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SDN CONTROL SOLUTIONS FOR AN INFRASTRUCTURE
SUPPORTING MULTIMEDIA STREAMING FLOWS

Maria-Daniela TACHE (UNGUREANU)?!, Ovidiu PASCUTOIU?

The 5G technology offers today a powerful support for a large range of high-
level services, including media-oriented ones, for video, audio and voice flows.
Within 5G management and control architecture, the Software-Defined Networking
(SDN) technology has been proposed both in studies and standards, as a main
component, while cooperating with Network Function Virtualization (NFV). For
instance, in 5G slicing, an SDN-based control can play a major role, both at slice
virtual tenant level and also at a lower infrastructure level, by dynamically
managing network virtual or physical connectivity resources. Several types of SDN
controllers are nowadays available. Which one to choose? This paper studies
several solutions for SDN controllers, where they have the tasks to configure the
SDN data plane transport media flows through SDN switches. The goal of this study
is to prepare a SDN controlled infrastructure capable of supporting a study on
Quality of Services (QoS) optimizations methods for multimedia streaming.
Experiments have been defined and performed in this work, using some of the most
common SDN controllers and an evaluation of their capabilities has been attempted.
This study can provide real-life information to designers aiming to develop SDN
controlled systems and particularly QoS optimized 5G slices for multimedia
streaming.

Keywords: Software defined networking, 5G networks, connectivity, SDN
controller, data rate, latency, Quality of Service (QoS), applications,
QoS optimization, QoS provisioning.

1. Introduction

The 5G technology can support a large range of applications and services
and among them multimedia streaming is a major area of applications in digital
society. These forms of multimedia content have become integral to people’s
routines, transforming the way they consume information and entertainment.

In the case of real-time managed high-level services (i.e., those needing
some guarantees, which are specified in a Service Level Agreement (SLA)
contract the multimedia-rich applications should be served with a controlled level

! PhD, National University of Science and Technology POLYTECHNICA of Bucharest, Romania,
e-mail: danielatache26@yahoo.com, ORCID ID: 0009-0003-4588-8824

2PhD, “Henri Coandi” Air Force Academy, Brasov, Romania, e-mail: ovidiu.pascutoiu@afahc.ro,
ORCID: 0009-0009-6918-0218


mailto:danielatache26@yahoo.com
mailto:ovidiu.pascutoiu@afahc.ro

242 Maria-Daniela Tache (Ungureanu), Ovidiu Pascutoiu

of Quality of Services (QoS). At network level, the QoS requirements for real-
time applications, can refer to the degree of bandwidth assurance for particular
streams, limited latency, jitter, and packet/bit error rates. Reliability is also needed
to prevent disruptions in communication sessions. The QoS assurance at network
level is the basis for offering the end users a good Quality of Experience (QoE),
observed at application levels. In 5G one can construct dedicated slices for media
distribution meeting the QoS requirements. Therefore, QoS capable management
and control are necessary, based on provisioning or, in advanced solutions
including dynamic features. SDN cooperating with NFV can be powerful tools in
the management and control 5G architectural planes.

The SDN controllers must have capabilities to dynamically configure,
supervise and optimize real or virtual network connectivity resources. They can
command the network elements on-the-fly, dynamically allocating resources, and
prioritizing traffic in response (by installing/modify appropriate flow tables in
network nodes) aiming to answer the demands of multimedia services.

Many SDN controllers are offered in the market. Therefore, a need
emerges to assess and compare their capabilities versus various criteria such as
complexity, cost, openness, real-time response, scalability for large networks, etc.

This paper considers two relevant examples of SDN controllers, which
potentially could be used within the context of 5G multimedia streaming control.
Our specific objective is to identify the strengths and weaknesses of Open
Network Operating System (ONOS) [1] and OpenDaylight (ODL) [2] controllers
by conducting an experiment in Mininet [3] framework. By comparing the results,
the paper evaluates their capabilities to control an SDN-based infrastructure
capable of offering QoS assurance. The output information of this study could
help the network operators, researchers, and industry stakeholders in selection of
solutions.

