
U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 4, 2017 ISSN 2286-3540

CLASSIFICATION OF AN IMBALANCED DATA SET USING
DECISION TREE ALGORITHMS

Ciprian-Octavian TRUICĂ1 , Cătălin Adrian LEORDEANU2

Machine learning algorithms have recently become very popular for
different tasks involving data analysis, classification or prediction. They can
provide valuable knowledge for very large sets of data and can reach very
good accuracy. However, most algorithms are sensitive to the nature of the
data sets, as well as different calibrations which can lead to large differences
in performance, accuracy or false positives. In this paper, a classification
solution for imbalanced data sets containing information about defects of
various trees is presented. The experimental results present a comparison
that evaluates the classification performance of the Decision Tree, Random
Forest, and Extremely Randomized Trees classifiers. The measures used in
the comparison take into account weighted accuracy, precision, and recall
for binary and multi-class classification.

Keywords: imbalanced data set classification, Decision Tree Classifier,
Random Forest Classifier, Extremely Randomized Trees Classifier

1. Introduction

Machine Learning has become ubiquitous in data analysis applications.
It has helped the proliferation of Big Data, as well as new technologies in
different fields, such as automotive, smart homes and many others [4].

There are two types of Machine Learning: supervised and unsupervised.
The difference is that in the case of supervised machine learning the algo-
rithm needs a training data set in order to generate a model which will be
subsequently used for the input. In contrast, unsupervised learning has no
training data set and relies on the composition of input data to generate the
output. Supervised algorithms can be divided into classification and regression
algorithms, depending on their type of output.

This paper focuses on supervised classification algorithms for a data set
containing information about trees in an urban environment and proposes a

1 Ph.D. student, Computer Science and Engineering Department, Faculty of Automatic
Control and Computers, University Politehnica of Bucharest, Bucharest, Romania, e-mail:
ciprian.truica@cs.pub.ro

2 Lecturer, Ph.D., Computer Science and Engineering Department, Faculty of Automatic
Control and Computers, University Politehnica of Bucharest, Bucharest, Romania, e-mail:
catalin.leordeanu@cs.pub.ro

69

70 Ciprian-Octavian TRUICĂ, Cătălin Adrian LEORDEANU

solution for the classification of trees around the city of Grenoble. The dataset
is publicly available and it was also used in the EGC (Extraction et Gestion
des Connaissances) Competition in 2017 [3]. The trees are classified according
to their health or various defects which were observed in their collar, crown,
root or trunk.

The proposed solution is based on Decision Trees, as they are the most
appropriate approach to this situation. Since the number of trees in each class
is obviously highly imbalanced, the solution proposed in this paper is based
on specific weights which correct the accuracy of the classification algorithms.

This paper is structured as follows. Section 2 presents the state of the art
and current research in the field of supervised learning and classification and
describes the algorithms used for classifying the imbalanced data set. Section 3
presents the measures used for evaluating the classification. Section 4 presents
the data set, describes its attributes and the imbalance between the classes.
Section 5 presents the implementation of the algorithms and their evaluation.
Section 6 presents and discusses the results and finally, Section 7 presents the
conclusions and hints at future work.

2. Decision Tree Classifiers and Extensions

Decision Tree Classifiers are one of the most used algorithms for classi-
fication because they have a good accuracy when compared to other machine
learning algorithms [11]. For this approach, each node of the tree corresponds
to an input value for the dataset. The Decision Tree is built by partitioning
the training dataset until the subsets contain only data belonging to a single
class.

The most used algorithms for building decision trees are ID3 (Iterative
Dichotomiser 3) [14] and its extensions C4.5 [15] and C5.0/See5, CART (Clas-
sification and Regression Trees) [1] and CHAID (CHi-squared Automatic Inter-
action Detector) [10]. ID3 computes the entropy for every attribute and splits
the data set using the attribute with the minimum entropy or, equivalently,
the maximum information gain. C4.5 finds the attribute with the maximum
normalized information gain, which it uses to split the data set. Moreover,
pruning is used to minimize the tree by removing branches that bring no ad-
ditional information with leaves. The C5.0/See5 algorithm improves C4.5 by
adding boosting to improve the tree and give a better accuracy. CART is an-
other decision tree learning method that recursively partitions the data space
and fits a simple prediction model within each partition. The CHAID algo-
rithm builds a decision tree that performs multi-level splits when computing
the classification trees.

