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SDN CONTROL SOLUTIONS FOR AN INFRASTRUCTURE 

SUPPORTING MULTIMEDIA STREAMING FLOWS 

Maria-Daniela TACHE (UNGUREANU)1, Ovidiu PĂSCUȚOIU2
 

The 5G technology offers today a powerful support for a large range of high-

level services, including media-oriented ones, for video, audio and voice flows. 

Within 5G management and control architecture, the Software-Defined Networking 

(SDN) technology has been proposed both in studies and standards, as a main 

component, while cooperating with Network Function Virtualization (NFV). For 

instance, in 5G slicing, an SDN-based control can play a major role, both at slice 

virtual tenant level and also at a lower infrastructure level, by dynamically 

managing network virtual or physical connectivity resources. Several types of SDN 

controllers are nowadays available. Which one to choose? This paper studies 

several solutions for SDN controllers, where they have the tasks to configure the 

SDN data plane transport media flows through SDN switches. The goal of this study 

is to prepare a SDN controlled infrastructure capable of supporting a study on 

Quality of Services (QoS) optimizations methods for multimedia streaming. 

Experiments have been defined and performed in this work, using some of the most 

common SDN controllers and an evaluation of their capabilities has been attempted. 

This study can provide real-life information to designers aiming to develop SDN 

controlled systems and particularly QoS optimized 5G slices for multimedia 

streaming. 

Keywords: Software defined networking, 5G networks, connectivity, SDN 

controller, data rate, latency, Quality of Service (QoS), applications, 

QoS optimization, QoS provisioning.  

 

1. Introduction 

 

The 5G technology can support a large range of applications and services 

and among them multimedia streaming is a major area of applications in digital 

society. These forms of multimedia content have become integral to people’s 

routines, transforming the way they consume information and entertainment. 

In the case of real-time managed high-level services (i.e., those needing 

some guarantees, which are specified in a Service Level Agreement (SLA) 

contract the multimedia-rich applications should be served with a controlled level 
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of Quality of Services (QoS). At network level, the QoS requirements for real-

time applications, can refer to the degree of bandwidth assurance for particular 

streams, limited latency, jitter, and packet/bit error rates. Reliability is also needed 

to prevent disruptions in communication sessions. The QoS assurance at network 

level is the basis for offering the end users a good Quality of Experience (QoE), 

observed at application levels. In 5G one can construct dedicated slices for media 

distribution meeting the QoS requirements. Therefore, QoS capable management 

and control are necessary, based on provisioning or, in advanced solutions 

including dynamic features. SDN cooperating with NFV can be powerful tools in 

the management and control 5G architectural planes. 

The SDN controllers must have capabilities to dynamically configure, 

supervise and optimize real or virtual network connectivity resources. They can 

command the network elements on-the-fly, dynamically allocating resources, and 

prioritizing traffic in response (by installing/modify appropriate flow tables in 

network nodes) aiming to answer the demands of multimedia services. 

Many SDN controllers are offered in the market. Therefore, a need 

emerges to assess and compare their capabilities versus various criteria such as 

complexity, cost, openness, real-time response, scalability for large networks, etc. 

This paper considers two relevant examples of SDN controllers, which 

potentially could be used within the context of 5G multimedia streaming control. 

Our specific objective is to identify the strengths and weaknesses of Open 

Network Operating System (ONOS) [1] and OpenDaylight (ODL) [2] controllers 

by conducting an experiment in Mininet [3] framework. By comparing the results, 

the paper evaluates their capabilities to control an SDN-based infrastructure 

capable of offering QoS assurance. The output information of this study could 

help the network operators, researchers, and industry stakeholders in selection of 

solutions.  

2. Related work 

 

This section provides a short overview on state of the art in assessing and 

contrasting the ONOS and ODL SDN controllers, identifying their respective 

strengths and weaknesses for various network scenarios, also we are adding 

context by presenting the state of the art on architectures related to SDN networks. 

● Performance Evaluation of ODL and ONOS Controllers 

The work of Alex Rodriguez et al. [4] studies the performance aspects of ODL 

and ONOS controllers, including latency and throughput measured in the 

Data plane and also evaluated the scalability properties. The study evaluates 

also how these controllers handle different network sizes and loads. The 

results achieved showed that ONOS controller has better results in terms of 

jitter and latency. 



SDN control solutions for an infrastructure supporting multimedia streaming flows       243 

● Wireless networks – SDN controlled: A Comparative Analysis 

The work [5] evaluates the effectiveness of a few generic SDN controllers in 

terms of flow setup time, and resource utilization, offering insights into their 

suitability for managing wireless SDN networks. 

● Industrial SDN Applications: A Suitability Study 

The work [6] investigates the applicability of ODL and ONOS controllers in 

industrial SDN applications. It analyzes their performance in controlling and 

managing industrial networks and also evaluates their compatibility with 

industrial use cases. As a conclusion, it has been shown that ONOS and ODL 

had better results regarding the scalability and security versus other 

controllers like Ryu, Iris or SDN [6]. 

