U.P.B. Sci. Bull., Series C, Vol. 69, No. 2, 2007 ISSN 1454-234x

OPTIMAL OPERATION OF LARGE HYDROPOWER
RESERVOIRS WITH UNREGULATED INFLOWS

Khalid AHMAD-RASHID, |Al. G. DIACON?, B. POPA®

Articolul prezintd un model de optimizare stocastica de tip explicit, bazat pe
programarea dinamica §i destinat operarii pe termen lung a unui lac energetic de
mari dimensiuni. Ca §i caz de studiu s-a folosit lacul Dokan din Irak. Tabloul
deciziilor optime gasit de model permite sa se traseze o serie de traiectorii optime
pentru variatia nivelului in lac pe parcursul anului, care sunt utile pentru a asista
operatorul in efectuarea exploatarii curente.

This paper presents an explicit stochastic optimization model based on
dynamic programming, for long-term operation of a large hydropower reservoir.
The Dokan reservoir from Iraq was selected as case study. The table of optimal
decisions allows to tracing several optimal storage guide curves, which are useful to
assist decision maker in current operation.

Keywords: explicit stochastic optimization, stochastic dynamic programming,
optimal hydropower reservoir operation

1. Introduction

Although the reservoir system optimization is placed among the few areas
of application of optimizations models with many opportunities, actual
implementations of these models in real-world are still limited. Often, in public
water management agencies, avoidance of difficulties is the major goal, rather
than improving efficiency or reducing costs. A reason for this situation may be
that the reservoir operators have lacked confidence in models, which purport to
replace their judgment and prescribe solution strategies under risk and
uncertainty.

Determining operational policies for the efficient management of available
water in large reservoirs is a complex problem because it involves random
hydrological events. For such a reservoir, a long-term (annual, with monthly time
step) strategy must be derived, taking into account the hydrologic uncertainties.
However, if long unregulated inflow time series are available, there are some
optimization models for reservoir operation in stochastic conditions. Authors as
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Yeh [1], Wurbs et al. [2], Simonovic [3], Wurbs [4] have summarized and
reviewed the use of optimization models and their applications to reservoir
systems. Two basic approaches may be defined.

In implicit stochastic optimization methods, some deterministic models are
used together with long historical or synthetically generated inflow time series, or
several shorter equally-likely sequences, to derive optimal operational policies.
Unfortunately, these policies are unique to the assumed hydrologic time series and
a multiple regression analysis can be then applied to the optimization results for
developing monthly operating rules. The operating rules provide the optimal
decision variables as functions of observable information (such as current storage
levels, previous period inflows) and forecasted inflows for current month. Among
the most used optimization methods is the simplex of linear programming and its
variants, favored by [5] for a large reservoirs system. Paper [6] derived general
operating rules using regression from dynamic programming results, while in [7] a
neural network model is proposed to treat the same results. Some other nonlinear
programming models have been developed in [8], [9], [10].

Explicit stochastic optimization procedures attempt to operate directly on
probabilistic descriptions of random inflows or other random variables, rather
than long recorded (or generated) hydrologic time series. In this way, optimization
is performed without the presumption of perfect foreknowledge of future inflows,
and optimal policies are obtained without the need for regression analysis or other
manipulation on the optimization results. Some chance-constrained models have
been developed using linear decision rule and several extensions to this one, as in
[11], [12], [13] etc. In [14] the optimal storage guide curves are derived by a
stochastic dynamic programming (SDP) formulation. Other authors have applied
SDP to single reservoir problems as in [15] and [16], but there are few extensions
of SDP to multireservoir systems where the curse of dimensionality is more
aggravated than in the deterministic case.

In this paper, an explicit stochastic optimization is performed by an SDP-
type model for the large hydropower Dokan reservoir from Irag. Its size and much
unregulated monthly inflows justify an optimization analysis to improve the
efficiency of hydroelectric energy generation and tradeoff with other conflicting
project uses and purposes.

Section 1 describes the mathematical formulation of a SDP model for
optimal long-term reservoir operation.

In Section 2, some relevant input data to this project and case study are
presented and prepared.
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Section 3 includes the main results of optimization analysis, under
stochastic unregulated inflows conditions with priority on power generation.

A next paper will be devoted to develop a simulation model for system
operation, based on stochastic optimization results, but corrected to allow the
current operation with medium-term forecasting on inflow discharges. Some
different objective functions will be tested, and simulation model performances
will be compared with recorded data from real-world operation.

2. SDP model formulation

Discrete dynamic programming (DP) is an ideal optimization procedure
for solving sequential decision problems such as reservoir system optimization.
Other advantages of DP are as follow: 1) Objective function and constraints can
be nonlinear, nonconvex, and even discontinuous functional relationships; 2) A
large number of constraints can be imposed, so that the number of feasible
combinations of discrete decisions is highly reduced; 3) Produces closed-loop
decision policies that allow flexibility in operation by conditioning optimal
decision on current state of the reservoir; 4) Is more readily extensible to explicit
stochastic optimization problems than the other procedures.