Ho proposed the first algorithm that builds multiple decision trees in
randomly selected subspaces of the features space [8]. Although the complexity
is low due to the fact that trees tend to be overly adapted to the training
data and produce over-fitting, a benefit of using a forest of decision trees

Classification of an Imbalanced Data Set using Decision Tree Algorithms 71

is the speed of execution. This method manages to generalize and improve
the classification process by using different subspaces in complementary ways.
Also, trees generalize independently so a discrimination function is used to
combine the classification given by each individual tree. Experimental results
show that using this method a higher generalization than using simple decision
trees is achieved.

Ho [9] extended his work on Random Forest with a new method to con-
struct decision trees based classifiers that maintain the highest accuracy of
training data and improves on generalization accuracy as it grows in complex-
ity. Thus, the study aims to build classifiers whose capacity can be expanded
randomly to increase the classification accuracy by constructing several de-
cision trees in randomly selected subspaces. The experiments test different
types of splits to determine which approach is better: i) axis parallel linear
split, ii) oblique linear splits, and iii) piecewise linear splits (Voronoi tessel-
lation). To improve the quality of the experimental results, the study also
employs training set sub-sampling methods: bootstrapping and boosting. The
article concludes that the classification is invariant for points that are different
from the training points only in unselected dimensions.

Breiman argues in his work [2] that classification accuracy is significantly
improved if a voting process to choose the most popular classes are used. Ran-
dom vectors that manage how much each tree grows are used to generate these
voting assemblies. Moreover, the error of generalization for a Random Forest
Classifier depends on the strength of each individual tree and the correlation
between them

Geurts et al. [5] proposed an improved algorithm for building decision tree
forests called Extremely Randomized Trees. At each node, the best splitting
attribute is selected from a random subset of attributes. Using this process,
the algorithm builds an unpruned ensemble of decision trees.

3. Evaluation Measures

Different measures can be used to evaluate if the classification is done
correctly [17]. All these measures use the confusion table (Table 1).

Table 1

Confusion Table for binary classification

Data class Classified as Positive Classified as Negative
Actual Positive TP (True Positive) FN (False Negative)
Actual Negative FP (False Positive) TN (True Negative)

The main three measures used to evaluate a binary classifier are Accu-
racy (A), Precision (P) and Recall (R) [17]. Accuracy measures the overall
effectiveness of a classifier. Precision measures the class agreement of the data

72 Ciprian-Octavian TRUICĂ, Cătălin Adrian LEORDEANU

labels with the positive labels given by the classifier. Recall measures the effec-
tiveness of a classifier to identify positive labels. Table 2 presents the formula
for these measures.

Table 2

Confusion Table for binary classification

Measure Formula

Accuracy A = TP+TN
TP+TN+FP+FN

Precision P = TP
TP+FP

Recall R = TP
TP+FN

When dealing with multi-class classification, the Precision and Recall
measures must be generalized to take into account the number of non-overlapping
classes Ci, i = 1, N where N is the number of classes. Average Accuracy
(avgA) measures the average per-class effectiveness of a classifier. Micro Pre-
cision (µP) measures the per-class agreement of the data class labels with the
positive labels given by the classifier. Micro Recall (µR) measures the per-class
effectiveness of a classifier to identify positive labels. Macro Precision (MP)
measures the average per-class agreement of the data class labels with those of
the classifier. Macro Recall (MR) measure the average per-class effectiveness
of a classifier to identify class labels. Macro-averaging treats all classes equally
while micro-averaging favors bigger classes. Table 3 presents the formula for
the generalized measures.