● Network Function Virtualization (NFV): An Integration Perspective 

The work [7] is focused on comparing and evaluating the performance of multiple 

SDN controllers such as Ryu, ONOS, ODL and identifying the strengths and 

weaknesses in terms of latency, interface vendor support and traffic loads. 

The study answers two of the important questions: (a) how fast can a 

controller respond to PACKET_IN messages And (b) how many 

PACKET_IN messages can a controller handle per second? The ODL was 

found to be a better choice in terms of interfaces vendor support, while 

ONOS presented the best results under various traffic loads. 

● Carrier-Grade Networks: Security Subsystems 

The work [8] studies the integration of a security subsystem with ONOS. It 

examines its performance ability to reduce deployment runtime among peer 

applications. The results showed that developing specific policies in an SDN-

application offers a 5 to 20% performance overhead. 

● Topology related approaches  

In [9] Phemius et. al. proposed DISCO, an open and extensible distributed SDN 

control plane which scope was addressing the resiliency, scalability and 

extensibility regarding large scale multi-domain networks. A DISCO 

controller is responsible of a network domain and exchange information with 

other neighbor domains for end-to-end flow management purposes. Beside 

the processes involved in the management of the network and the approach of 

the architects on this solution, the topology can be abstracted as multiple 

simple architectures involving a controller, switches and hosts named 

domains which are linked between each other with the scope of manage large 

distributed networks. 

Mamushiane et. al. make use in [7] of an environment consisting on an controller, 

switches and MACs (hosts). It can be considered a classical topology which 

for the testing purposes was modified by increasing the number on emulated 

switches to determine the latency on network or varying the MACs number to 
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observe the effect on controller performance. 

The above studies on ODL and ONOS controllers can help in selection of 

a suitable SDN controller based on specific network requirements and use cases. 

Our study is focused on controllers’ capabilities to install appropriate paths in the 

SDN data plane to transport multimedia streaming flows. 

 

3. Comparative analysis of ODL and ONOS for multimedia streaming 

 

It is important to evaluate if a particular SDN controller can fulfill 

different sets of QoS requirements and if it has enough necessary flexibility and 

features for some specific use case. The collaboration between SDN controllers 

and QoS-capable network nodes is crucial for delivering a high-quality and 

predictable service experience and particularly in 5G deployments. One should 

evaluate how well a given controller can assure QoS support for functions like 

traffic classification, traffic policing, traffic shaping, queue management, packet 

scheduling with different policies and priorities, congestion control, and more. 

The SDN controller the execution units (nodes or VNFs) must cooperate to 

translate those the controller decisions into tangible actions. If the execution units 

lack QoS capabilities, the effectiveness of the entire QoS framework would be 

compromised. 

The open-source Open Network Operating System (ONOS) and the 

OpenDaylight (ODL) are among the most popular controllers. It is useful to 

compare their capabilities in order to make a selection between them. 

 This paper aims to contribute to this decision-making process by 

conducting a comparative analysis of ONOS and ODL controllers while preparing 

a SDN infrastructure in the data plane suitable for 5G multimedia streaming. We 

will evaluate their performance, scalability, extensibility, and adaptability to 

varying multimedia traffic scenarios. 

 

3.1. Open Network Operating System (ONOS) [10]: it is recognized for 

its scalability and adaptability in managing diverse network environments. One 

ONOS's strength lies in its ability to efficiently allocate network resources, 

prioritize traffic, and dynamically adjust to network conditions in real-time. 

Therefore, it could be useful in some 5G slicing contexts, where scaling of 

resources is needed during active traffic sessions. 

Studies [11] have shown ONOS's effectiveness in orchestrating network 

resources, to reduce network latency and ensure high throughput for multimedia 

applications. As shown in [12] ONOS appears to be significantly more stable than 

other SDN controllers, and it is much faster in reacting to topology event updates. 

The controller's robustness in handling multimedia traffic in a 5G context 

[13] has led to its adoption in various research projects and experimental 
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deployments, and it evaluates how ONOS deals with different failure scenarios in 

the control and data planes. The extensibility of ONOS through its application 

framework enables the development of customized QoS management solutions 

tailored to specific multimedia streaming requirements.  

The ONOS architecture comprises three functional layers arranged from 

top to bottom: Application, Core and the Providers + Protocols layer. 

The App layer encompasses various applications seamlessly integrated 

within ONOS. This layer exposes interfaces to external applications and controller 

administrators through RESTful APIs, GUI, and CLI. It leverages the interfaces 

provided by the Core layer to execute the logic of network applications. 

ONOS allows a distributed core architecture (the control plane is 

distributed across multiple nodes to enhance scalability). Its primary 

responsibilities include gathering information about the underlying network's 

status, collaborating with the App layer to execute network application logic. It 

can adapt to various Providers, that are modules within ONOS that implement the 

specific drivers or adaptors required to support different southbound protocols, for 

example RESTful, BGP, OSPF, ISIS. In the horizontal direction, it employs a 

cluster mechanism to facilitate communication and synchronization among 

multiple ONOS instances. 

The Protocols layer serves as the implementation hub for a range of 

southbound protocols as mentioned above. It interfaces with the Core layer 

through Providers, facilitating the management and control of network devices 

lower in the stack. To be more specific, the provider and protocols layer manages 

the interaction with network devices. 

