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THEORETICAL AND EXPERIMENTAL INVESTIGATIONS 
OF A MECHANICAL MODEL FOR ADHESIVELY BONDED 

PIEZOELECTRIC SENSOR  

Naizhi ZHAO1 

In the realm of structural health monitoring research, the mechanical model 
of the sensor stands as a pivotal factor, wielding significant impact. This study delves 
into the piezoelectric (PZT) driving principle inherent to PZT ceramics, thereby 
establishing a driving vibration model for PZT ceramic sensors based on the tenets 
of continuous medium dynamics. Through a meticulous exploration of the interaction 
between the PZT sensor and its bonding layer, the mechanical model's integrity was 
scrutinized, affirming its feasibility. Furthermore, practical experimentation was 
undertaken to assess the influence of the model and various adhesive substances on 
PZT transfer driving force. The findings unequivocally underscore the validity and 
precision, to a certain degree, of the simplified model proposed herein for bonded 
PZT drive. The primary focus of this study revolves around examining the structural 
response under the influence of a bonded PZT sensor, followed by the establishment 
of a corresponding mechanical model. Special attention is paid to the impact of 
bonding layer properties on the mechanical model, thereby ensuring that the research 
outcomes closely align with the sensor's real-world operational conditions, thereby 
enhancing practicality. 
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1. Introduction 

In-service pipelines, such as municipal and petrochemical pipelines, 
undergo inevitable aging during their operational lifespan due to corrosion resulting 
from chemical reactions or other factors. This gradual deterioration compromises 
the integrity and load-bearing capacity of the structure, potentially leading to severe 
consequences. Therefore, it is imperative to explore health monitoring and 
evaluation technologies for various transportation pipelines to promptly detect 
pipeline damage and mitigate potential risks[1,2]. 

Piezoelectric (PZT) materials have emerged as key sensors in large-scale 
structural health monitoring in recent years, owing to their utilization of the PZT 
effect. Researchers have shown significant interest in this field. Generally, the 
integration of PZT with the main structure can be categorized into two types: 
embedded and bonded sensors. Embedded sensors exhibit polarization in the 
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thickness direction, known as D33 motion, induced by current. In contrast, the 
polarization direction of bonded sensors differs, with vibration occurring along the 
length direction, referred to as D31 vibration[3]. 

The body of literature on PZT applications is extensive, covering a wide 
range of mechanical theoretical analyses, experimental studies on piezoelectric 
intelligent structures, vibration control, seismic resilience, structural health 
monitoring, damage identification technology, active buckling control, and 
engineering applications. Despite the plethora of research, there remains a 
dominance of application development and theoretical exploration, with limited 
numerical simulations and experimental validations. Furthermore, there is a 
scarcity of in-depth investigations into the coupling and modeling theory between 
adhesive piezoelectric intelligent drivers and protective layers, hindering the 
attainment of engineering practicality[4]. 

This study addresses these gaps by examining the characteristics of PZT 
drivers, selecting appropriate piezoelectric equations, and developing control 
equations for the lengthwise vibration of PZT drivers based on continuum dynamics 
principles. Additionally, the study discusses the material properties of PZT, bonding 
layer thickness, elastic modulus, and other parameters essential for PZT driver 
functionality. In conclusion, this research lays a critical theoretical foundation for 
enhancing the performance of PZT drivers. 

2. Theoretical analysis 

In the health monitoring of smart structures, a thin-sheet piezoelectric 
ceramic (PZT) sensor is commonly affixed to the surface of the structure. When 
subjected to alternating current, the PZT sensor undergoes deformation, primarily 
elongating in its length direction, and transmits this deformation to the structure in 
the form of shear force[5,6]. This process is depicted schematically in Fig. 1. 

Typically, the PZT sensor is adhered to the surface of the structure being 
monitored. When subjected to alternating harmonic voltage, the piezoelectric effect 
induces deformation in the sensor. 

 
Fig.1. PZT structural diagram 

 
According to Crowley's uniform strain theory, this study operates under the 

following assumptions [6]: 
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(1)The bonding layer solely endures shear stress and facilitates load 
transmission. 

(2)The electrodes formed at the top and bottom of the PZT are equipotential. 
(3) The driving force generated by the PZT driving sensor only factors in 

the stress in one direction, specifically the axial normal stress. 
(4) The bonding layer shares the same cross-sectional size as the PZT 

sensor, and the bonding layer is ideal. 
(5)The bonding layer shares the same cross-sectional size as the PZT sensor, 

and the bonding layer is ideal. 