Table 3

Generalized multi-class classification measures

Measure Formula
Average
Accuracy

avgA = 1
N ·

∑N
i=1(TPi+TNi

TPi+FNi+FPi+TNi
)

Micro
Precision

µP =
∑N

i=1 TPi∑N
i=1(TPi+FPi)

Micro
Recall

µR =
∑N

i=1 TPi∑N
i=1(TPi+FNi)

Macro
Precision

MP = 1
N ·

∑N
i=1(TPi

TPi+FPi
)

Macro
Recall

MR = 1
N ·

∑N
i=1(TPi

TPi+FNi
)

The imbalanced data classification problem is concerned with the per-
formance of machine learning algorithms in the presence of underrepresented
data and severe class distribution skews [7]. Classification of such data sets
has encountered a significant drawback of the performance attainable by most
standard classifier learning algorithms which assume a relatively balanced class
distribution and equal misclassification costs [18]. Moreover, classification eval-
uation methods fall short when dealing with such data and, for this reason,

Classification of an Imbalanced Data Set using Decision Tree Algorithms 73

new methods must be used [6]. Therefore, the evaluation methods of a classi-
fier must be adapted to take into account the weights of each class, and thus, in
this paper, the weighted versions of Average Accuracy (wA), Precision (wP)
and Recall (wR) are used. The weighted version of these measures calculates
metrics for each label, and find their average, weighted by support (the num-
ber of true instances for each label - ni). These measures alter the generalized
macro versions of Precision and Recall (Table 4). These measures are also used
for the binary classification.

Table 4

Generalized weighted Precision and Recall

Measure Formula
Weighted
Average
Accuracy

wA = 1
N ·

∑N
i=1(1

ni
· TPi+TNi

TPi+FNi+FPi+TNi
)

Weighted
Precision

wP = 1
N ·

∑N
i=1(1

ni
· TPi

TPi+FPi
)

Weighted
Recall

wR = 1
N ·

∑N
i=1(1

ni
· TPi

TPi+FNi
)

4. Data set description

4.1. Features description

The data set used for testing contains information about the trees around
the city of Grenoble, each record has 27 features. These features can be split
into four sets: general information related to the city plan, tree characteristics,
location descriptors and tree health diagnostics. There is a total number of
15 375 classified entries in the data set. The data set is public and it is available
on-line (Data set link http://egc2017.imag.fr/defi/).

Table 5 presents the city plan attributes and their description. Table 6
presents the tree characteristics. Table 7 presents the trees’ location descrip-
tors. Table 8 presents the tree health descriptors.

Table 5

City plan attributes

Attribute Description
Code unique identifier of the tree

IdentifiantPLU
unique identification number used by the local
city planning comity

IntituleProtectionPLU
unique identification number used for identifying
the protection category of the tree

TypeImplantionPLU descriptor for the way the tree was planted.

http://egc2017.imag.fr/defi/

74 Ciprian-Octavian TRUICĂ, Cătălin Adrian LEORDEANU

Table 6

Tree description attributes

Attribute Description
AnneeDePlantation year when the tree was planted
DiametreArbreAUnMetre tree stump diameter
Espece tree species
Genre Bota botanical genus of the tree

StadeDeDeveloppenet
age descriptor with three
values: young, mature and old

Variete tree variety
Vigueur tree vigor

Table 7

Location description attributes

Attribute Description
Adr Secteur represents the 6 geographical areas of Grenoble

Code Parent
each tree has associated a parent area that groups
them by a geographical area and by species

Code Parent Desc description of the parent area
FrequentationCible describes if the sidewalk is used frequently
Sous Categorie unique identifier of the tree’s category
Sous Categorie Desc description of the tree’s category
Trottoir details if the tree is planted near a sidewalk

Table 8

Tree health attributes

Attribute Description

AnneeRealisationDiagnostic
last year when the tree
health was diagnosed

AnneeTravauxPrerecinisesDiag
recommended year for
next health check

NoteDiagnostic description of the diagnosis

PrioriteDeRenouvellement
when the next health
check should occur

RaisonDePlantation reason for the tree plantation
Remarques remarks about the tree

StadeDeveloppementDiag
stage of development of
the tree during the diagnosis

TraitementChenilles
priority of treatment for
caterpillars on pine and cedar

TravauxPreconisesDiag
work recommended during
the safety diagnosis

4.2. Feature engineering

Feature engineering is the process of using domain knowledge about the
data set to create features that make machine learning algorithms work [16].

Classification of an Imbalanced Data Set using Decision Tree Algorithms 75

The features that describe the data set may contain some duplicate infor-
mation or to not contribute to the classification at all. Based on this reasoning,
the following attributes were removed before applying any classifier:
• Code just a unique identifier that adds no information to the classifier.
• Code Parent Desc is just a description of the CODE PARENT feature.
• IdentifiantPLU just a unique identifier that adds no information to the

classifier.
• Sous Categorie Desc is just a description of the SOUS CATEGORIE fea-

ture.