2. Related work

This section provides a short overview on state of the art in assessing and
contrasting the ONOS and ODL SDN controllers, identifying their respective
strengths and weaknesses for various network scenarios, also we are adding
context by presenting the state of the art on architectures related to SDN networks.
e Performance Evaluation of ODL and ONQOS Controllers
The work of Alex Rodriguez et al. [4] studies the performance aspects of ODL

and ONOS controllers, including latency and throughput measured in the
Data plane and also evaluated the scalability properties. The study evaluates
also how these controllers handle different network sizes and loads. The
results achieved showed that ONOS controller has better results in terms of
jitter and latency.
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Wireless networks — SDN controlled: A Comparative Analysis

The work [5] evaluates the effectiveness of a few generic SDN controllers in

terms of flow setup time, and resource utilization, offering insights into their
suitability for managing wireless SDN networks.
Industrial SDN Applications: A Suitability Study

The work [6] investigates the applicability of ODL and ONOS controllers in

industrial SDN applications. It analyzes their performance in controlling and
managing industrial networks and also evaluates their compatibility with
industrial use cases. As a conclusion, it has been shown that ONOS and ODL
had better results regarding the scalability and security versus other
controllers like Ryu, Iris or SDN [6].

Network Function Virtualization (NFV): An Integration Perspective

The work [7] is focused on comparing and evaluating the performance of multiple

SDN controllers such as Ryu, ONOS, ODL and identifying the strengths and
weaknesses in terms of latency, interface vendor support and traffic loads.
The study answers two of the important questions: (a) how fast can a
controller respond to PACKET_IN messages And (b) how many
PACKET _IN messages can a controller handle per second? The ODL was
found to be a better choice in terms of interfaces vendor support, while
ONOS presented the best results under various traffic loads.

Carrier-Grade Networks: Security Subsystems

The work [8] studies the integration of a security subsystem with ONOS. It

examines its performance ability to reduce deployment runtime among peer
applications. The results showed that developing specific policies in an SDN-
application offers a 5 to 20% performance overhead.

Topology related approaches

In [9] Phemius et. al. proposed DISCO, an open and extensible distributed SDN

control plane which scope was addressing the resiliency, scalability and
extensibility regarding large scale multi-domain networks. A DISCO
controller is responsible of a network domain and exchange information with
other neighbor domains for end-to-end flow management purposes. Beside
the processes involved in the management of the network and the approach of
the architects on this solution, the topology can be abstracted as multiple
simple architectures involving a controller, switches and hosts named
domains which are linked between each other with the scope of manage large
distributed networks.

Mamushiane et. al. make use in [7] of an environment consisting on an controller,

switches and MACs (hosts). It can be considered a classical topology which
for the testing purposes was modified by increasing the number on emulated
switches to determine the latency on network or varying the MACs number to
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observe the effect on controller performance.

The above studies on ODL and ONOS controllers can help in selection of
a suitable SDN controller based on specific network requirements and use cases.
Our study is focused on controllers’ capabilities to install appropriate paths in the
SDN data plane to transport multimedia streaming flows.

3. Comparative analysis of ODL and ONOS for multimedia streaming

It is important to evaluate if a particular SDN controller can fulfill
different sets of QoS requirements and if it has enough necessary flexibility and
features for some specific use case. The collaboration between SDN controllers
and QoS-capable network nodes is crucial for delivering a high-quality and
predictable service experience and particularly in 5G deployments. One should
evaluate how well a given controller can assure QoS support for functions like
traffic classification, traffic policing, traffic shaping, queue management, packet
scheduling with different policies and priorities, congestion control, and more.
The SDN controller the execution units (nodes or VNFs) must cooperate to
translate those the controller decisions into tangible actions. If the execution units
lack QoS capabilities, the effectiveness of the entire QoS framework would be
compromised.

The open-source Open Network Operating System (ONOS) and the
OpenDaylight (ODL) are among the most popular controllers. It is useful to
compare their capabilities in order to make a selection between them.

This paper aims to contribute to this decision-making process by
conducting a comparative analysis of ONOS and ODL controllers while preparing
a SDN infrastructure in the data plane suitable for 5G multimedia streaming. We
will evaluate their performance, scalability, extensibility, and adaptability to
varying multimedia traffic scenarios.

3.1. Open Network Operating System (ONOS) [10]: it is recognized for
its scalability and adaptability in managing diverse network environments. One
ONOS's strength lies in its ability to efficiently allocate network resources,
prioritize traffic, and dynamically adjust to network conditions in real-time.
Therefore, it could be useful in some 5G slicing contexts, where scaling of
resources is needed during active traffic sessions.