2.1 Bonded PZT-driven mechanical model 

As illustrated in Fig.2(a), when subjected to alternating harmonic voltage, 
the sensor adhered to the surface of the structure undergoes deformation primarily 
along its longer dimension. This deformation is subsequently transmitted to the 
surface of the structure, effectively introducing an eccentric load in the x-coordinate 
direction to the detected object, thereby driving the structural response. 

                
(a) Force conduction diagram of PZT and bonding layer     (b) Physical balance conditions 

Fig. 2. Bonded PZT sensor works 
Building upon the aforementioned theoretical assumptions, incorporating 

the shear force of the bonding layer and the collaborative deformation of the PZT 
sensor, the model of the PZT sensor is formulated, yielding the following derivation 
for the shear force[6,7]: 

𝛾𝛾𝑗𝑗 = 𝑉𝑉(𝑥𝑥,𝑡𝑡)
ℎ𝑗𝑗

                                                   (1) 
The material properties of the bonded layer are as follows: 

𝜏𝜏 = 𝐺𝐺𝑗𝑗𝛾𝛾𝑗𝑗 = 𝐺𝐺𝑗𝑗
𝑉𝑉(𝑥𝑥,𝑡𝑡)
ℎ𝑗𝑗

                                          (2) 

where 𝑉𝑉(𝑥𝑥, 𝑡𝑡) is the horizontal shear of the adhesive layer;  𝛾𝛾𝑗𝑗 is the shear strain of 
the adhesive layer;  𝜏𝜏 is the stress of the adhesive layer; 𝐺𝐺𝑗𝑗 is the shear modulus of 
adhesive and 𝐺𝐺𝑗𝑗 = 𝐸𝐸𝑗𝑗

2�1+𝑣𝑣𝑗𝑗�
; 𝐸𝐸𝑗𝑗is the elastic modulus of adhesive;𝑣𝑣𝑗𝑗 is layer Poisson's 

ratio；ℎ𝑗𝑗 is the thickness; 𝐸𝐸𝑗𝑗.𝑣𝑣𝑗𝑗 are elastic modulus and Poisson's ratio; 
As depicted in Fig. 2 (b), we can derive the equation as follows: 
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𝜌𝜌 𝜕𝜕2𝑉𝑉(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

= 𝜕𝜕𝜎𝜎𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜏𝜏
ℎ
                       (3)  

According to the second piezoelectric equation, we obtain: 
 𝜕𝜕𝜎𝜎𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝑐𝑐11𝐸𝐸
𝜕𝜕𝑆𝑆𝑥𝑥1
𝜕𝜕𝜕𝜕

                            (4)  
Order shows: 

𝜌𝜌 𝜕𝜕2𝑉𝑉(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

= 𝑐𝑐11𝐸𝐸
𝜕𝜕2𝑉𝑉(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 𝐺𝐺𝑗𝑗
𝑉𝑉(𝑥𝑥,𝑡𝑡)
ℎℎ𝑗𝑗

                         (5)  

That: 
𝜕𝜕2𝑉𝑉(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− 𝑐𝑐11𝐸𝐸

𝜌𝜌
𝜕𝜕2𝑉𝑉(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

− 𝐺𝐺𝑗𝑗
𝑉𝑉(𝑥𝑥,𝑡𝑡)
ℎℎ𝑗𝑗

= 0                   (6)  

Whereℎ is the piezoelectric ceramic thickness; 𝜆𝜆 = �𝑐𝑐11𝐸𝐸

𝜌𝜌
 is the longitudinal wave 

velocity which is only related to the material properties of PZT;  𝛽𝛽 = �
𝐺𝐺𝑗𝑗
𝜌𝜌ℎℎ𝑗𝑗

, is the 

parameters related to PZT material and bonding layer. 𝑉𝑉(𝑥𝑥, 𝑡𝑡) , 𝜆𝜆  is defined 

as𝑉𝑉(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉0(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖,𝛾𝛾 = �𝜔𝜔2+𝛽𝛽2