4.3. Class description

A tree can be declared healthy if it has no problems related to the Collar,
Crown, Root and Trunk, otherwise, it is considered that the tree has a defect.
Based on this information, there can be two ways of classifying the data set:
a binary classification and a multi-class classification. Tables 9 and 10 present
the number of classes broken down by each defect and the number of record
in the training set for each combination of defects.

The binary classification splits the data set between trees that have de-
fects, a total number of 5 001 records, and the ones that do not, 10 374 records.
There is an imbalance of 2:1 between healthy trees and trees with at least one
defect (Table 9).

Table 9

Data set binary

Binary Class Defect No. Records
Cb0 0 10 374
Cb1 1 5 001

The multi-class is composed of a total of 16 classes that use all the
permutations of defects that appear at the Collar, Crown, Root and Trunk
level. Table 10 presents all the records in the training set for each of the
classes. The imbalance, in this case, is evident, for example, the imbalance
between Cmc0 and Cmc7 is 1:216.

5. Implementation

The Python Scikit-learn package is used for classification [13]. The De-
cision Tree, Random Forest, and Extremely Randomized Trees classifiers are
used.

The GridSearchCV(estimator, param grid, scoring, cv) class is used for
validation. This class uses an exhaustive search over specified parameter values
for a classifier. The first parameter (estimator) is the classifier for which the
cross validation is done. The second parameter (param grid) is a dictionary
with parameters to pass to the classifier (Code Sample 1). The params dtc is
the dictionary with the parameters used by the Decision Tree Classifier, while

76 Ciprian-Octavian TRUICĂ, Cătălin Adrian LEORDEANU

params rec is the dictionary with parameters used by the Random Forest and
Extremely Randomize Trees classifiers.

Table 11 presents each parameter. The third parameter is the scor-
ing function. The scores bc array is used the binary classification, while the
scores mc one is used for the multi-class classification (Code Sample 2). The
last parameter used for Cross Validation is cv which determines the cross-
validation splitting strategy.

Table 10

Data set multi-class

Multi
Classes

Defect Collar Crown Root Trunk
No.

Records
Cmc0 0 0 0 0 0 10 374
Cmc1 1 0 0 0 1 963
Cmc2 1 0 0 1 0 243
Cmc3 1 0 0 1 1 48
Cmc4 1 0 1 0 0 2 091
Cmc5 1 0 1 0 1 539
Cmc6 1 0 1 1 0 147
Cmc7 1 0 1 1 1 41
Cmc8 1 1 0 0 0 203
Cmc9 1 1 0 0 1 129
Cmc10 1 1 0 1 0 49
Cmc11 1 1 0 1 1 51
Cmc12 1 1 1 0 0 135
Cmc13 1 1 1 0 1 219
Cmc14 1 1 1 1 0 73
Cmc15 1 1 1 1 1 70

1 params gr id = { ” c r i t e r i o n ” : [’ g i n i ’ , ’ entropy ’] ,

2 ” max features ” : [’ auto ’ , ’ l og2 ’ , None] ,

3 ”max depth” : [1 , 5 , 10 , None] ,

4 ” m i n s a m p l e s s p l i t ” : [2 , 5 , 1 0] ,

5 ” min samp l e s l e a f ” : [1 , 5 , 1 0] ,

6 ” c l a s s w e i g h t ” : c l a s s w e i g h t s }
7 params dtc = params gr id

8 params rec = params gr id

9 params dtc [” s p l i t t e r ”] = [’ bes t ’ , ’ random ’]

10 params rec [” n e s t imato r s ”] = [1 0 , 100 , 1000]

11 params rec [” boots t rap ”] = [True , Fa l se]

Code Sample 1. Algorithm parameters

1 s c o r e s b c =[’ accuracy ’ , ’ p r e c i s i o n w e i g h t e d ’ , ’ r e c a l l w e i g h t e d ’]

2 scores mc =[’ accuracy ’ , ’ p r e c i s i o n w e i g h t e d ’ , ’ p r e c i s i on macro ’ , ’

p r e c i s i o n m i c r o ’ , ’ r e c a l l w e i g h t e d ’ , ’ r e c a l l m a c r o ’ , ’

r e c a l l m i c r o ’]