The vertical protocol used between the ONOS controller and the network 

nodes of the data plane is typically the OpenFlow protocol. 

 

3.2. OpenDaylight (ODL) Controller [14]: it offers a flexible and 

modular platform for network management and control. Its role has been 

investigated in enhancing QoS for multimedia streaming in 5G networks. ODL's 

architecture allows for the integration of various plugins and modules, making it 

suitable for diverse multimedia traffic optimization scenarios. 

Through the ODL controller, researchers have implemented dynamic QoS 

policies, traffic shaping mechanisms, and traffic prioritization schemes to ensure 

seamless multimedia streaming experiences over 5G networks. Its adaptability 

and the availability of well-defined APIs have enabled easy integration with other 

network components, further enhancing its suitability for 5G multimedia QoS 

management. 

ODL adopts a structured architectural approach, featuring well-defined 

integration points and accessible APIs. These facets enable both end users and 

networking vendors to actively engage with its robust SDN capabilities. Note that 
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while ODL can be deployed in a distributed manner, it does not inherently have a 

distributed core architecture in the same way as ONOS. Its modularity allows for 

the distribution of specific components. 

The southbound interface in ODL ensures compatibility with a wide array 

of networking technologies and hardware provided by various vendors. This 

allows ODL to harness the capabilities of diverse vendors' equipment effectively. 

On the other hand, the northbound interface of ODL exposes APIs 

designed to cater to end users' needs, as well as fostering compatibility with other 

cloud technologies. This facet facilitates seamless integration and interaction with 

ODL's capabilities, enhancing its versatility and usability in a variety of 

networking environments. 

 

3.3. Ostinato [15] is an open-source network traffic generator often used 

for network testing and research purposes. Its key functional components are: 

1. User Interface (GUI): - makes Ostinato a user-friendly application that help 

the user in the process of packet generation and traffic modeling. The 

packets can be designed with specific attributes so the testing process can be 

as customized as the scenario imposes. Those customizations can be related 

to IP addresses, protocols, headers, content and more. 

2. Packet Crafting Engine: - reside at the core of Ostinato and is the entity that 

facilitate the packet crafting, structuring and customization process. 

3. Protocol Support: - enables users to emulate different types of network 

communications like data transfers, VoIP calls or media streaming. The 

range of supported protocols is rich and consist of well-known protocols 

like TCP, UDP, ICMP, IP and also other more specific, related to different 

applications used in testing scenarios. 

Ostinato offers benefits for: 

- Mininet Integration: - allows users to generate traffic while interacting with 

SDN controllers and different network topologies. In the Mininet 

environment, Ostinato can be used as a separate host in the topology. 

- performance and scalability: Because of the multi-thread architecture and 

the distributed mode, Ostinato is known for high performance and 

scalability.  

- conducting large-scale testing scenarios to evaluate performance of SDN 

controllers. 

Ostinato is a tool which can support various Use Cases: 

● Network performance testing: - jitter, packet loss, latency are some of the 

most common tests that Ostinato can conduct. Other testing scenarios can 

assume stress-testing for network devices and capabilities measuring under 

different traffic conditions. 
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● Vulnerability assessment: - different patterns or abnormalities can be 

induced into the traffic to evaluate the behaviors of security systems and to 

evaluate the network resilience. By identifying possible defense breaches of 

the network, Ostinato can help in assessment experiments. 

●  Security professionals utilize Ostinato to evaluate the resilience of network 

based on protocol analysis by diving into the packet composition. The 

packets can be captured on the route and modified to study the behavior of 

the protocols used to send that packets or what issues may appear by 

modifying the structure of captured packets. 

● SDN controller evaluation: -by varying the amount of traffic, the timing that 

traffic occurs or simulating different network scenarios, Ostinato can 

evaluate the performance and response of SDN controllers, the goal being to 

observe the way different controllers react to network conditions changes. 

 

Documentation and Support: 

As it can be seen from the official page https://ostinato.org/docs/ , Ostinato 

have plenty of documentation sources like FAQ’s, forums, blogs that aims to help 

and guide users regarding Ostinato. It is accessible for both beginners (installation 

and configuration tutorials), and also to advanced users that may want to 

personalize the Ostinato experience. 

As a bottom line, we can say that Ostinato is a very robust packet 

generation network tool whose capability is to test the network using different 

approaches and techniques. For those reasons we can consider that is probably a 

must have asset in network testing and analysis. 

We have chosen Ostinato for our experiments because it can be seamlessly 

integrated with Mininet, a popular network emulator. This integration allows us to 

create realistic network topologies and inject customized traffic patterns into 

Mininet networks. 

 

3.4 Mininet [16]: is an open-source network emulator that facilitates the 

creation and customization of network topologies that use the SDN principles: 

1. Realistic network simulation: 

● It can create virtual networks with a high degree of similarity with 

the physical real-world networks, making from Mininet a very 

valuable solution for testing SDN solutions for networks, including 

the 5G models.  