𝜆𝜆
= �

𝜌𝜌ℎℎ𝑗𝑗𝜔𝜔2+𝐺𝐺𝑗𝑗
𝑐𝑐11𝐸𝐸 ℎℎ𝑗𝑗

, solving the equation (6),can be 

obtained as: 
 𝑉𝑉0(𝑥𝑥) = 𝐶𝐶1𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾𝛾𝛾) + 𝐶𝐶2𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾𝛾𝛾)                  (7) 

(In which:(1)𝑉𝑉0(𝑥𝑥)|𝑥𝑥=0 = 0,𝐶𝐶1 = 0  (2)𝜎𝜎𝑥𝑥|𝑥𝑥=±𝐿𝐿
2

= 0,𝐶𝐶2 = 𝛬𝛬
𝛾𝛾 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝛾𝛾𝛾𝛾
2 � .  

According to the above conclusions, under the excitation of alternating 
voltage 𝑈𝑈 = 𝑈𝑈0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , The displacement equation for the elongated PZT sensor 
affixed to the structure's surface can be derived as follows: 

𝑉𝑉(𝑥𝑥, 𝑡𝑡) = 𝛬𝛬
𝛾𝛾
𝑠𝑠𝑠𝑠𝑠𝑠 �𝛾𝛾𝛾𝛾

2
� 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾𝛾𝛾)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                  (8) 

The expression for shear stress transfer within the adhesive layer can be 
derived by considering the material properties and constitutive relation parameters 
of the adhesive layer[8,9]. 

 𝜏𝜏 = 𝐺𝐺𝑗𝑗𝛾𝛾 =
𝐺𝐺𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠�

𝛾𝛾𝛾𝛾
2 �

𝛾𝛾ℎ𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾𝛾𝛾)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                      (9) 

According to Edward F. Crowley's theoretical model, the driving force 
generated by the sensor acts on both ends of the structure. Consequently, the total 
shear force exerted on the matrix can be expressed as follows: 

𝑄𝑄 = 𝐺𝐺𝑗𝑗𝛬𝛬𝛬𝛬
𝛾𝛾2ℎ𝑗𝑗

[𝑠𝑠𝑠𝑠𝑠𝑠 �𝛾𝛾𝛾𝛾
2
� − 1]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                    (10) 

The shear force transmitted by the bonding layer is at the coordinates ( 𝑋𝑋, 𝑌𝑌 ) : 

𝑋𝑋 =
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝛾𝛾𝛾𝛾2 �−𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾�

𝛾𝛾𝛾𝛾
2 �

4𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠2�𝛾𝛾𝛾𝛾4 �
and  𝑋𝑋 =

𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾�𝛾𝛾𝛾𝛾2 �−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�
𝛾𝛾𝛾𝛾
2 �

4𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠2�𝛾𝛾𝛾𝛾4 �
 . 
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where𝛬𝛬 is computes constants, 𝑐𝑐11
𝐸𝐸  is piezoelectric constants, 𝐿𝐿 is the piezoelectric 

ceramic longitudinal length. 
It can be inferred that the elastic modulus of the bonding layer and the 

piezoelectric constant of PZT are influential factors affecting the shear force. The 
deformation induced in the bonding layer by PZT is transferred to the driving force 
of the matrix. Consequently, a higher modulus of the bonding layer results in a 
larger DR value [9,10]. 

2.2 Cantilever deflection calculation  

Based on the aforementioned theoretical research, a mathematical model of 
cantilever beam actuation can be established to validate the rationality of the 
actuation model. Initially, the driving force generated by the PZT sensor within the 
structure can be equated to a pair of couples acting on the cantilever beam. 
Assuming the fixed end as the coordinate origin, with \( x_1 \) and \( x_2 \) denoting 
the coordinates of the equivalent points, the mechanical model of transverse 
vibration is depicted in Fig. 3(a), illustrating the force's effect on the micro-segment 
as shown in Fig. 3(b) below[11,12]. 

          
(a)   The forces of structure                        (b)  The forces of role in the micro segment 

Fig.3.Mechanical model of transverse vibration 
 

The initial position is in a stationary state. Assuming that the equation is 
𝑦𝑦(𝑥𝑥, 𝑡𝑡) = 0, the cantilever beam begins to vibrate under the excitation of the driving 
force generated by PZT. The micro-element is taken for analysis. At a certain time 
point (𝑥𝑥, 𝑡𝑡), the equation is 𝑚𝑚(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑑𝑑,𝑀𝑀𝑃𝑃(𝑥𝑥, 𝑡𝑡) = 𝑄𝑄(𝑥𝑥, 𝑡𝑡) ℎ𝑏𝑏

2
. 