Code Sample 2. Scoring arrays

Classification of an Imbalanced Data Set using Decision Tree Algorithms 77

Table 11

Parameter description

Parameter Description

criterion
Measure the quality of a split. Values:
- gini for the Gini impurity
- entropy for the information gain.

max features

The number of features to consider when
looking for the best split. Values:
- auto, max features=sqrt(n features)
- log2, max features=log2(n features)
- None, max features=n features.

max depth The maximum depth of the tree.

min samples split
The minimum number of samples required
to split an internal node

min samples leaf
The minimum number of samples
required to be at a leaf node

class weight The weights for each class

splitter
(only for the Decision
Tree Classifier)

The strategy used to choose the
split at each node
Values:
- best, to choose the best split
- random, to choose the best random split.

n estimators
(for Random Forest and
Extremely Randomized
Trees Classifiers)

The number of trees in the forest.

bootstrap
(for Random Forest and
Extremely Randomized
Trees Classifiers)

Whether bootstrap samples are used
when building trees.

The cross-validation strategy uses KFold(n splits=10, shuffle=True, ran-
dom state=seed) class. The n splits determines the number of folds used for
cross-validation, in this case it was set to 10. The shuffle is set to True so
that the data is shuffled before splitting into batches. The random state is a
pseudo-random number generator state used for shuffling.

The Code Sample 3 presents the crossValidation(cls, X, Y, params, scores)
function. The input parameters for this functions are: cls is the classifier, X
is matrix containing the data set, Y is an array with the classes for each line
in X, params is the dictionary with parameters for the classifier and scores is
an array with the score used for evaluating the classifier.

Code Sample 4 presents the function that initializes the classifiers and
calls the crossValidation function. The function has as input parameter, be-
sides the data set X and the classes Y, the number of classes n. In the case n is
2 then the score s is initialized with the binary classification scores, otherwise
s is initialized with the multi-class classification scores.

78 Ciprian-Octavian TRUICĂ, Cătălin Adrian LEORDEANU

Code Sample 5 presents the main function. This function receives from
the command line, as input, two CSV files, the first one contains the data set
and the second one contains the classes presented in Tables 9 and 10. Before
calling the callClassifiers(X, Y, n), two functions are used to create the X
matrix and the Y array, one for the binary classification (corpus bc(dataset,
status)) and one for the multi-class classification (corpus bc(dataset, status))
that also return the number of classes.

1 from s k l ea rn . m o d e l s e l e c t i o n import GridSearchCV

2 from s k l ea rn . m o d e l s e l e c t i o n import S t ra t i f i edKFo ld

3 import numpy as np

4

5 seed = 7

6 np . random . seed (seed)

7

8 de f c r o s s V a l i d a t i o n (c l s , X, Y, params , s c o r e s) :

9 k f o ld = St ra t i f i edKFo ld (n s p l i t s =10, s h u f f l e=True ,

10 random state=seed)

11 f o r s in s c o r e s :

12 c l f = GridSearchCV (es t imator=c l s , param grid=params ,

13 cv=kfo ld , s c o r i n g=s , n jobs=−1)

14 g r i d r e s u l t = c l f . f i t (X, Y)

15 means = c l f . c v r e s u l t s [’ mean te s t s co r e ’]

16 s td s = c l f . c v r e s u l t s [’ s t d t e s t s c o r e ’]

17 r e s c l f = c l f . c v r e s u l t s [’ params ’]

18 r e s u l t s = z ip (means , stds , r e s c l f)

19 f o r mean , std , params in r e s u l t s :

20 pr in t (s , mean , ”(+/−)” , s td ∗ 2 , params)

Code Sample 3. Grid Cross Validation

1 from s k l ea rn . t r e e import D e c i s i o n T r e e C l a s s i f i e r

2 from s k l ea rn . ensemble import RandomForestClass i f i e r

3 from s k l ea rn . ensemble import E x t r a T r e e s C l a s s i f i e r

4

5 de f c a l l C l a s s i f i e r s (X, Y, n) :

6 i f n == 2 :

7 s = s c o r e s b c

8 e l s e :

9 s = scores mc

10 c l s = D e c i s i o n T r e e C l a s s i f i e r ()