Studies [11] have shown ONOS's effectiveness in orchestrating network
resources, to reduce network latency and ensure high throughput for multimedia
applications. As shown in [12] ONOS appears to be significantly more stable than
other SDN controllers, and it is much faster in reacting to topology event updates.

The controller's robustness in handling multimedia traffic in a 5G context
[13] has led to its adoption in various research projects and experimental
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deployments, and it evaluates how ONOS deals with different failure scenarios in
the control and data planes. The extensibility of ONOS through its application
framework enables the development of customized QoS management solutions
tailored to specific multimedia streaming requirements.

The ONOS architecture comprises three functional layers arranged from
top to bottom: Application, Core and the Providers + Protocols layer.

The App layer encompasses various applications seamlessly integrated
within ONOS. This layer exposes interfaces to external applications and controller
administrators through RESTful APIs, GUI, and CLI. It leverages the interfaces
provided by the Core layer to execute the logic of network applications.

ONOS allows a distributed core architecture (the control plane is
distributed across multiple nodes to enhance scalability). Its primary
responsibilities include gathering information about the underlying network's
status, collaborating with the App layer to execute network application logic. It
can adapt to various Providers, that are modules within ONOS that implement the
specific drivers or adaptors required to support different southbound protocols, for
example RESTful, BGP, OSPF, ISIS. In the horizontal direction, it employs a
cluster mechanism to facilitate communication and synchronization among
multiple ONOS instances.

The Protocols layer serves as the implementation hub for a range of
southbound protocols as mentioned above. It interfaces with the Core layer
through Providers, facilitating the management and control of network devices
lower in the stack. To be more specific, the provider and protocols layer manages
the interaction with network devices.

The vertical protocol used between the ONOS controller and the network
nodes of the data plane is typically the OpenFlow protocol.

3.2. OpenDaylight (ODL) Controller [14]: it offers a flexible and
modular platform for network management and control. Its role has been
investigated in enhancing QoS for multimedia streaming in 5G networks. ODL's
architecture allows for the integration of various plugins and modules, making it
suitable for diverse multimedia traffic optimization scenarios.

Through the ODL controller, researchers have implemented dynamic QoS
policies, traffic shaping mechanisms, and traffic prioritization schemes to ensure
seamless multimedia streaming experiences over 5G networks. Its adaptability
and the availability of well-defined APIs have enabled easy integration with other
network components, further enhancing its suitability for 5G multimedia QoS
management.

ODL adopts a structured architectural approach, featuring well-defined
integration points and accessible APIs. These facets enable both end users and
networking vendors to actively engage with its robust SDN capabilities. Note that
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while ODL can be deployed in a distributed manner, it does not inherently have a
distributed core architecture in the same way as ONOS. Its modularity allows for
the distribution of specific components.

The southbound interface in ODL ensures compatibility with a wide array
of networking technologies and hardware provided by various vendors. This
allows ODL to harness the capabilities of diverse vendors' equipment effectively.

On the other hand, the northbound interface of ODL exposes APIs
designed to cater to end users' needs, as well as fostering compatibility with other
cloud technologies. This facet facilitates seamless integration and interaction with
ODL's capabilities, enhancing its versatility and usability in a variety of
networking environments.

3.3. Ostinato [15] is an open-source network traffic generator often used
for network testing and research purposes. Its key functional components are:

1. User Interface (GUI): - makes Ostinato a user-friendly application that help
the user in the process of packet generation and traffic modeling. The
packets can be designed with specific attributes so the testing process can be
as customized as the scenario imposes. Those customizations can be related
to IP addresses, protocols, headers, content and more.

2. Packet Crafting Engine: - reside at the core of Ostinato and is the entity that
facilitate the packet crafting, structuring and customization process.

3. Protocol Support: - enables users to emulate different types of network
communications like data transfers, VolIP calls or media streaming. The
range of supported protocols is rich and consist of well-known protocols
like TCP, UDP, ICMP, IP and also other more specific, related to different
applications used in testing scenarios.

Ostinato offers benefits for:

Mininet Integration: - allows users to generate traffic while interacting with
SDN controllers and different network topologies. In the Mininet
environment, Ostinato can be used as a separate host in the topology.

- performance and scalability: Because of the multi-thread architecture and
the distributed mode, Ostinato is known for high performance and
scalability.

- conducting large-scale testing scenarios to evaluate performance of SDN
controllers.