2. Cost-efficient development: 

● Because it doesn’t need expensive physical hardware, Mininet 

eliminates the cost problem, allowing developers to test a lot of 

scenarios with the benefit of not being forced to buy any physical 

device. 

https://ostinato.org/docs/
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Use Cases for Mininet: 

1. SDN Controller Testing: 

● By allowing developers to modify controller behavior and performance, 

Mininet facilitates the evaluations of SDN controllers in 5G context. 

Different network topologies or traffic flow scenarios can be emulated 

for the purpose of SDN testing. 

2. Prototyping and Development: 

● Mininet supports development, testing or improvement of the SDN. Those 

approaches can be related to applications, protocols or even services 

that networks run so we can assume is a valuable tool for 5G 

evaluations. 

3. QoS and Traffic Engineering: 

● Developers can enable QoS features and deploy traffic engineering 

strategies on SDN networks, Mininet can inform the designers whether 

the tested environment has an optimal resource utilization and the 

network is efficiently managed. 

4. Network Security Testing: 

● Intrusion-detection scenarios can be applied on SDN networks emulated 

with Mininet for the purpose of evaluating the security effectiveness of 

different topologies. 

 

Mininet offers several benefits [16]: 

● Rapid prototyping: Mininet is easily accessible; it is simple to create or 

modify networks, change behavior of components, establish communication 

paths and test how all things can work better in different scenarios the time 

for launching innovative applications or services is considerably reduced. 

● Repeatable testing: conducting repeated testing scenarios on the same 

topology guarantee the stability of a topology and also lower the chance of an 

unidentified issue. Mininet offers the possibility to launch controlled and 

repeatable experiments to fulfill this scope.  

● Resource-efficiency: Mininet is a cost-effective SDN testing solution because 

is based on virtualized network resources, meaning that developers are not 

restricted by equipment costs to conduct their testing scenarios. 

 

4. Experiment implementation  

 

4.1 Objectives 

The objective of this study is to use the ONOS and ODL SDN controllers 

in order to create a SDN infrastructure able to support a future evaluation of the 

capabilities on QoS assurance in static or dynamic contexts. This experiment is 
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still preliminary and focused on creating the framework to evaluate some QoS 

mechanism and determine parameters in topologies controlled by ONOS or ODL. 

The 5G system architecture is very complex; it has been investigated in 

many studies and also defined in 3GPP, ITU-T, ETSI, 5GPPP standards, e.g., 

[17][18]. In the management and control subsystem, as well in the user plane, 

support technology like SDN, NFV and cloud/edge computing are proposed – 

based essentially on virtualization. The SDN subsystems are mainly used for 

connectivity control both between physical and virtual network functions (VNF).  

The SDN and NFV are cooperating. Moreover, a 5G sliced systems architecture 

can be split in two macro-layers [19]. The upper macro-layer is specific to each 

slice tenant. Here, a tenant SDN controller dynamically configures and chains 

VNFs to realize network services in the tenant domain. It only controls the SW 

applications of the VNFs for configuration and chaining purposes, but not their 

underlying Network Function Virtualization Infrastructure (NFVI) resources, 

which belong to the lower layer.  

Another infrastructure SDN controller manages and controls is the NFVI 

(lower macro-layer) network resources (placed in a NFVI-Points of Presence or a 

WAN) to set up the connectivity for communicating the tenant VNFs in the 

infrastructure domain. It manages and controls the connectivity among the 

virtualization containers that host the tenant VNFs' software applications. 

The scope of this study is limited. It cannot cover the overall aspects of a 

5G system architecture; it is focused on SDN control subsystem and investigates 

several variants of realization of such a control. 

The network entities involved are open V-switches and SDN controllers, 

hosts and traffic generators. The communication between controller and switches 

is based on the OpenFlow protocol. The popular User Datagram Protocol (UDP) 

protocol is transporting the traffic. For real-time flows re-synchronization at 

receiver side, the Real Time Protocol (RTP) is used. 

A simplified picture of the subsystem SDN architecture is presented in 

Fig. 1. This subsystem is oriented to the lower layer of the general 5G 

architecture, i.e. on user/data plane belonging to the NFVI. To simplify the 

picture, the real traffic paths through the switches are not fully presented in the 

picture. The assembly comprised two virtual switches, OVS1 and OVS2 

controlled by an SDN controller. The switches aggregate traffic from eight hosts 

(h1-h8). The traffic was generated using iperf (this can be also done by using 

Ostinato traffic generator) and transported via UDP and RTP combinations; the 

traffic   circulates between specific hosts pairs - for instance, from host 'x' to host 

'y' via switches —allowing for a granular analysis of network performance.  

In reference to the state of the art, the proposed architecture topology is a 

standard SDN topology consisting on a SDN controller, switches and hosts. Other 

studies [7][9] on SDN used similar topologies with the focus on topology impact 



250                              Maria-Daniela Tache (Ungureanu), Ovidiu Păscuțoiu 

over the network performance and how those performances could be improved by 

scaling either the network dimension or by distributing it to separate networks. 

Our approach on the study is to test how the network responds on different 

scenarios related to the protocols of the data passing through the network.  

In a 5G sliced context, this infrastructure could model a part of a 5G core 

network where the data paths might belong to the same or different slices. 