Based on the equilibrium condition of the micro-segment force depicted in 
Fig. 3(a)(b): 

𝜌𝜌𝑏𝑏𝐴𝐴𝑏𝑏
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2 𝑑𝑑𝑑𝑑 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 𝑑𝑑𝑑𝑑                                                       (11) 

 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝑚𝑚𝑚𝑚𝑚𝑚                                                       (12) 

 
We have: 

𝜌𝜌𝑏𝑏𝐴𝐴𝑏𝑏
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                      (13)  
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𝑉𝑉 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                       (14)  
Through the incorporation of the ideal Euler beam model, the ensuing 

relationship can be derived:   
𝑀𝑀 = −𝐸𝐸𝑏𝑏𝐼𝐼𝑏𝑏

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

                   (15)  
where 𝑀𝑀𝑃𝑃(𝑥𝑥, 𝑡𝑡)  is generate torque, ℎ𝑏𝑏  is the cantilever beam height; 𝐴𝐴𝑏𝑏  cantilever 
beam cross-sectional area; 𝜌𝜌𝑏𝑏 is the cantilever beam density; 𝐸𝐸𝑏𝑏is the elastic modulus of 

cantilever, 𝐼𝐼𝑏𝑏 = 𝑏𝑏𝑏𝑏�2ℎ𝑏𝑏�
3

12 is Moment of inertia of beam cross-section of the Y axis; 
the thickness of the beam is2ℎ𝑏𝑏. 

Substituting Eq. (15) into eq. (14), we can get: 
𝑉𝑉 = 𝜕𝜕

𝜕𝜕𝜕𝜕
�−𝐸𝐸𝑏𝑏𝐼𝐼𝑏𝑏

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

� + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                               (16) 
So, we can get:  

𝜌𝜌𝑏𝑏𝐴𝐴𝑏𝑏
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2 = 𝜕𝜕2

𝜕𝜕𝑥𝑥2 �−𝐸𝐸𝑏𝑏𝐼𝐼𝑏𝑏
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2�+ 𝜕𝜕2𝑚𝑚

𝜕𝜕𝑥𝑥2                         (17) 
𝜕𝜕2

𝜕𝜕𝑥𝑥2 �𝐸𝐸𝑏𝑏𝐼𝐼𝑏𝑏
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2� + 𝜌𝜌

𝑏𝑏
𝐴𝐴𝑏𝑏

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2 = 𝜕𝜕2𝑚𝑚

𝜕𝜕𝑥𝑥2                          (18) 

The lateral vibration differential Equation (18) delineates the behavior of a 
cantilever beam subjected to the effects of a PZT driver. Through the utilization of 
the expansion theorem of natural modes, it becomes viable to express the deflection 
as a linear combination[13]. 

𝑤𝑤(𝑥𝑥, 𝑡𝑡) = ∑ 𝛷𝛷𝑖𝑖(𝑥𝑥)𝑛𝑛
𝑖𝑖=1 𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝛷𝛷𝛷𝛷                                 (19) 

𝛷𝛷 = [𝛷𝛷1(𝑥𝑥)⋯𝛷𝛷𝑛𝑛(𝑥𝑥)] is the normalized mass matrix; 
𝑞𝑞 = [𝑞𝑞1(𝑡𝑡)⋯𝑞𝑞𝑛𝑛(𝑡𝑡)]𝑇𝑇 is coordinate vector; 
So we can get the Eq. (20): 

𝑤𝑤 = 𝑤𝑤(𝐿𝐿𝑏𝑏, 𝑡𝑡) = ∑ 𝛷𝛷𝑖𝑖(𝐿𝐿𝑏𝑏)𝑛𝑛
𝑖𝑖=1 𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝛷𝛷𝐿𝐿𝑞𝑞                                   (20) 

where 𝐿𝐿𝑏𝑏 is cantilever length. 
The second and fourth-order partial derivatives of 𝑡𝑡  and x are calculated 

respectively. The results are brought into Eq. (19 ),  a new Eq. ( 21 ) can be get: 