Ostinato is a tool which can support various Use Cases:

e Network performance testing: - jitter, packet loss, latency are some of the
most common tests that Ostinato can conduct. Other testing scenarios can
assume stress-testing for network devices and capabilities measuring under
different traffic conditions.
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e Vulnerability assessment: - different patterns or abnormalities can be
induced into the traffic to evaluate the behaviors of security systems and to
evaluate the network resilience. By identifying possible defense breaches of
the network, Ostinato can help in assessment experiments.

e  Security professionals utilize Ostinato to evaluate the resilience of network
based on protocol analysis by diving into the packet composition. The
packets can be captured on the route and modified to study the behavior of
the protocols used to send that packets or what issues may appear by
modifying the structure of captured packets.

e SDN controller evaluation: -by varying the amount of traffic, the timing that
traffic occurs or simulating different network scenarios, Ostinato can
evaluate the performance and response of SDN controllers, the goal being to
observe the way different controllers react to network conditions changes.

Documentation and Support:

As it can be seen from the official page https://ostinato.org/docs/ , Ostinato
have plenty of documentation sources like FAQ’s, forums, blogs that aims to help
and guide users regarding Ostinato. It is accessible for both beginners (installation
and configuration tutorials), and also to advanced users that may want to
personalize the Ostinato experience.

As a bottom line, we can say that Ostinato is a very robust packet
generation network tool whose capability is to test the network using different
approaches and techniques. For those reasons we can consider that is probably a
must have asset in network testing and analysis.

We have chosen Ostinato for our experiments because it can be seamlessly
integrated with Mininet, a popular network emulator. This integration allows us to
create realistic network topologies and inject customized traffic patterns into
Mininet networks.

3.4 Mininet [16]: is an open-source network emulator that facilitates the
creation and customization of network topologies that use the SDN principles:
1. Realistic network simulation:

e It can create virtual networks with a high degree of similarity with
the physical real-world networks, making from Mininet a very
valuable solution for testing SDN solutions for networks, including
the 5G models.

2. Cost-efficient development:

e Because it doesn’t need expensive physical hardware, Mininet
eliminates the cost problem, allowing developers to test a lot of
scenarios with the benefit of not being forced to buy any physical
device.
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Use Cases for Mininet:

1. SDN Controller Testing:

e By allowing developers to modify controller behavior and performance,
Mininet facilitates the evaluations of SDN controllers in 5G context.
Different network topologies or traffic flow scenarios can be emulated
for the purpose of SDN testing.

2. Prototyping and Development:

e Mininet supports development, testing or improvement of the SDN. Those
approaches can be related to applications, protocols or even services
that networks run so we can assume is a valuable tool for 5G
evaluations.

3. QoS and Traffic Engineering:

e Developers can enable QoS features and deploy traffic engineering
strategies on SDN networks, Mininet can inform the designers whether
the tested environment has an optimal resource utilization and the
network is efficiently managed.

4. Network Security Testing:

e Intrusion-detection scenarios can be applied on SDN networks emulated
with Mininet for the purpose of evaluating the security effectiveness of
different topologies.

Mininet offers several benefits [16]:

e Rapid prototyping: Mininet is easily accessible; it is simple to create or
modify networks, change behavior of components, establish communication
paths and test how all things can work better in different scenarios the time
for launching innovative applications or services is considerably reduced.

e Repeatable testing: conducting repeated testing scenarios on the same
topology guarantee the stability of a topology and also lower the chance of an
unidentified issue. Mininet offers the possibility to launch controlled and
repeatable experiments to fulfill this scope.

e Resource-efficiency: Mininet is a cost-effective SDN testing solution because
is based on virtualized network resources, meaning that developers are not
restricted by equipment costs to conduct their testing scenarios.

4. Experiment implementation

4.1 Objectives

The objective of this study is to use the ONOS and ODL SDN controllers
in order to create a SDN infrastructure able to support a future evaluation of the
capabilities on QoS assurance in static or dynamic contexts. This experiment is
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still preliminary and focused on creating the framework to evaluate some QoS
mechanism and determine parameters in topologies controlled by ONOS or ODL.