 

 
Fig. 1: Proposed system architecture 

 

Network performance, especially latency and throughput, was recorded for 

the combination of RTP (Real-time Transport Protocol) and UDP (User Datagram 

Protocol) traffic [20]. Error rates were also monitored to evaluate the controllers' 

efficiency in managing network flows under varying load conditions.  

 

4.2 Implementation details 

The simulation model was built using Mininet version 2.3, a virtual 

network emulator running on a Linux platform, specifically using a virtual private 

server (VPS) environment provided by Hetzner [21]. This setup ensured that 

computational resources - channeled and allocated according to the experiment 

requirements - were sufficient to prevent any restrictions caused by hardware 

limitations. Each VPS was equipped with defined computational resources to 

reflect real-world deployment scenarios as closely as possible. In terms of specific 

resources, each VPS was configured with a certain amount of RAM, storage 

capacity and processing power. For example, each VPS could be allocated 4GB of 

RAM, 2 CPU cores and 50GB of SSD storage, but these values varied depending 

on the needs of the experiment. A total of 5 virtual machines were used to create a 

robust network environment and allow multiple instances of Mininet and SDN 

controllers such as ONOS and ODL to run simultaneously. This approach ensured 

Actual 

path 

h1→h

7 
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the support for a detailed and accurate simulation of network performance on 

quality of service (QoS) in SDN for multimedia streaming.  

The ODL (version Phosphorus) and ONOS (version 2.5) controllers were 

installed on Linux-based Virtual Private Servers (VPS). This installation was 

carried out using standard package management commands like sudo apt-get, 

ensuring that both controllers operated on identical software versions to maintain 

consistency in experimental conditions. The ODL controller utilizes RESTful 

HTTP requests to modify network configurations, such as setting bandwidth 

limits and prioritizing certain types of traffic. This allows for flexible and 

dynamic traffic management. The ONOS controller implements similar 

bandwidth policies using the REST API, offering an equivalent but distinct 

approach in managing network traffic.  

The ODL and ONOS controllers have been implemented and tested as 

described in the setup_sdn_controllers () function. 

Virtual Network Functions (VNFs) have been implemented for traffic 

generation and network simulation. This incorporated the use of Mininet, as 

delineated in the setup_mininet_topology() function, to construct a virtual network 

topology. Virtual switches and hosts are defined, thereby crafting a network that 

facilitated the emulation of traffic and network conditions. The network links 

between hosts and switches have an initial specified bandwidth of 10 Mbps and a 

delay of 0.005 milliseconds. 

We used iperf and rtpsend (given the fact that our example consists in a 

small topology) to initiate specific traffic flows between the simulated network 

entities, employing for the transport the UDP and RTP protocols, but we strongly 

recommend using Ostinato for more accurate results in bigger topologies. 

The rate of traffic generation specified in units relevant to the context was 

packets per second. The size of each packet in the network traffic is 1470 bytes. 

Parameters such as bandwidth limits, traffic prioritization, and error rates, 

have been controlled manually, using scripts developed by the authors. For 

monitoring network performance and capturing relevant data, the 

monitor_traffic() function was utilized. This allowed for the capture of traffic 

from virtual network interfaces and its storage in pcap files for subsequent 

analysis. Using this function, we were able to record key network performance 

parameters, such as latency and throughput, under various network load 

conditions. 

 

5. System setup and configuration 

 

Starting with the schematic representation of the network we want to test, 

we created a python script whose role is to add the network elements we need to 

the Mininet. Below is the representation of our network. The script describes the 
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steps to create the different entities in the network, h=host, s=switch, c=controller, 

the static way in which they are connected to each other and the IP addressing for 

each element as well as the communication policies between the hosts. 

The script was named of the form toposcript.py and for each type of 

controller it was run in Mininet using a command of the form 

sudo mn --custom ~/<script location>/toposcript.py --topo mytopo --

controller=remote,ip=[IP] where IP is the IP of the machine on which the 

controller was installed. 
 

 
Fig. 2 – Results of ICMP test after topology implementation 

 

The ONOS controller was downloaded in the /opt folder using the curl 

utility, using the command 

 curl -XGET -O https://repo1.maven.org/maven2/org/onosproject/onos-

releases/2.0.0/onos-2.0.0.tar.gz 

Since the kit is in an archive, we had to extract the files from the archive 

using the command 

tar -xvf onos-2.0.0.tar.gz -C /opt/onos 
 

 
Fig. 3 – graphical representation of a test topology in ONOS interface 

 

ONOS will discover and display the hosts only when they exchange data with 

each other, which is why I ran the pingall command in Mininet, the hosts thus 

initiating communication with each other, and ONOS thus becomes aware of their 

existence. 

We proceed with the actual installation of the ODL controller that we will 

download from the official website as in Fig. 4. We unzip the karaf-0.8.4.zip 
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archive, then check the existence of the folder created after unzipping and start the 

controller. The actual starting of ODL is done by accessing the/bin/karaf 

executable from the unzipped folder. 
 