𝐸𝐸𝑏𝑏𝐼𝐼𝑏𝑏 ∑
𝑑𝑑4𝛷𝛷𝑖𝑖
𝑑𝑑𝑥𝑥4

𝑛𝑛
𝑖𝑖=1 𝑞𝑞𝑖𝑖 + 𝜌𝜌𝑏𝑏𝐴𝐴𝑏𝑏 ∑

𝑑𝑑2𝑞𝑞𝑖𝑖
𝑑𝑑𝑡𝑡2 𝛷𝛷𝑖𝑖

𝑛𝑛
𝑖𝑖=1 = 𝑃𝑃𝑛𝑛                           (21) 

We have: 
𝑀𝑀𝑛𝑛𝑞𝑞

¨
𝑛𝑛(𝑡𝑡) +𝜔𝜔𝑛𝑛

2𝑀𝑀𝑛𝑛𝑞𝑞𝑛𝑛(𝑡𝑡) = 𝑃𝑃𝑛𝑛                                    (22) 
For the cantilever structure: 

𝛷𝛷𝑛𝑛(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠 ��2𝑛𝑛−1
2𝑙𝑙 𝜋𝜋� 𝑥𝑥� ,𝜔𝜔𝑛𝑛 = �(2𝑛𝑛−1)𝜋𝜋

2 �
2
� 𝐸𝐸𝐸𝐸
𝑚𝑚𝑙𝑙4

   ,𝑛𝑛 = 1,2⋯ 
The outcomes of the calculations for generalized mass and generalized load 

are presented below: 

𝑀𝑀𝑛𝑛 = ∫ 𝛷𝛷𝑛𝑛(𝑥𝑥)2𝑚𝑚(𝑥𝑥)𝑑𝑑𝑑𝑑𝑙𝑙
0 = 𝑚𝑚

¯
∫ 𝑠𝑠𝑠𝑠𝑠𝑠2 �2𝑛𝑛−1

2𝑙𝑙 𝜋𝜋𝜋𝜋�𝑑𝑑𝑑𝑑 = 𝑚𝑚
¯
𝑙𝑙

2
𝑙𝑙

0               (23) 

 𝑀𝑀𝑛𝑛 = ∫ 𝛷𝛷𝑛𝑛(𝑥𝑥) 𝜕𝜕
2𝑚𝑚(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2 𝑑𝑑𝑑𝑑𝑙𝑙

0 = ∫ 𝛷𝛷𝑛𝑛(𝑥𝑥) 𝜕𝜕
2𝑚𝑚(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2 𝑑𝑑𝑑𝑑𝑥𝑥2

𝑥𝑥1
= 𝑎𝑎𝑛𝑛𝑀𝑀𝑃𝑃           (24) 
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where 𝑎𝑎𝑛𝑛 = �𝛷𝛷𝑛𝑛
′′(𝑥𝑥2)−𝛷𝛷𝑛𝑛

′ (𝑥𝑥2)−𝛷𝛷𝑛𝑛
′′(𝑥𝑥1) +𝛷𝛷𝑛𝑛

′ (𝑥𝑥1)�eq. (22) of the Duhamel integral 
solution is： 

 𝑞𝑞𝑛𝑛(𝑡𝑡) = 1
𝑀𝑀𝑛𝑛𝜔𝜔𝑛𝑛

∫ 𝑃𝑃𝑛𝑛(𝜏𝜏)𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝑛𝑛(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡
0                             (25) 

Substituting the parameters  𝑀𝑀𝑛𝑛,𝑃𝑃𝑛𝑛,𝑞𝑞𝑛𝑛  into Eq. (20), then into eq. (22), a 
new equation of the deflection of the cantilever beam under the action of equal can 
be derived[14]. 

3. Experimental Study  

The experiment is divided into two phases: initially, the driven model of 
flexible structures is validated. In this phase, PZT is affixed to the surface of the 
structure, with the PZT ceramics being driven by PZT driving power. The driving 
force then traverses through the bonding layer to induce structural vibration. 
Subsequently, the influence of the layer on the PZT driving force is examined. By 
selecting different binders and transmitting the same signal, the effects on the free 
end displacement of the cantilever structure at its first and second natural 
frequencies are tested and compared. Furthermore, variations in the PZT sensor 
signal are analyzed to elucidate the impact of the adhesive force of the PZT driver. 