11 c r o s s V a l i d a t i o n (c l s , X, Y, params dtc , s)

12 c l s = RandomForestClass i f i e r ()

13 c r o s s V a l i d a t i o n (c l s , X, Y, params rec , s)

14 c l s = E x t r a T r e e s C l a s s i f i e r ()

15 c r o s s V a l i d a t i o n (c l s , X, Y, params rec , s)

Code Sample 4. Decision Tree Classifier

Classification of an Imbalanced Data Set using Decision Tree Algorithms 79

1 import sys

2

3 i f name == ” main ” :

4 datase t = sys . argv [1]

5 c l a s s e s = sys . argv [2]

6 X, Y = corpus bc (dataset , s t a t u s)

7 c a l l C l a s s i f i e r s (X, Y, 2)

8 X, Y, n o c l a s s e s = corpus mc (dataset , s t a t u s)

9 c a l l C l a s s i f i e r s (X, Y, n o c l a s s e s)

Code Sample 5. Main Class

6. Experimental results

In this section the experimental results for the binary and multi-class
classification are presented. For the binary classification, the classic measures,
Accuracy, Precision and Recall are compared with their weighted versions. For
multi-class classification, the average Accuracy and the Macro Precision and
Recall are compared with their weighted versions.

Table 12 presents the best scores obtained for weighted Accuracy, Preci-
sion and Recall for binary classification.

The best scores of the evaluation methods for the Decision Tree classifier
are obtained by the same parameters with the exception of min sample split
which for the weighted precision differs. The Decision Trees and Random
Forest Classifiers yield better results when the quality of a split is measured
using the Gini impurity, while Extremely Randomized Trees present better
scores when the quality of a split is measured using the entropy for information
gain.

Table 12

Best measures for binary classification (with weighted features)

Measure
Decision Tree
Classifier

Random Forest
Classifier

Extremely Randomized
Trees Classifier

wA 0.845 ± 0.021 0.874 ± 0.016 0.873 ± 0.019
wP 0.848 ± 0.018 0.874 ± 0.020 0.873 ± 0.017
wR 0.844 ± 0.021 0.874 ± 0.019 0.873 ± 0.018

Table 13 presents the best results obtained for the binary classification
without using weighted measures. Accuracy and precision present better scores
than their weighted versions, but these scores are wrong because, without
taking into account the weights of each class, a lot of miss-classification appears
and so anomalies occur, e.g. for Extremely randomized tree the Precision is
equal to 1. The Recall, in this case, is lower because it measures the sensitivity
of the classifier to correctly identify the right class for a data point.

Table 14 presents the best scores obtained for weighted Accuracy, Pre-
cision and Recall and micro Precision and Recall for multi-class classification.

80 Ciprian-Octavian TRUICĂ, Cătălin Adrian LEORDEANU

As in the case of the binary classification, the best scores are obtained by the
same algorithm by different parameters, but the difference between the scores
for the same measure is very small, e.g. the weighted Precision for the Random
Forest Classifier with the same parameters used for the weighted Accuracy is
0.712 ± 0.045. The scores obtained for the Extremely Randomized Trees clas-
sifiers for weighted Precision and Recall is 0.705 ± 0.040, respectively 0.760 ±
0.023 when the same parameters are used as for the weighted Accuracy.

Table 13

Best measures for binary classification (without weighted features)

Measures
Decision Tree
Classifier

Random Forest
Classifier

Extremely Randomized
Trees Classifier

A 0.848 ± 0.007 0.876 ± 0.010 0.875 ± 0.009
P 0.846 ± 0.018 0.895 ± 0.068 1.000 ± 0.000
R 0.724 ± 0.024 0.760 ± 0.018 0.755 ± 0.020

Table 14

Best measures for multi-class classification (with weighted features)

Measure
Decision Tree
Classifier

Random Forest
Classifier

Extremely Randomized
Trees Classifier

wA 0.732 ± 0.025 0.761 ± 0.026 0.761 ± 0.024
wP 0.692 ± 0.029 0.717 ± 0.036 0.713 ± 0.040
µP 0.733 ± 0.025 0.761 ± 0.025 0.761 ± 0.025
wR 0.733 ± 0.024 0.761 ± 0.027 0.761 ± 0.024
µR 0.763 ± 0.027 0.762 ± 0.028 0.761 ± 0.024

Table 15 presents the best results obtained for the multi-class classifica-
tion without using weighted measures. In this case, the effects of weights can
be seen for the macro Precision and Recall, meaning that both sensitivity and
the positive predictive value are not determined correctly.