The 5G system architecture is very complex; it has been investigated in
many studies and also defined in 3GPP, ITU-T, ETSI, 5GPPP standards, e.g.,
[17][18]. In the management and control subsystem, as well in the user plane,
support technology like SDN, NFV and cloud/edge computing are proposed —
based essentially on virtualization. The SDN subsystems are mainly used for
connectivity control both between physical and virtual network functions (VNF).
The SDN and NFV are cooperating. Moreover, a 5G sliced systems architecture
can be split in two macro-layers [19]. The upper macro-layer is specific to each
slice tenant. Here, a tenant SDN controller dynamically configures and chains
VNFs to realize network services in the tenant domain. It only controls the SW
applications of the VNFs for configuration and chaining purposes, but not their
underlying Network Function Virtualization Infrastructure (NFVI) resources,
which belong to the lower layer.

Another infrastructure SDN controller manages and controls is the NFVI
(lower macro-layer) network resources (placed in a NFVI-Points of Presence or a
WAN) to set up the connectivity for communicating the tenant VVNFs in the
infrastructure domain. It manages and controls the connectivity among the
virtualization containers that host the tenant VNFs' software applications.

The scope of this study is limited. It cannot cover the overall aspects of a
5G system architecture; it is focused on SDN control subsystem and investigates
several variants of realization of such a control.

The network entities involved are open V-switches and SDN controllers,
hosts and traffic generators. The communication between controller and switches
is based on the OpenFlow protocol. The popular User Datagram Protocol (UDP)
protocol is transporting the traffic. For real-time flows re-synchronization at
receiver side, the Real Time Protocol (RTP) is used.

A simplified picture of the subsystem SDN architecture is presented in
Fig. 1. This subsystem is oriented to the lower layer of the general 5G
architecture, i.e. on user/data plane belonging to the NFVI. To simplify the
picture, the real traffic paths through the switches are not fully presented in the
picture. The assembly comprised two virtual switches, OVS1 and OVS2
controlled by an SDN controller. The switches aggregate traffic from eight hosts
(h1-h8). The traffic was generated using iperf (this can be also done by using
Ostinato traffic generator) and transported via UDP and RTP combinations; the
traffic circulates between specific hosts pairs - for instance, from host 'x' to host
'y' via switches —allowing for a granular analysis of network performance.

In reference to the state of the art, the proposed architecture topology is a
standard SDN topology consisting on a SDN controller, switches and hosts. Other
studies [7][9] on SDN used similar topologies with the focus on topology impact
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over the network performance and how those performances could be improved by
scaling either the network dimension or by distributing it to separate networks.
Our approach on the study is to test how the network responds on different
scenarios related to the protocols of the data passing through the network.

In a 5G sliced context, this infrastructure could model a part of a 5G core
network where the data paths might belong to the same or different slices.

/ ________

RTP

UDP

RTP + UDP

RTP - voice streaming OSTINATO

UDP - video streaming traffic generator

Fig. 1: Proposed system architecture

Network performance, especially latency and throughput, was recorded for
the combination of RTP (Real-time Transport Protocol) and UDP (User Datagram
Protocol) traffic [20]. Error rates were also monitored to evaluate the controllers'
efficiency in managing network flows under varying load conditions.

4.2 Implementation details

The simulation model was built using Mininet version 2.3, a virtual
network emulator running on a Linux platform, specifically using a virtual private
server (VPS) environment provided by Hetzner [21]. This setup ensured that
computational resources - channeled and allocated according to the experiment
requirements - were sufficient to prevent any restrictions caused by hardware
limitations. Each VPS was equipped with defined computational resources to
reflect real-world deployment scenarios as closely as possible. In terms of specific
resources, each VPS was configured with a certain amount of RAM, storage
capacity and processing power. For example, each VVPS could be allocated 4GB of
RAM, 2 CPU cores and 50GB of SSD storage, but these values varied depending
on the needs of the experiment. A total of 5 virtual machines were used to create a
robust network environment and allow multiple instances of Mininet and SDN
controllers such as ONOS and ODL to run simultaneously. This approach ensured
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the support for a detailed and accurate simulation of network performance on
quality of service (QoS) in SDN for multimedia streaming.

The ODL (version Phosphorus) and ONOS (version 2.5) controllers were
installed on Linux-based Virtual Private Servers (VPS). This installation was
carried out using standard package management commands like sudo apt-get,
ensuring that both controllers operated on identical software versions to maintain
consistency in experimental conditions. The ODL controller utilizes RESTful
HTTP requests to modify network configurations, such as setting bandwidth
limits and prioritizing certain types of traffic. This allows for flexible and
dynamic traffic management. The ONOS controller implements similar
bandwidth policies using the REST API, offering an equivalent but distinct
approach in managing network traffic.