3.1 Cantilever Beam Modal Analysis  

When the PZT sensor imparts motion to a flexible structure, such as a 
cantilever aluminum beam, and the frequency of the transmitted signal matches the 
natural frequency of the structure, resonance occurs, resulting in optimal drive 
performance. The theoretical calculation of the first natural frequency of the 
cantilever is essential for understanding this phenomenon. This calculation focuses 
solely on the plane bending vibration of the beam, excluding the effects of moment 
of inertia and shear force-induced deformation.  

When analyzing the plane bending vibration of a beam, it is customary to 
exclude the influence of moment of inertia and shear force-induced deformation. 
This allows us to derive a simplified differential equation that accurately represents 
the bending behavior of the beam [14,15]. The resulting equation governing the 
beam's bending vibration is as follows: 

𝜕𝜕2

𝜕𝜕𝑥𝑥2
�𝐸𝐸𝐸𝐸(𝑥𝑥) 𝜕𝜕

2𝑤𝑤(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

� = −𝑚𝑚(𝑥𝑥) 𝜕𝜕
2𝑤𝑤(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

                          (26) 
 
According to the boundary conditions: 
(1)𝑥𝑥 = 0, 𝑤𝑤(0, 𝑡𝑡) = 0, 𝜕𝜕

2𝑤𝑤(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

�
𝑥𝑥=0

= 0； 

(2)𝑥𝑥 = 𝑙𝑙,𝐸𝐸𝐸𝐸(𝑥𝑥) 𝜕𝜕
2𝑤𝑤(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

�
𝑥𝑥=0

= 0, 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐸𝐸𝐸𝐸(𝑥𝑥) 𝜕𝜕

2𝑤𝑤(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

��
𝑥𝑥=𝑙𝑙

= 0. 
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Applying𝑤𝑤(𝑥𝑥, 𝑡𝑡) = 𝑊𝑊(𝑥𝑥)𝑊𝑊(𝑡𝑡) ,then 𝑤𝑤(𝑥𝑥, 𝑡𝑡) = 𝑊𝑊(𝑥𝑥) 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝜔𝜔 + 𝜙𝜙 ,we can 
get： 

𝑤𝑤(𝑥𝑥) = 𝐶𝐶1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 +𝐶𝐶2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽𝛽𝛽 +𝐶𝐶3 𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝛽𝛽𝛽𝛽 + 𝐶𝐶4 𝑐𝑐𝑐𝑐𝑐𝑐 ℎ𝛽𝛽𝛽𝛽             (27) 
Substituting the boundary conditions into the formula we can get： 

𝜔𝜔𝑛𝑛𝑛𝑛 = �(2𝑖𝑖−1)𝜋𝜋
2𝑙𝑙

�
2
�𝐸𝐸𝑏𝑏𝐼𝐼𝑏𝑏
𝜌𝜌𝑏𝑏𝐴𝐴𝑏𝑏

(𝑖𝑖 = 1,2,3⋯ )                                    (28) 

Where 𝑤𝑤(𝑥𝑥, 𝑡𝑡)  is the deflection displacement variable; 𝑊𝑊(𝑥𝑥)  is the deflection 
coordinate variable; 𝑊𝑊(𝑡𝑡)is the deflection time variable. 

In general, the vibration energy of a cantilever beam in higher modes is 
typically minimal. Even if higher modes of vibration occur in the free state, their 
presence tends to decay rapidly. The majority of vibration energy is concentrated in 
the lower order modes. Therefore, it is common practice to focus on the first three 
vibration modes when analyzing a cantilever beam [14,15]. 

In the experimental procedure, the beam was subjected to a swept sine wave 
ranging from 1 to 100 Hz via the excitation system. Subsequently, spectral analysis 
was conducted using MATLAB software to ascertain the first three natural 
frequencies of the beam. This methodology adheres to established practices in 
structural dynamics analysis, facilitating accurate determination of the beam's 
vibrational characteristics. 

Table 1 presents the initial three natural frequencies of the cantilever beam 
based on theoretical calculations, juxtaposed with the corresponding experimental 
results. A comparison between the theoretical and experimental values indicates a 
high level of consistency, affirming the accuracy of the data obtained through 
experimentation. This alignment underscores the reliability of the theoretical 
predictions in modeling the dynamic behavior of the cantilever beam. 