Table 15

Best measures for multi-class classification (without weighted measures)

Measure
Decision Tree
Classifier

Random Forest
Classifier

Extremely Randomized
Tree Classifier

avgA 0.737 ± 0.013 0.767 ± 0.013 0.764 ± 0.011
MP 0.291 ± 0.057 0.417 ± 0.076 0.407 ± 0.056
µP 0.737 ± 0.013 0.767 ± 0.012 0.763 ± 0.013
MR 0.244 ± 0.029 0.261 ± 0.018 0.254 ± 0.023
µP 0.737 ± 0.012 0.767 ± 0.014 0.764 ± 0.012

The results obtained in this paper are similar to the ones in the existing
literature, especially research using the same data, thus validating the design
choices presented in the proposed solution. The best results for classification
using the same dataset can be found in [12], which obtained 86% accuracy,

Classification of an Imbalanced Data Set using Decision Tree Algorithms 81

82% precision and 72% recall using binary classification. The relevance of
such a comparison can be found in the fact that the model is similar with
the proposed solution, being also based on Random Forest and Extremely
Randomized Trees. The results previously presented in Table 12 are similar,
obtaining 85% accuracy using the Decision Tree Classifier, while the results
using Random Forest and Extremely Randomized Trees are superior, at 87%
for both accuracy measurements. In the case of multi-class classification the
paper [12] obtained 72% recall, compared to 74% recall for the model described
in the proposed solution. The rest of the metrics follow a similar trend, both
for binary classification, as well as multi-class classification.

7. Conclusions

Weighted measures prove to be a good choice when dealing with imbal-
anced data. The scores for the measures show that for all the tested algorithms
the weights play an important role in classification.

The Decision Tree Classifier, although the one with the worst results
from the tested algorithm, has an overall accuracy of over 84% for the binary
classification and of over 73% for the multi-class one. The strategy used to
choose the split at each node that yields the best scores is the ’best split’.

Random Forest Classifier yields slightly better results when bootstrap is
not used, while Extremely Randomized Trees has slightly better results when
bootstrap is used for both binary and multi-class classification. The results
for these two classifiers are very similar for both cases.

Other algorithms can be used for classification. Ada Boost and Support
Vector Machine will be tested in future work to determine if they produce
better results than the Decision Tree-based algorithms.

Acknowledgement

This work has been funded by University Politehnica of Bucharest, through
the Excellence Research Grants Program, UPB - GEX. Identifier: UPB -
EXCELENŢĂ - 2016 Privacy and anonymity for Data Clouds, Contract num-
ber AU11-16-16.

References

[1] L. Breiman, J.H. Friedman, Olshen and C.G. Stone, Classification and Regression

Trees, Wadsworth International Group, Belmont, California, USA., 1984.

[2] L. Breiman, Random Forests, Machine Learning, 45(2001), No. 1, 5-32.

[3] Y. Dauxais, D. Gross-Amblard, T. Guyet, T., A. Happe, Extraction de chroniques

discriminantes, Extraction et Gestion des Connaissances (2017), 165-176.

[4] W. Fan and A. Bifet, Mining Big Data: Current Status, and Forecast to the Future,

ACM SIGKDD Journal, 14(2013), No. 2, 1-5.

[5] P. Geurts, D. Ernst and L. Wehenkel, Extremly randomized trees, Machine Learning,

63(2006), No. 1, 3-42.

82 Ciprian-Octavian TRUICĂ, Cătălin Adrian LEORDEANU

[6] Q. Gu, L. Zhu and Z. Cai, Evaluation Measures of the Classification Performance of

Imbalanced Data Sets, International Symposium on Computational Intelligence and

Intelligent Systems, (2009), 461-471.

[7] H. He and E.A. Garcia, Learning from Imbalanced Data, IEEE Transactions on Knowl-

edge and Data Engineering, 21(2009), No. 9, 1263-1284.

[8] T.K. Ho, Random Decision Forests, International Conference on Document Analysis

and Recognition, (1995), 278-282.

