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In the present paper the “interface” dynamics in the case of two complex 
systems interaction, assimilated to fractal-type mathematical objects, are analyzed. 
In such context, fractal bistable-type behaviors as transitions in the scale space are 
obtained. Our findings can be applied to natural bistable behaviors, such as 
temperature inversion in the planetary boundary layer. 
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1. Introduction 
 
In complex systems dynamics, non-linearity and chaoticity represent both 

the structural and functional nature of turbulence and instabilities. Interactions 
between the constitutive entities of any complex systems give rise to mutual 
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constraints and coupling local-global behavior types. In such a conjecture, the 
universality of dynamics laws for turbulence becomes natural and is reflected in its 
associated mathematical procedures, in the form of theoretical models that could 
describe their dynamics [1-3]. Regarding these models, they are usually founded on 
the supposition that variables describing the dynamics are differentiable. Thus, the 
success of the above-mentioned models should be understood as gradual, or on 
domains in which differentiability and integrability are still valid. However, the 
differentiable and integrable mathematical procedures prove themselves to be 
inadequate when these dynamics must be solved, because they imply both non-
linearity and chaoticity. To describe such dynamics, while employing differential 
mathematical procedures, it is necessary to explicitly introduce the notion of scale 
resolution into the expression of variables associated with complex systems 
dynamics, and implicitly into the expression of fundamental equations that govern 
these dynamics.  

The result is that, in the framework of non-integrability and non-
differentiability, any variable classically dependent on space-time coordinates will 
also depend on scale resolution. Therefore, instead of operating with variables 
described through non-differentiable functions, approximations of these 
mathematical functions will be utilized, which are obtained by their averaging at 
various scale resolutions. Thus, any physical variable used in the description of 
complex system dynamics will instead be a limit of a family of mathematical 
functions, which are non-differentiable for null scale resolutions and differentiable 
for non-zero scale resolutions [1-3]. The main fundamental assumption of this 
theoretical model is that the dynamics of any and all entities of a complex system 
will be described by continuous but non-differentiable motion curves, which 
represent multifractal curves [1-3]. These multifractal motion curves will then 
exhibit self-similarity at every point, which is a property of holography – i.e., every 
part reflects the whole and vice versa. Thus, we are discussing “holographic 
implementations” of complex systems dynamics either through Schrödinger-type 
multifractal “regimes”, (using Schrödinger-type equations at various scale 
resolutions), or through Madelung-type multifractal regimes (using the 
hydrodynamic equation system at various scale resolutions) [3]. 

In the present paper fractal bistable-type behaviors as transitions in the scale 
space are obtained. Our theoretical model is validated in the case of temperature 
inversion in the planetary boundary layer. 
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2. Mathematical model 

Let us admit the functionality of the differential equation Eq. (1) “interface” 
dynamics in the case of two complex systems interaction (these systems will be 
assimilated to fractal-type mathematical objects).  

dQt

dt
= Qi − Qt �1 +

A
1 + Qt

2� (1) 

Such a result can be obtained through the general differential equation in the space 
of scale resolutions [2, 3]: 

dQt

dt
≈ A� + B�Qt =

A1Qt
3 + A2Qt

2 + A3Qt + A4

A3���Qt
2 + A2���Qt + A1���

 (2) 

by operating with the identities: 

A1 = −1, A2 =  Qi, A3 = −(1 + A), A4 =  Qi, A1��� = 1, A2��� = 0, A3��� = 1 (3) 

where Qt is the incident fractal field variable, τ is the temporal resolution scale with 
the role of affine parameter of the movement curves of complex system entities in 
the space of scale resolutions, and A is a parameter independent of the fractality 
degree in the space of the resolution scales through which it is possible to vary the 
different self-structuring modes of complex systems entities. 

Let us also note that Qi, Qt, τ and A are dimensionless variables. Eq. (1) 
specifies that, at any scale resolution, the temporal variation of the transmitted 
fractal field variable, dQt

dt
, is conditioned both by the difference between the 

transmitted and incident variables, (Qi − Qt), and by a saturation component,  
QtA
1+Qt2

. 
In such a context, fractal dynamics systems are described in the space of 

scale resolutions through the fractal differential equation: 
dQt

dτ
= −

dV(Qt)
dQt

 (4) 

where: 

V(Qt) = −� �Qi − Qt
′ −

AQt
′

1 + Qt
′2�

Qt

0
dQt

′

= −QiQt +
Qt

2

2
+

A
2

ln�1 + Qt
2� 

(5) 

is the fractal potential function, which describes an important class of fractal 
dynamics systems which will be named “gradient fractal systems” [4-6]. 



170                                               Maria-Alexandra Paun et. al 

Eq. (5) is represented in Fig. 1 for 4 values of the parameter A and it specifies 
the fact that V(Qt) presents a variation with two potential wells. This means that, 
from the perspective of an evolution towards equilibrium and towards the stability 
of equilibrium states, the fractal system given by Eq. (5) behaves regarding V(Qt) 
in an analogue manner to the behavior of the fractal oscillator regarding V(Qt), thus 
the quantities of V(Qt) will be equilibrium states while the maxima will be unstable 
equilibrium states. 