Table 1 
The natural frequency of cantilever 

 First order natural 
frequency /Hz 

Second  order natural 
frequency /Hz 

Third order natural 
frequency /Hz 

Experimental 
value 

1.54 9.35 25.30 

Theoretical 
value 

1.64 9.77 26.85 

3.1.1 Experimental Test Setup  

The experimental setup comprises a signal transmitter, a power amplifier, a 
PZT sensor, and a signal receiver. A self-generated sine five-peak wave digital 
signal is inputted by the signal generator. This digital signal, transmitted through 
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the PZT sensor, generates a driving force to excite the cantilever beam. The power 
amplifier amplifies the signal power by a factor of 15, thereby enhancing the driving 
force applied to the cantilever beam structure to mimic the theoretical driving 
model[16,17]. 

For this experiment, the laser displacement sensor utilized is the ft50220 
model produced by Beijing FeiTuo Cinda Laser Technology Co.LTD. This 
displacement sensor features an effective range of 80 mm to 300 mm and boasts an 
accuracy of 0.01 mm.  

 

    
(a)Test system                                              (b) Schematic diagram 

Fig.4. Test system and schematic diagram 
 

Fig. 4 illustrates the principle and testing system. Utilizing a non-contact 
displacement meter ensures that the fundamental frequency structure remains 
unchanged, thereby mitigating errors associated with contact measurements and 
yielding more precise test outcomes. The experimental setup involves a 1 mm thick 
flexible aluminum cantilever beam, with the driving element being PZT-4, sized at 
44 × 33 × 1 mm. The laser displacement sensor's light spot is positioned at a distance 
of 150mm from the central axis of the cantilever's free end. 

The experimental parameters are delineated as follows: the sinusoidal 
excitation signal is generated by the PZT sensor. The excitation signal is comprised 
of a 5-peak wave signal modulated by the Hanning window function. Specifically, 
the frequencies employed are 1.54 Hz and 9.35 Hz, while the voltage amplitude 
ranges from 75 to 300 V. 

3.1.2 Experimental result  

In this experiment, the first two natural frequencies of the beam serve as the 
excitation signal frequencies, with the PZT sensor employed to transmit the signal 
within the voltage range of 75 V to 300 V. Subsequently, based on the experimental 
data, the amplitude of the displacement curve of the free end of the beam is depicted 
(refer to Fig. 5). 
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Under the excitation of the first-order frequency, the displacement of the 
free end measures 2.732 mm, representing a deviation of 17.58% from the 
theoretical calculation. Similarly, at the second-order frequency, the observed 
deviation stands at 17.61%. 

 

 
(a) First resonance  

 
(b) Second  resonance 

Fig.5.The relationship between resonance and input voltage 
 

The accuracy of the bonded PZT drive model can be assessed by comparing 
experimental data with theoretical predictions. While there is inevitably some 
margin of error, the overall accuracy generally aligns with theoretical expectations. 
This discrepancy can often be attributed to simplifications and assumptions made 
in the modeling process. Additionally, variations in material properties and 
experimental conditions can also impact the accuracy of the results. In summary, 
the conservative approach to expressing these findings in academic writing 
underscores the need to acknowledge and address potential sources of error in the 
analysis[18]. 



Theoretical and experimental investigations of a mechanical model […] piezoelectric sensor     53 

 
Fig.6. Displacement curves under different input voltages  

 
Based on the calculated data, the first-order resonance curve depicting the 

displacement of the free end of the arm beam (refer to Fig. 6) has been generated. 
From the analysis, it can be inferred that the displacement of the free end of the 
beam exhibits a proportional increase in response to the driving force generated by 
the applied voltage. Furthermore, the observed trend indicates that the displacement 
of the free end also experiences a concurrent increase. This observation underscores 
the relationship between the applied voltage and the resulting displacement, 
highlighting the importance of understanding the dynamic response of the system 
under varying driving forces. 

3.2 Experimental of the impact of the layer for the PZT driving force  

3.2.1 Experimental setup 

The experimental system diagram is shown in Fig. 7. The signal is 
transmitted from an arbitrary waveform generator (RIGOL DG10x2), which emits 
a modulated sine ultrasonic guided wave signal using a Hann window function. 
After being amplified by an amplifier (ATA-1220E), the guided wave signal is 
input to a PZT actuator. The PZT actuator generates driving force through the 
piezoelectric effect, causing guided waves to propagate within the aluminum plate. 
The PZT sensor receives the guided wave signal in the aluminum plate and 
transmits it to an oscilloscope (RIGOL DSl000E), forming a digital signal. By 
processing the signal, the mechanical model of the bonded PZT actuator can be 
determined, as well as the effects of different adhesives on the shear force 
transmitted during PZT actuation. This enables the identification of an optimal 
actuator arrangement, laying the foundation for future structural health monitoring 
[18,19]. 
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Two types of tests were conducted to validate the performance of the PZT 
attachment methods. The PZT was affixed to the structure surfaces using different 
binders with employing 502 glue and utilizing AB glue.  