 
Fig. 4 - Download process of OpenDaylight 

 

We notice that everything works as it should after creating the topology, and to 

open OpenDaylight I accessed the address of the virtual machine in the browser, 

in the form: http://IPVM:8181/index.html#/topology 

Here, we have hosts, switches, and flows, along with the links connecting hosts to 

switches and switches to each other, as defined within the switch configuration 

and illustrated in Fig. 5. 
 

 
Fig. 5 – graphical representation of the topology in ODL interface  

 

As a final test, we created the script below that helped us verify the traffic 

between several hosts, and the output can be seen in Fig. 6. 

 
# Configuring UDP traffic from H3 to H4 and H6 with Video QoS (DSCP 0xb8) 

h3.cmd('iperf -c 10.0.2.4 -u -p 5002 -t 40 -S 0xb8 > /home/h3_udp_output.txt 2>&1 &')   

# SET DSCP FOR VIDEO 

h4.cmd('iperf -s -u -p 5002 > /home/ h4_udp_output.txt 2>&1 &') 

h6.cmd('iperf -c 10.0.2.4 -u -p 5002 -t 40 -S 0xb8 > /home/ h6_udp_output.txt 2>&1 &') 

 

# Configuring RTP traffic from H1 to H5 and H7 with Voice QoS (DSCP 0x28) 

 

h1.cmd('iperf -c 10.0.2.5 -u -p 5001 -t 30 -S 0x28 > /home/h1_rtp_output.txt 2>&1 &')   

# Set DSCP for Voice 

h5.cmd('iperf -s -u -p 5001 > /home /h5_rtp_output.txt 2>&1 &') 

h7.cmd('iperf -s -u -p 5001 > /home/ h7_rtp_output.txt 2>&1 &') 
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# Configuring mixed RTP and UDP traffic from H2 to H8 with mixed QoS 

h2.cmd('iperf -c 10.0.2.3 -u -p 5001 -t 50 -S 0x28 >/home/h2_mixed_output.txt 2>&1 &')  

 # Set DSCP for Voice and Video 

h8.cmd('iperf -c 10.0.2.5 -u -p 5002 -t 50 -S 0x28 >/home/h8_mixed_output.txt 2>&1 &')   

# Set DSCP for Voice and Video 

 

# Applying QoS for RTP (Voice) traffic - Set DSCP 0x28 on H1 and H2 

h1.cmd('tc qdisc add dev h1-eth0 root handle 1: htb default 12') 

h1.cmd('tc class add dev h1-eth0 parent 1: classid 1:1 htb rate 1mbit ceil 1mbit') 

h1.cmd('tc filter add dev h1-eth0 protocol ip parent 1:0 prio 1 u32 match ip dscp 0x28 0xff00 

flowid 1:1') 

# Applying QoS for UDP (Video) traffic - Set DSCP 0xb8 on H3 and H4  

Traffic Control (QoS): 

• tc commands are used to configure traffic shaping and quality of service (QoS) for 

different types of traffic based on the Differentiated Services Code Point (DSCP). 

o Voice traffic (RTP): DSCP 0x28 is used for voice traffic on h1 and h2. 

o Video traffic (UDP): DSCP 0xb8 is used for video traffic on h3 and h4. 

Traffic Generation (iperf): 

• iperf is used to generate UDP traffic, specifying the -S option to set the DSCP values. 

o Voice traffic is sent from h1 to h5 and h7. 

o Video traffic is sent from h3 to h4 and h6. 

o Mixed traffic is generated from h2 to h8. 

 

DSCP 0x28 corresponds to a specific value in the DSCP field, which is used for classifying and 

prioritizing traffic. It is part of the Differentiated Services (DiffServ) model for QoS. 

DSCP 0x28 is often used for RTP (Real-Time Protocol) traffic, which includes Voice over IP 

(VoIP) calls. In our case, the DSCP value indicates that the traffic is high-priority and should be 

treated with low latency, minimal jitter, and low packet loss, which is essential for real-time 

communications. 

DSCP 0xb8 is often used for UDP-based video traffic, where the goal is to ensure a smooth 

streaming experience with relatively low latency and minimal interruptions, but it is not as high-

priority as real-time voice traffic (DSCP 0x28). 

 

 
Fig. 6 - Example of traffic values recorded at the host level 
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6. Experimental results 
 

Using the previous described procedure, we tested the network capabilities for the 

entire proposed system using the paths and protocols described in it. The tables 1 -

4 below are summarizing our test results and capabilities of the tested SDN 

controllers (ONOS, ODL). Based on the jitter and loss, parameters comparative 

graphs in Fig. 7 and 8 were designed, to provide a better image on the final 

results. 
Table 1  

Traffic results for proposed architecture using ONOS Controller 
ONOS     

Traffic for 1470 sent 

datagrams 

Bandwidth 

Mb/s 

Injected 

Traffic size 

Mb 

Jitter Loss 

H1 to H5 voice  10  10  0.005 ms 0/1470 (0%)          

H1 to H7 voice  10  30  0.010 ms 30/1470 (2.04%)  

H3 to H4 video  20  20  0.015 ms 0/1470 (0%)           

H3 to H6 video  20  40  0.018 ms 5/1470 (0.34%) 

H2 to H8 mixt  30  30  0.009 ms 0/1470 (0%)         

H2 to H8 mixt  30  90  0.20 ms 25/1470 (1.70%) 

 

Key Distinction: 

• Bandwidth (Mb/s): The maximum rate at which a link can carry traffic 

(e.g., 10 Mb/s means the link can transmit 10 megabits per second). 