 
Fig. 1. Fractal potential V(Qt) for specified values of A. 

 
 

Now, at all scale resolutions, the stationary behavior of the fractal system 
described by Eq. (1) is analyzed, which implies the functionality of: 

Qi = Qt �1 +
A

1 + Qt
2� (6) 

This equation may yield 3 real roots, which is to say that for a value of the 
incident field variable Qi there can be 3 different values of the transmitted field 
variable Qt.  
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Fig. 2. Dependency of the transmitted fractal field variable to the incident fractal field variable in 

fractal bistability. 
 

The curves Qt = F(Qi) in Fig. 2 could show a maximum and a minimum 
when A attains certain values. These can be found by cancelling the derivative of 
Eq. (6).  

The restriction: 
dQi

dQt
= 0 (7) 

implies: 

1 +
A�1 − 2Qt

2�
�1 + Qt

2�
= 0 (8) 

This is a biquadratic equation which admits the solutions: 

Qt
2 =

1
2
�(A − 2) ± �A(A − 8)� (9) 

Eq. (9) should have only real (positive) solutions for A ≥ 8. What is indeed 
found is that no inversion takes place for all cases in which A ≥ 8. 

For such values of A, 2 extremes are shown, so the system presents fractal 
bistability at all scale resolutions. The situation can be more easily perceived 
graphically, for example in the case of the A = 20 curve in Fig. 2.  
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Where Qi increases slowly from Qi = 0, Qt increases until B. A continual 
increase of Qi will have as a result a sudden increase of Qt to C point, since the BD 
area of the curve represents unstable fractal states. When Qi decreases from values 
superior to those found in C, Qt decreases along the curve until the D point. Through 
continual decrease, Qt will perform a sudden increase to the A point following the 
curve towards the origin.  

Thus, for values of the incident fractal field variable in the AB interval, the 
transmitted fractal field variable can have two different stable values. This behavior 
points to fractal bistability [5, 6].  

In the three-dimensional space (Qi, Qt, A) the surface Qt = Qt(Qi, A) is a 
fold catastrophe-type fractal surface (Fig. 3). For more details on the standard case, 
see [5, 7].  

Let us note that the inversion curves presented in Figs. 1 and 2 can be mimed 
as transitions in the scale space. 

 

 
Fig. 3. Three-dimensional surface. 
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3. Application of the model 

In the following, let us discuss a possible application of our model. Bistable 
behavior has been found throughout atmospheric profiles, and this has been shown 
through theory and through real radiometer data [8]. In the cited study, radiometer 
data has been obtained through a RPG-HATPRO radiometer platform positioned in 
Galați, Romania, at the UGAL – REXDAN facility found at coordinates 
45.435125N, 28.036792E, 65 m ASL, which is a part of the “Dunărea de Jos” 
University of Galați [8]. This instrument has been chosen and set up so as to 
conform to the standards imposed by the ACTRIS community [9-12]. 

From this study, an instance is chosen: a data timeseries on the 14th of 
January 2022 (Fig. 4). A static profile is also shown as an example, extracted from 
the beginning of the timeseries (Fig. 5). 

 

 
Fig. 4. Timeseries of atmospheric temperature profiles; Galati, Romania, 16/01/2022. 

 
A small discussion regarding the nature of temperature profile is in order; it 

is known that for diurnal profiles there exists a slightly greater decrease in 
temperature in the SL, and for nocturnal profiles there is an inversion at the SL [9-
12].  
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Fig. 5. Example of atmospheric temperature profile; Galati, Romania, 14/01/2022. 

 
Otherwise, inversions also mark the occurrence of the PBLH [9-12]. Fig. 5 

presents an inverse evolution characteristic of nocturnal conditions with a large SL 
and a higher inversion. Let us note that, in these atmospheric temperature profiles, 
the altitude corresponds to Qt and the absolute temperature corresponds to Q𝑖𝑖. 

 
4. Conclusions 

By assimilating complex systems to fractal-type mathematical objects, the 
“interface” dynamics as a result of these systems interaction are analyzed. Let us 
note that a wide range of nonlinear behaviors [13-19] can be sequentially 
assimilated to bistable-type behaviors. One particular case is highlighted in the form 
of fractal bistable-type behaviors. 

These fractal bistable-type behaviors are discussed in the case of planetary 
boundary layer bistability. The physical context for this behavior is the presence of 
water vapors and aerosols which provide a nonlinear propagation environment 
between the planetary boundary layer and ground level. Given inherent bistability, 
and given the connection between multifractal parameters and temperature, it is 
then suggested that such bistable behavior can explain the well-known boundary 
layer temperature inversion, and inversions of other parameters as well. Finally, 
radiometer data offers various examples of atmospheric temperature inversions, 
wherein theoretical data agrees with experimental data. 
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