The first test involved analyzing the PZT sensor signals using an 
oscilloscope, as outlined in Fig.8. By comparing these sensor signals, the influence 
of different bonding layers on the PZT driver's performance was assessed.  

Subsequently, the second test focused on evaluating the impact of the first 
natural frequency on the displacement of the free end. This verification process 
aimed to ensure consistency with the model validation test, thereby validating the 
accuracy of the experimental setup and results. 

 

 
Fig.7. Experimental schematic diagram 

3.2.2 Experimental result and discussion 

Upon analysis of the test data, it was observed that under the first-order 
frequency, PZT bonding with the matrix structure using different adhesives resulted 
in varying input signals and PZT sensor responses, as depicted in Fig. 8 (a). 
Similarly, under the second frequency, the relationship between the signals is 
illustrated in Fig. 8 (b). 

To further investigate, the displacement was measured and compared. For 
the first-order frequency signal input of 300 V, the resulting displacement curves 
of the cantilever's free end, bonded with different layers, are presented in Fig. 9. 
These curves offer insight into the impact of adhesive choice on the dynamic 
response of the system, providing valuable information for further analysis and 
optimization [20-22]. 
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(a) 1st vibration modes excitation 

 
(b) 2nd vibration modes excitation 

Fig.8.The relationship between driving signal and sensor signal 
 

 
 

Fig.9.1st vibration modes frequency of the structure under the free end of different adhesive layer 
displacement curves 

 



56                                                          Naizhi Zhao 

The results of the two experiments reveal a significant trend: a thicker 
bonding layer corresponds to a reduced transfer of the PZT driver. This 
phenomenon can be attributed to the smaller elastic modulus of the bonding layer, 
resulting in diminished delivery of the PZT driving force. The increased thickness 
of the bonding layer leads to greater deformation and absorption of the driving force 
generated by the PZT. Consequently, when the electrical signal is transmitted from 
the PZT to the structure, the driving force is attenuated. 

To fully harness the driving capabilities of the PZT, it is imperative to make 
a judicious selection regarding the type and thickness of the bonding layer. This 
ensures optimal performance by mitigating the effects of excessive absorption and 
deformation. 

Furthermore, it is noteworthy that these experimental findings align 
qualitatively with theoretical expectations. This consistency reinforces the validity 
and reliability of the experimental methodology and underscores the importance of 
informed material selection in optimizing PZT-driven systems. 

4. Conclusions  

The primary objective of this paper is to develop a mechanical model for 
bonded PZT sensors. Drawing upon theoretical insights into the second type of 
PZT-electric couple and continuum dynamics, the mechanical model is constructed 
while accounting for the interaction between the PZT and the structural matrix. 

Validation and rationalization of the simplified mechanical model of the 
bonded PZT driver are achieved through theoretical analysis and illustrative 
examples. This process enhances the fidelity of the model, bringing it closer to real-
world scenarios. The findings affirm that the interaction between the PZT and the 
bonded structural layer constitutes the primary determinant of the mechanical 
model. 

By establishing this model and corroborating its validity, this research 
contributes to a deeper understanding of PZT-driven systems and facilitates their 
optimization for various applications. 

In the mathematical model of the actuator established under free boundary 
conditions by Tzou in references 1, 2, and 3, along with the expression for control 
force derived by Ghaedi using the principle of virtual work, Padma developed a 
piezoelectric driving model attached to a cantilever beam based on the driving force 
of the piezoelectric actuator and the applied electric potential. This model offers 
several advantages over previous models. The research primarily focused on the 
effects of the bonding layer between the PZT and the structure during the modeling 
process, enabling a more realistic theoretical model of PZT driving. Under various 
frequency excitations, the experimental displacement deflection at the free end of 
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the cantilever structure was compared with theoretical values, revealing a small 
error and a close approximation to actual working conditions. 
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