As originally developed by Bellman [17], DP decomposes the original
problem into subproblems, which are solved sequentially over each stage (time
periods in operational context, but can generally represent locations, activities
etc.). Fig. 1 presents a stage from a typical multistage problem.
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Fig. 1. lllustration of reservoir operation as sequential decision process.
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Any DP formulation involves specification of two variables: state variable
and decision (or control) variable. In reservoir optimization problem, the state
variable is selected as storage level at beginning of period &, s; and the system

evolution is completely defined by sequence of states during the all £ =1,2,...,.K
stages of interest. Decision variable must be among the controllable parameters,
at system operator disposal (i.e. volume of release during time step &, R} ).

The state transformation equation describes relation between the two state
and decision variable from stage %, to generate ending period state, s 1.

A return / cost is produced at each stage k by a performance function
S (55, Ry 5541,0y ), and is assumed independent of decisions made in other

stages. This separability property implies that the system state must embody all
information to be communicated from stage to stage. The objective may be to
maximize total returns or minimize accumulated costs over all K stages. By
“return” may be defined a monetary or technical objective (i.e., annual total
hydro-energy, annual firm energy, annual water yield etc.), and also for cost case.

Finally, system operation must be accomplished assuring mass balance on
the reservoir content, and under constraints associated with both state and
decision variables, for each stage.

Solution of DP optimization problem is obtained by calculation of an
optimal performance (return or cost) function C; (sk) representing the optimum
performance accumulated from the current stage k£ through the final stage K,
conditioned on a given initial state s,. This function is evaluated using a
backward-looking DP recursion relation based on Bellman’s principle of
optimality, which states that: no matter what the initial stage and state of a
Markovian decision process, there exists an optimal policy from that stage and
state to the end.

For Dokan reservoir case study the above-mentioned DP elements are as
follow:

state variable: V,é — stored volume in reservoir at the beginning of month £;

decision variable: ka — stored volume in reservoir at the end of month k.
By this selection the state transformation equation becomes very simple:

o ~
Vi =Vy fork=12,.., K-1. 1)

Stage performance function:
fk(V/é’kaan):Ek_Sk’ )

where Ej; is hydro-energy produced during month %, and S;— hydro-energy
spilled during month %, so that f; represents a sort of “net” energy production in
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stage k. This performance function is conditioned on the state and decision
variables, and also on inflow discharge during month &, O, (expressed in storage

units per time interval), accepted as random variable with known probabilities.

Optimization objective is then:
K=12

maxE{F: 3 fk(V,j,ka ,Qk)] 3)
k=1

where E represents the expectation operator applied to annual net hydro-energy
production, which must be maxim in stochastic conditions.

Reservoir mass balance is computed by:
vl =V +0c - Ry., @)
where R, is monthly released discharge in storage units, and any losses due to

evaporation or seepage have been neglected (input data on inflows were obtained
by operation balance, and thus the losses are implicitly included).

Operational constraints are concerned with bounds on storage and
releases.

The live storage in reservoir during stage & should be less than or equal to

Max
Vk

the maximum active storage capacity, , and also greater than or equal to the

minimum storage capacity, Vkmi” , accepted for this stage:

Vkmi” ngf SVkM"x,fork=1, 2,...K. (®)

By eq. (1), this constraint operates on state variable as well.
Irrigation demand constraint is imposed by lower bound of release during
each month:

Ry 2RM™ fork=1,2,...,K, (6)
where ercni” is the minimum irrigation demand to sustain the crops.

If R,jy‘”‘ denotes the monthly release corresponding to maximum capacity
of turbines, then the two terms in eq. (2) are computed by:
Ey =el7 )Ry, if R, < R},
D, =0, it Ry <R, )
Dy =l Re - R )it Ry >R,
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where e(I7k) is specific hydro-energy production in (GWh/ 10° m®), conditioned
on average storage level over period &, 7.

The backward DP recursion relation for optimal return function
computation in stochastic problem is:

Ck(Vzi)= maX{JZkP/q(ij)[flq(Vé’ka ’ij)+ Ck+1(V/§+1)] : (8)

j=1
where Q; denotes the j-th discrete realization of random variable Oy, with
associated independent discrete probability of occurrence pkj(ij), and J; is
number of classes used in frequency analysis for stage k. Obviously, it must that

Tk
> pyloy)=1.fork=1,2,... K, ©)
j=1

and backwards recursive process befins with terminal condition

Cki1 V;'M)zo. (10)

Each successive C;, (V,é ) is evaluated as a function of all discrete values of
V,ﬁ used in analysis for stage k& and stored together with the corresponding

optimal decision V,: (V,é ) The two matrices obtained for all K stages represent the
results of SDP analysis.