The ODL and ONOS controllers have been implemented and tested as
described in the setup_sdn_controllers () function.

Virtual Network Functions (VNFs) have been implemented for traffic
generation and network simulation. This incorporated the use of Mininet, as
delineated in the setup_mininet_topology() function, to construct a virtual network
topology. Virtual switches and hosts are defined, thereby crafting a network that
facilitated the emulation of traffic and network conditions. The network links
between hosts and switches have an initial specified bandwidth of 10 Mbps and a
delay of 0.005 milliseconds.

We used iperf and rtpsend (given the fact that our example consists in a
small topology) to initiate specific traffic flows between the simulated network
entities, employing for the transport the UDP and RTP protocols, but we strongly
recommend using Ostinato for more accurate results in bigger topologies.

The rate of traffic generation specified in units relevant to the context was
packets per second. The size of each packet in the network traffic is 1470 bytes.

Parameters such as bandwidth limits, traffic prioritization, and error rates,
have been controlled manually, using scripts developed by the authors. For
monitoring network performance and capturing relevant data, the
monitor_traffic() function was utilized. This allowed for the capture of traffic
from virtual network interfaces and its storage in pcap files for subsequent
analysis. Using this function, we were able to record key network performance
parameters, such as latency and throughput, under various network load
conditions.

5. System setup and configuration
Starting with the schematic representation of the network we want to test,

we created a python script whose role is to add the network elements we need to
the Mininet. Below is the representation of our network. The script describes the
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steps to create the different entities in the network, h=host, s=switch, c=controller,
the static way in which they are connected to each other and the IP addressing for
each element as well as the communication policies between the hosts.

The script was named of the form toposcript.py and for each type of
controller it was run in Mininet using a command of the form

sudo mn --custom ~/<script location>/toposcript.py --topo mytopo --
controller=remote,ip=[IP] where IP is the IP of the machine on which the
controller was installed.

Fig. 2 — Results of ICMP test after topology implementation

The ONOS controller was downloaded in the /opt folder using the curl
utility, using the command

curl -XGET -O https://repol.maven.org/maven2/org/onosproject/onos-
releases/2.0.0/onos-2.0.0.tar.gz

Since the kit is in an archive, we had to extract the files from the archive
using the command

tar -xvf onos-2.0.0.tar.gz -C /opt/onos

fo Y L= 1 —

192.168.234.129. B on

rrrrrrrrrrrrr

Fig. 3 — graphical representation of a test topology in ONOS interface

ONOS will discover and display the hosts only when they exchange data with
each other, which is why | ran the pingall command in Mininet, the hosts thus
initiating communication with each other, and ONOS thus becomes aware of their
existence.

We proceed with the actual installation of the ODL controller that we will
download from the official website as in Fig. 4. We unzip the karaf-0.8.4.zip
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archive, then check the existence of the folder created after unzipping and start the
controller. The actual starting of ODL is done by accessing the/bin/karaf
executable from the unzipped folder.

Fig. 4 - Download process of OpenDayligh

We notice that everything works as it should after creating the topology, and to
open OpenDaylight | accessed the address of the virtual machine in the browser,
in the form: http://IPVM:8181/index.html#/topology

Here, we have hosts, switches, and flows, along with the links connecting hosts to
switches and switches to each other, as defined within the switch configuration
and illustrated in Fig. 5.

9 Topology

Controls

Fig. 5 — graphical representation of the to’pology in ODL interface

As a final test, we created the script below that helped us verify the traffic
between several hosts, and the output can be seen in Fig. 6.

# Configuring UDP traffic from H3 to H4 and H6 with Video QoS (DSCP 0xb8)

h3.cmd('iperf -¢ 10.0.2.4 -u -p 5002 -t 40 -S 0xb8 > /home/h3_udp_output.txt 2>&1 &)
# SET DSCP FOR VIDEO

h4.cmd('iperf -s -u -p 5002 > /home/ h4_udp_output.txt 2>&1 &)

h6.cmd(iperf -¢ 10.0.2.4 -u -p 5002 -t 40 -S 0xb8 > /home/ h6_udp_output.txt 2>&1 &)