• Injected Traffic (MB): The total amount of data sent over the link during 

the test. For example, "30 MB of traffic" refers to 30 megabytes total, but 

it does not specify the rate at which this traffic is sent. 

For example, H1 to H7 voice - Here, "30 MB" is the total amount of data 

transmitted over the test duration, not a traffic rate. If the test duration is 

long enough ( in this case 30 seconds, the average traffic rate will still fit 

within the link's 10 Mb/s capacity, resulting in low packet loss – 2.04%. If 

the test duration is shorter (e.g., 10 seconds), the traffic rate would 

increase proportionally, potentially exceeding the bandwidth and causing 

greater packet loss. The test duration for traffic generation is set explicitly 

in the iperf commands using the -t option. The -t flag specifies the 

duration of the test in seconds. 
 

Table 2  

Traffic results for proposed architecture using ODL Controller 

ODL     

Traffic for 1470 sent 

datagrams 

Bandwidth 

Mb/s 

Injected 

Traffic 

size Mb 

Jitter Loss 
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H1 to H5 voice  10  10  0.005 ms 0/1470 (0%)        

H1 to H7 voice  10  30  0.010 ms 150/1470 (14.65%) 

H3 to H4 video  20  20  0.015 ms 0/1470 (0%)           

H3 to H6 video  20  40  0.018 ms 10/1470 (0.68%) 

H2 to H8 mixt  30  30  0.009 ms 0/1470 (0%)           

H2 to H8 mixt  30  90  0.20 ms 50/1470 (3.40%) 
 

Table 3  

Comparative table of the jitter regarding ONOS and ODL controllers 

Jitter Graph 
H1-H5 

voice  

H1-H7 

voice  

H3-H4 

video  
H3-H6 video  

H2-H8 

mixt  

H2-H8 

mixt  

ONOS 0.005 0.01 0.015 0.018 0.009 0.2 

ODL 0.005 0.01 0.015 0.018 0.009 0.2 
 

Table 4  

Comparative table of the loss regarding ONOS and ODL controllers 

Loss Graph 
H1-H5 

voice  

H1-H7 

voice  

H3-H4 

video  
H3-H6 video  

H2-H8 

mixt  

H2-H8 

mixt  

ONOS 0 0.0204 0 0.0034 0 0.017 

ODL 0 0.1465 0 0.0068 0 0.034 

 

 
Fig. 7 – ONOS and ODL graph based on collected jitter values 

 

In literature, others tried to do performance tests of controllers. In the case of 

[7], the tests revealed also that ONOS tend to have better performance compared to 

ODL based on some tests that supposed a variation on emulated topology (switches 

and hosts). To conclude the results, our tests related not to the topology but to the data 

passing through the network, confirms once again that ONOS controller has better 

performances than ODL controller. The advantage of using SDN-type control inside 

5G architecture is definitely a strong approach inside the 5G architecture (see [17], 

[18], [19] above and many others). However, further investigation of different 

variants of controller solutions is valuable. 
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Fig. 8 – ONOS and ODL graph based on collected loss values 

 

7. Conclusion 
 

 This study had the purpose of selecting and installation/interconnection of the 

complex system components (controllers, generators, Mininet) and creating the 

environment with sets of virtual machines for different functions.  This assembly can 

model a subsystem in a SDN overall architecture. 

 Related to the testing results we showed that both controllers are sensitive on 

variations of the packet size in relation with the allocated bandwidth and while the 

jitter results remained the same, the loss parameter changed during the different tests. 

The contribution of this study consists in testing the connectivity capabilities 

of a SDN assembly (controller, switches, hosts) for several types of controllers and 

proposing an approach that separates the data flows, based on the protocols used at 

transport level to send the data. 

 The proposed topology could support (in a future) more complex evaluations 

related to QoS, such as bandwidth assurance, QoS policies, priorities, overloads of the 

data paths, changing dynamically of the flows requirements which would need 

interventions of the controllers lead us to configuration of all the SDN controlled 

infrastructure (by ONOS or ODL) and testing the functionalities concerning the 

traffic transport (via UDP or UDP + RTP) in appropriate way between different hosts. 

Our goal is to continue studying these SDN controllers in order to test in 

depth the way of implementing QoS policies and algorithms that can be applied to 

them in order to not only have functionality tests but also performance tests 
 

R E F E R E N C E S 
 
[1]. https://wiki.opennetworking.org/, Accessed November 4, 2024 

[2]. https://www.opendaylight.org/. Accessed November 4, 2024 

[3]. http://mininet.org/. Accessed November 4, 2024 

https://web.archive.org/web/20231110095704/https:/web.archive.org/web/20231024213523/https:/wiki.opennetworking.org/
https://www.opendaylight.org/
http://mininet.org/


258                              Maria-Daniela Tache (Ungureanu), Ovidiu Păscuțoiu 

[4]. A. Rodriguez, J. Quiñones, Y. Iano and M. A. Q. Barra, "A Comparative Evaluation of ODL and 

ONOS Controllers in Software-Defined Network Environments," 2022 IEEE XXIX 

International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 

Lima, Peru, 2022, pp. 1-4, doi: 10.1109/INTERCON55795.2022.9870107. 

