveness; Deadlock; 
Reversibility; Repetitive; conflictual; Reachability. 

We obtained the following generic properties for the automatic checking of 
our system: our λPN is unbounded but safe. λPN is lively, deadlock-free, non-
reversible, non-repetitive, conflict-free, reachable, and safe, with a graph of infinite 
markings. 

6.5 Incidence Matrix 
The incidence matrix represents the relationships between places and 

transitions in a Petri Net, allowing to calculate the marking of the system after a 
transition. The incidence matrix (W) of our Lambda Petri Net (λPN), after applying 
equation (3) is a matrix of 17 rows (places) and 28 columns (transitions), and is 
represented in the following matrix: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4
5
6
7
8
9
10
11
12
13
14
15
16
17

T T T T T T T T T T T T T T T T T T T T T T T T T T T T
P
P
P
P
P
P
P
P

W
P
P
P
P
P
P
P
P
P

=

0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

−
−

−
− 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

−
−

−
−

−
−
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6.6 Marking vector 

The marking vector represents the marking of the λPN in a compact form; 
it proves useful for the analysis of the results. The marking vector of our λPN is 
obtained after a firing sequence according to equation (3): Mk = M0 + (W × S1).  
So we use the M1 marking for the calculation of the transition vector. 
S = [T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, 
T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, T28] 
Consider sequence S1= T1 T4 T12 
So we can write: S1= [1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]T 
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The mathematical properties resulting from the analysis of our λPN allowed 
a behavioral and structural study which is essential to the validation of a 
specification. We obtained a marking Mk= [10010000030000000] > 0 then our PN 
is pure, and S is firing. 

In this consistent verification, we used the incidence matrix and the marking 
vector to evaluate the behavior of the λPN. The obtained results indicate that the 
model is consistent and firable. The verification of the generic properties of our 
λPN confirms the reliability of the model, which is essential to ensure the 
consistency and robustness of the monitoring system. 

7. Conclusion 

Modeling and simulation using Petri nets are powerful tools for assessing 
the performance of complex systems; these networks represent an efficient 
mathematical formalism for modeling system failures. This work presents the 
development of a diagnostic strategy for a machining robot cell using a Petri Net 
generated from an FT on this cell in the LabView environment. After transforming 
the fault tree into a Petri Net using equivalences, we determined the failure rates to 
consider on Lambda transitions. We performed simulations after implementation 
under the LabView environment to obtain results that prove to be fully satisfactory. 
Indeed, a consistent check of our λPN to verify the model structure to exclude 
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implementation errors has been carried out. This approach could contribute to 
improving the availability and performance of any industrial equipment. 

The main future development we aim at lies in taking into account the 
system dynamics. This extension would allow to consider changes in the system's 
state over time, which could improve the accuracy of fault location. 

Another research area of particular interest could be the design of an 
integrated diagnostic system combining different diagnostic formalisms, such as 
Petri nets, fault trees, and probabilistic models which lead to a more thorough fault 
location. 
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