# Configuring RTP traffic from H1 to H5 and H7 with Voice QoS (DSCP 0x28)

hl.cmd('iperf -¢ 10.0.2.5 -u -p 5001 -t 30 -S 0x28 > /home/h1 rtp_output.txt 2>&1 &")
# Set DSCP for Voice

h5.cmd('iperf -s -u -p 5001 > /home /h5_rtp_output.txt 2>&1 &)

h7.cmd(iperf -s -u -p 5001 > /home/ h7_rtp_output.txt 2>&1 &)
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# Configuring mixed RTP and UDP traffic from H2 to H8 with mixed QoS

h2.cmd('iperf -¢ 10.0.2.3 -u -p 5001 -t 50 -S 0x28 >/home/h2_mixed_output.ixt 2>&1 &)
# Set DSCP for Voice and Video
h8.cmd('iperf -¢ 10.0.2.5 -u -p 5002 -t 50 -S 0x28 >/home/h8_mixed_output.txt 2>&1 &)
# Set DSCP for Voice and Video

# Applying QoS for RTP (Voice) traffic - Set DSCP 0x28 on H1 and H2

h1l.cmd('tc gdisc add dev h1-ethO root handle 1: htb default 12")

h1l.cmd('tc class add dev h1-ethO parent 1: classid 1:1 htb rate 1mbit ceil 1mbit’)

hl.cmd('tc filter add dev h1-ethO protocol ip parent 1:0 prio 1 u32 match ip dscp 0x28 0xff00
flowid 1:1")

# Applying QoS for UDP (Video) traffic - Set DSCP 0xb8 on H3 and H4

Traffic Control (QoS):
e tc commands are used to configure traffic shaping and quality of service (QoS) for
different types of traffic based on the Differentiated Services Code Point (DSCP).

o Voice traffic (RTP): DSCP 0x28 is used for voice traffic on hl and h2.
o Video traffic (UDP): DSCP 0xb8 is used for video traffic on h3 and h4.
Traffic Generation (iperf):
e iperfis used to generate UDP traffic, specifying the -S option to set the DSCP values.

o Voice traffic is sent from h1 to h5 and h7.
o Video traffic is sent from h3 to h4 and h6.
o Mixed traffic is generated from h2 to h8.

DSCP 0x28 corresponds to a specific value in the DSCP field, which is used for classifying and

prioritizing traffic. It is part of the Differentiated Services (DiffServ) model for QoS.

DSCP 0x28 is often used for RTP (Real-Time Protocol) traffic, which includes Voice over IP
(VolP) calls. In our case, the DSCP value indicates that the traffic is high-priority and should be
treated with low latency, minimal jitter, and low packet loss, which is essential for real-time

communications.

DSCP 0xb8 is often used for UDP-based video traffic, where the goal is to ensure a smooth
streaming experience with relatively low latency and minimal interruptions, but it is not as high-

priority as real-time voice traffic (DSCP 0x28).

Client connecting to 10.0.2.5, UDP port 5001

Sending 1470 byte datagrams, IPG target: 11215.21 us (kalman adjust)

UDP buffer size: 208 KByte (default)

[ 2] local 10.0.2.1 port 58722 connected with 10.0.2.5 port 5001

[ 1D] Interval Transfer Bandwidth Jitter Lost/Total Diagram
[ 2] 0.0- 30 sec 1.23 MBytes 10 Mbits/sec 0.005ms 0/1470 [D%[]-

[ 2] Sent 1470 datagrams

Fig. 6 - Example of traffic values recorded at the host level
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6. Experimental results

Using the previous described procedure, we tested the network capabilities for the
entire proposed system using the paths and protocols described in it. The tables 1 -
4 below are summarizing our test results and capabilities of the tested SDN
controllers (ONOS, ODL). Based on the jitter and loss, parameters comparative
graphs in Fig. 7 and 8 were designed, to provide a better image on the final

results.
Table 1
Traffic results for proposed architecture using ONOS Controller
ONOS
Traffijc for 1470 sent Bandwidth Trlgli:i((::ti(ijze Jitter s
atagrams Mb/s Mb
H1 to H5 voice 10 10 0.005ms | 0/1470 (0%)
H1 to H7 voice 10 30 0.010 ms | 30/1470 (2.04%)
H3 to H4 video 20 20 0.015ms | 0/1470 (0%)
H3 to H6 video 20 40 0.018 ms | 5/1470 (0.34%)
H2 to H8 mixt 30 30 0.009 ms | 0/1470 (0%)
H2 to H8 mixt 30 90 0.20ms | 25/1470 (1.70%)

Key Distinction:

Bandwidth (Mb/s): The maximum rate at which a link can carry traffic
(e.g., 10 Mb/s means the link can transmit 10 megabits per second).
Injected Traffic (MB): The total amount of data sent over the link during
the test. For example, "30 MB of traffic” refers to 30 megabytes total, but
it does not specify the rate at which this traffic is sent.