[9] T.K. Ho, The Random Subspace Method for Constructing Decision Forests, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(1998), No. 8, 832-844.

[10] G.V. Kass, An Exploratory Technique for Investigating Large Quantities of Categorical

Data, Journal of the Royal Statistical Society. Series C (Applied Statistics), 29(1980),

No. 2, 119-127.

[11] T.S. Lim, W.Y. Loh, Y.S. Shih, A Comparison of Prediction Accuracy, Complexity,

and Training Time of Thirty-Three Old and New Classification Algorithms, Machine

Learning, 40(2000), No. 3, 203-228.

[12] V. Levorato, M. Lutz, M. Lagacherie, Génération automatique de billets journalis-

tiques: singularité et normalité d’une sélection, Extraction et Gestion des Connais-

sances, RNTI-E-33(2017), 45-56

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M.Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine Learning in Python Jour-

nal of Machine Learning Research, 12(2011), 2825-2830

[14] J.R. Quinlan, Induction of Decision Trees, Journal of Machine Learning, 1(1986), No.

1, 81-106.

[15] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1993.

[16] C.R. Turner, A.L. Wolf, A. Fuggetta and L. Lavazza, Feature Engineering, Interna-

tional Workshop on Software Specification and Design, (1998), 162-172.

[17] M. Sokolova and G. Lapalme, A systematic analysis of performance measures for clas-

sification tasks, Information Processing & Management, 45(2009), No. 4, 427-437.

[18] Y. Sun, A.K.C. Wong and M.S. Kamel, Classification of Imbalanced Data: a Review,

International Journal of Pattern Recognition and Artificial Intelligence, 23(2009), No.

4, 687-719.

Classification of an Imbalanced Data Set using Decision Tree Algorithms 83

Appendix A. Parameters for binary classification

Decision tree Tree Classifier

Parameter wA wP wR
criterion gini gini gini
max features None None None
max depth 10 10 10
min samples split 2 10 2
min samples leaf 1 1 1
splitter best best best
n estimators N/A N/A N/A
bootstrap N/A N/A N/A

Random Forest Classifier

Parameter wA wP wR
criterion gini gini entropy
max features auto auto log2
max depth None None None
min samples split 5 10 5
min samples leaf 1 1 1
splitter N/A N/A N/A
n estimators 100 100 1000
bootstrap False False True

Extremely Randomized Trees Classifier

Parameter wA wP wR
criterion entropy gini entropy
max features None log2 None
max depth None None None
min samples split 5 5 5
min samples leaf 1 1 1
splitter N/A N/A N/A
n estimators 1000 1000 1000
bootstrap True False True

84 Ciprian-Octavian TRUICĂ, Cătălin Adrian LEORDEANU

Appendix B. Parameters for multi-class classification

Decision tree Tree Classifier

Parameter wA wP µP wR µR
criterion entropy entropy entropy entropy entropy
max features None None None None None
max depth None None None None None
min samples split 5 2 10 2 5
min samples leaf 5 1 5 5 5
splitter best random best best best
n estimators N/A N/A N/A N/A N/A
bootstrap N/A N/A N/A N/A N/A

Random Forest Classifier

Parameter wA wP µP wR µR
criterion gini entropy gini entropy entropy
max features auto auto auto None auto
max depth None None None None None
min samples split 5 2 5 5 5
min samples leaf 1 1 1 1 1
splitter N/A N/A N/A N/A N/A
n estimators 1000 1000 1000 1000 100
bootstrap False False False True False

Extremely Randomized Trees Classifier

Parameter wA wP µP wR µR
criterion entropy entropy entropy entropy entropy
max features None None None None None
max depth None None None None None
min samples split 5 2 5 5 5
min samples leaf 1 1 1 1 1
splitter N/A N/A N/A N/A N/A
n estimators 1000 1000 1000 100 1000
bootstrap True True True True True

	1. Introduction
	2. Decision Tree Classifiers and Extensions
	3. Evaluation Measures
	4. Data set description
	4.1. Features description
	4.2. Feature engineering
	4.3. Class description

	5. Implementation
	6. Experimental results
	7. Conclusions
	Acknowledgement
	References
	Appendix A. Parameters for binary classification
	Appendix B. Parameters for multi-class classification