3. Input data for SDP analysis in Dokan reservoir case study

Dokan dam and reservoir is a multipurpose project built on Little Zab river
in Kurdistan, Irag. This project was conceived primarily for flood control, with
other purposes being irrigation, hydropower, pisciculture and recreation. The
catchment area of reservoir up to the dam site is about 12,000 km? and the
multiannual mean inflow attains about 200 m®/s.

The active storage capacity is placed between the reservoir levels of 480 m
(minimum hydropower operating level), and 511 m respectively (level of an
uncontrolled bell mouth spillway), involving a volume of about 5,400 10° m®. The
gross storage capacity is about 7,000 10° m*, and reservoir water surface at level
511 m exceeds 270 km?.

There are 5 Francis type turbines at the Dokan power plant with 80 MW
power capacity each, operating at net heads between 60 and 95 m, with discharges
of 50 — 111 m%/s.
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In present-day conditions, the irrigation demand is reduced to only about
20 m®/s, and this value was used to compute the lower bound ercn'”, which is

imposed for all K months. The maximum capacity of turbines, R,ﬁ”"x , was limited

to 470 m®s (94 m*/s per turbine being a discharge possible on the whole domain
of heads).
Specific hydro-energy production is estimated by relation:
e=0.0023-(z - 415), (GWh/10°m®), (11)
where z represents storage level (m), connected by volume in storage as in
Table 1.

The lower bound for volume in storage, Vkmi” , is imposed to 1,400-10%m?
over months £=1,2...,11, and to 2,400-10°m?® at the end of year, while upper
bound, V,?’["x, is accepted as 6,800-10°m® during the all stages. Using a

discretization step AV = 50-10°-m® a total of 109 discrete values results for state /
decision variables.

Table 1

Water level (m) — volume in storage (10° m®) relation for Dokan reservoir
470 474 478.11 | 480.5 484 486 488 490.03 | 492.01
V | 7415 | 969.1 | 1261.5 | 1462.6 | 1801.5 | 2021.8 | 2262.4 | 2528.6 | 2810.2

N

494.06 | 496.01 | 498.04 | 500.04 | 502.1 | 504.1 | 506.4 | 508.04 | 510.75 | 512.36

N

V | 3126.1 | 3450.2 | 3813.2 | 4196.8 | 4619.2 | 5055.4 | 5589.8 | 5991.2 | 6694.5 | 7135.3

From the system operator, a lot of recorded data time series has been
obtained, including monthly inflow discharges between October 1958 and January
2001. These values vary from a minimum of 11 m*/s in August to about 1510 m*/s
in March, while mean multiannual data are placed between 64 m*/s for September
and 483 m*/s for April.

Because unregulated monthly inflows in Dokan reservoir are poorly
correlated from month to month, these have been accepted as independent random
variables for each stage. A number of 10 classes is selected for frequency analysis,
and the classical synthetic generation Thomas—Fiering model was used to give
more consistency to frequency distributions. For example, Table 2 includes some
results of frequency analysis over a 200 years time series, where inflows are
expresses in storage units (10° m*/month), and computed as average value of all
data in any class.
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4. Main results of SDP analysis for Dokan reservoir

Input data as shown in Section 2 were used in SDP optimization model
described in Section 1.

From table with optimal return function as function of storage level for
first stage (October), one ascertains that the expected maximum annual net hydro-
energy is placed between 913 GWh (489.05 m storage level at beginning of year)
and 1903 GWh (511.14 m as initial storage level). One note that recorded data
during 1980 — 1999 interval reveals an average annual production of about
963 GWh/year.

However, more useful are results from optimal decisions table because
these allow to tracing several optimal storage guidecurves. A fragment with
optimal decisions (expressed as ending storage level for each month) is included
in Table 3.

The data from this table must be understood as follows (for example):
- If storage level at beginning of March is 490.53 m (first column), then the
optimal ending storage level for March is 492.27 m (column of month 3);
- To the same initial storage level but for September corresponds an optimal
ending storage level in September of 489.05 m.

Positions marked by “0” values in Table 3 correspond to unacceptable
states for the used input data, and in the context of SDP formulation.

Fig. 2 presents a lot of optimal storage guidecurves traced with data from
Table 3 for various storage levels at the beginning of hydrological year.

Storage level [m]

Fig. 2. Several optimal storage guidecurves for Dokan reservoir in stochastic conditions.
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Such a guidecurve may be or may not be followed during a year of real
operation, depending on the effective monthly inflows. However, these
guidecurves are very useful to assist the decision maker for reservoir operation.

Because of the objective function (expected maximum annual net hydro-
energy), all guidecurves attains minimum storage level accepted for ending of the
year.

Using only the inflow volumes (lower guidecurve), an expected annual
production of 913 GWh is obtained by this stochastic optimization model, very
closed to the recorded value of 963 GWh/year during a 19 years time interval.

5. Conclusion

SDP optimization model for Dokan reservoir produced a table with
optimal decisions (ending storage level) as functions of the beginning storage
level for each month, under unregulated inflows conditions.

A simulation model, runned with the recorded monthly inflows, will verify
performances of these optimal decisions.
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