For example, H1 to H7 voice - Here, "30 MB" is the total amount of data
transmitted over the test duration, not a traffic rate. If the test duration is
long enough ( in this case 30 seconds, the average traffic rate will still fit
within the link's 10 Mb/s capacity, resulting in low packet loss — 2.04%. If
the test duration is shorter (e.g., 10 seconds), the traffic rate would
increase proportionally, potentially exceeding the bandwidth and causing
greater packet loss. The test duration for traffic generation is set explicitly
in the iperf commands using the -t option. The -t flag specifies the
duration of the test in seconds.

Table 2
Traffic results for proposed architecture using ODL Controller
ODL
. . Injected
Traffic for 1470 sent Bandwidth Traffic Jitter I

datagrams Mb/s

size Mb
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H1 to H5 voice 10 10 0.005 ms 0/1470 (0%)
H1 to H7 voice 10 30 0.010 ms 150/1470 (14.65%)
H3 to H4 video 20 20 0.015 ms 0/1470 (0%)
H3 to H6 video 20 40 0.018 ms 10/1470 (0.68%)
H2 to H8 mixt 30 30 0.009 ms 0/1470 (0%)
H2 to H8 mixt 30 90 0.20 ms 50/1470 (3.40%)
Table 3
Comparative table of the jitter regarding ONOS and ODL controllers
Jitter Graph A Al IS H3-H6 video ik R
voice voice video mixt mixt
ONOS 0.005 0.01 0.015 0.018 0.009 0.2
ODL 0.005 0.01 0.015 0.018 0.009 0.2
Table 4
Comparative table of the loss regarding ONOS and ODL controllers
Loss Graph AR Al Hi3-H4 H3-H6 video AR ki2-H8a
voice voice video mixt mixt
ONOS 0 0.0204 0 0.0034 0 0.017
ODL 0 0.1465 0 0.0068 0 0.034
Jitter Graph
0.25
0.2
0.15

H1-H5 voice H1-H7 voice H3-H4 video H3-H6 video H2-H8 mixt H2Z-H8 mixt

ONOS oDL

Fig. 7— ONOS and ODL graph based on collected jitter values

In literature, others tried to do performance tests of controllers. In the case of
[7], the tests revealed also that ONOS tend to have better performance compared to
ODL based on some tests that supposed a variation on emulated topology (switches
and hosts). To conclude the results, our tests related not to the topology but to the data
passing through the network, confirms once again that ONOS controller has better
performances than ODL controller. The advantage of using SDN-type control inside
5G architecture is definitely a strong approach inside the 5G architecture (see [17],
[18], [19] above and many others). However, further investigation of different
variants of controller solutions is valuable.
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Loss Graph

14%
12%
10%
8%
6%

4%

0%
H1-H5 woice H1-H7 voice H3-H4 video H23-HE video H2-HE& mixt H2-H& mixt

ONOS oDL

Fig. 8 — ONOS and ODL graph based on collected loss values
7. Conclusion

This study had the purpose of selecting and installation/interconnection of the
complex system components (controllers, generators, Mininet) and creating the
environment with sets of virtual machines for different functions. This assembly can
model a subsystem in a SDN overall architecture.

Related to the testing results we showed that both controllers are sensitive on
variations of the packet size in relation with the allocated bandwidth and while the
jitter results remained the same, the loss parameter changed during the different tests.

The contribution of this study consists in testing the connectivity capabilities
of a SDN assembly (controller, switches, hosts) for several types of controllers and
proposing an approach that separates the data flows, based on the protocols used at
transport level to send the data.

The proposed topology could support (in a future) more complex evaluations
related to QoS, such as bandwidth assurance, QoS policies, priorities, overloads of the
data paths, changing dynamically of the flows requirements which would need
interventions of the controllers lead us to configuration of all the SDN controlled
infrastructure (by ONOS or ODL) and testing the functionalities concerning the
traffic transport (via UDP or UDP + RTP) in appropriate way between different hosts.

Our goal is to continue studying these SDN controllers in order to test in
depth the way of implementing QoS policies and algorithms that can be applied to
them in order to not only have functionality tests but also performance tests
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