[5]. M. Bano, S. S. A. Gilani and A. Qayyum, "A Comparative Analysis of Hybrid Routing Schemes for 

SDN Based Wireless Mesh Networks," 2018 IEEE 20th International Conference on High 

Performance Computing and Communications; IEEE 16th International Conference on Smart 

City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 

Exeter, UK, 2018, pp. 1189-1194, doi: 10.1109/HPCC/SmartCity/DSS.2018.00200.  

[6]. Urrea C, Benítez D. Software-Defined Networking Solutions, Architecture and Controllers for the 

Industrial Internet of Things: A Review. Sensors. 2021; 21(19):6585. 

https://doi.org/10.3390/s21196585  

[7]. L. Mamushiane, A. Lysko and S. Dlamini, "A comparative evaluation of the performance of 

popular SDN controllers," 2018 Wireless Days (WD), Dubai, United Arab Emirates, 2018, pp. 

54-59, doi: 10.1109/WD.2018.8361694. 

[8]. Yoon, Changhoon et al. “A Security-Mode for Carrier-Grade SDN Controllers.” Proceedings of the 

33rd Annual Computer Security Applications Conference (2017) 

[9]. Phemius, Kevin, Mathieu Bouet, and Jérémie Leguay. "Disco: Distributed multi-domain sdn 

controllers." 2014 IEEE network operations and management symposium (NOMS). IEEE, 2014. 

[10]. https://wiki.onosproject.org/display/ONOS/Overview+of+ONOS+architecture Accessed 

November 4, 2024 

[11]. Goswami, B., Hu, S., Feng, Y. (2022). Software-Defined Networking for Real-Time Network 

Systems. In: Tian, YC., Levy, D.C. (eds) Handbook of Real-Time Computing. Springer, 

Singapore. https://doi.org/10.1007/978-981-287-251-7_69 

[12]. https://opennetworking.org/wp-content/uploads/2019/09/ONOSvsODL-report-4.pdf. Accessed 

November 4, 2024 

[13]. Lucas V. Ruchel, Rogério C. Turchetti, and Edson T. de Camargo. 2022. Evaluation of the 

robustness of SDN controllers ONOS and ODL. Comput. Netw. 219, C (Dec 2022). 

https://www.sciencedirect.com/science/article/abs/pii/S1389128622004376  

[14]. https://wiki.opendaylight.org/pages/viewpage.action?pageId=336424. Accessed November 4, 

2024 

[15]. B. R. Patil, M. Moharir, P. K. Mohanty, G. Shobha and S. Sajeev, "Ostinato - A Powerful Traffic 

Generator," 2017 2nd International Conference on Computational Systems and Information 

Technology for Sustainable Solution (CSITSS), Bengaluru, India, 2017, pp. 1-5, doi: 

10.1109/CSITSS.2017.8447596. 

[16]. https://opennetworking.org/mininet/. Accessed November 4, 2024 

[17] 3GPP TS 23.501 V17.2.0 (2021-09) "Technical Specification Group Services and System 

Aspects;System architecture for the 5G System (5GS)", Stage 2, (Release 17), 

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId

=3144  

[18] 5GPPP Architecture Working Group, "View on 5G Architecture", Version 4.0, August 2021, 

https://5GPPP.eu/wp-content/uploads/2021/08/Architecture-WPv4.0 forPublicConsultation.pdf , 

https://5g-ppp.eu/white-papers/ 

[19] ETSI GR NFV-EVE 012 V3.1.1 (2017-12), Release 3; NFV Evolution and Ecosystem; Report on 

Network Slicing Support with ETSI NFV Architecture Framework 

[20]. Li, Y., Niyato, D., Wang, P., Kim, D. I., & Han, Z. (2020). A Survey on Network Slicing for 5G 

and Beyond: Fundamentals, Architectures, and Applications. IEEE Communications Surveys & 

Tutorials, 22(1), 674-707. doi:10.1109/comst.2019.2940746 

[21]. https://www.hetzner.com/. Accessed November 4, 2024 

 

https://doi.org/10.3390/s21196585
https://wiki.onosproject.org/display/ONOS/Overview+of+ONOS+architecture
https://doi.org/10.1007/978-981-287-251-7_69
https://opennetworking.org/wp-content/uploads/2019/09/ONOSvsODL-report-4.pdf
https://www.sciencedirect.com/science/article/abs/pii/S1389128622004376
https://wiki.opendaylight.org/pages/viewpage.action?pageId=336424
https://opennetworking.org/mininet/
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://5gppp.eu/wp-content/uploads/2021/08/Architecture-WPv4.0%20forPublicConsultation.pdf
https://5g-ppp.eu/white-papers/
https://www.hetzner.com/

