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DYNAMIC OF EVOLUTIVE OPTIMIZATION PROBLEMS

Constantin Udriste!, Tonel Tevy?, Ali Sapeeh Rasheed?®

This is a paper about continuous time deterministic evolutionary dynamics for
optimization problems. The topics include: (i) evolution of objective function; (ii) evo-
lution of constraints; (i11) evolution of minimum value; (iv) evolution of catastrophe
manifold; (v) evolution of an optimal control problem. For the context of optimal con-
trol problems, we also described: (1) a general theory about evolution of a curve described
by an ODE; (2) a general theory about evolution of a surface described by a PDE; (3)
evolution of a curve following a first order ODE.
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1. Evolution of an optimization problem

In general terms, ”optimization problems that change over time” are called dynamic
problems/time-dependent problems. The first idea about the evolution of a free optimization
problem appeared in [5]. Now this subject can be included in the geometric evolution of
ODEs and PDEs [1],[3], [4]. Related topics are found in [2], [6], [7].

In trade-off analysis of an optimum problem we vary the constraints, and see the
effect on the optimal value of the problem. Sensitivity analysis of an optimum problem is
closely related to trade-off analysis. In sensitivity analysis, we consider how small changes
in the constraints affect the optimal objective value. Both problems reflect the idea that in
many practical problems, the constraints are not really set in stone, and can be changed,
especially if there is a compelling reason to do so (such as a drastic improvement in the
objective obtained). We extend trade-off analysis and sensitivity analysis to evolution of an
optimization problem.

Let z = (x',...,2") € R™ be the vector of decision variables, f: R — R be a
C? objective function and g;: R® — R, i = 1,....k, be C? functions that describe the
constraints. A general optimization problem is of the form:

min f(a)

subject to
gl(m) < 07 7gk(x) <0.
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The t-evolution of the graph of f and the t-evolution of the ”manifold” described by
constraints have a geometrical sense and are very clear. Here we solve the following problem:
what is the significance of the t-evolution of an optimization problem? Of course, though the
transition from the evolution single time parameter t to the evolution multi-time parameter
t = (t',...,t™) is not so difficult, the multitime case has own specifical problems.

1.1. Evolution of objective function
Without loss of generality, we consider a simplified problem of optimization:
min f(x) subject to g(z) = 0.
T

Suppose the objective function f: R™ — R in this problem is smooth and regular. Its
graph G(f): y = f(z) is a submanifold in R"™!, characterized by the metric g;;, g/,

Jif;
L+ |Vf]2
the normal versor n, the second fundamental form h;;,
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the mean curvature H, and the Gauss curvature K,

9ij = 6ij + fif;, g7 =06 —

2
H=div|— ) K=det— Y1
VI+|VIP (1+[Vf2)=
The graph submanifold is described by the embedding vector field X (x) = (x, f(z)). There-
fore, its evolution in time, after the normal vector, is introduced by an extension

F = F(z,t), F(2,0) = f(x), t € [0,T]
and the associated vector field Y (x,t) = («,t, F(z,t)), which satisfies the evolution PDE
Y (z,t) = —H(x,t)n(z,t), Y(z,0) = X (x).
The last PDE is equivalent to a flow PDE. It follows

Proposition 1.1. The normal evolution of objective function is described by the flow
F=+\/1+|VF??H, F(z,0) = f(z).

1.2. Evolution of constraint manifold

Let S : g(x) = 0 be a regular implicit hypersurface representing the constraint in an
optimization problem
min f(x) subject to g(x) = 0.
Suppose ¥ = x(u),u € R"~! is a parametrization of S, i.e., g(z(u)) = 0, Vu € R"~!. The
time evolution S(t) is described by the implicit equation
S(t): G(z(u,t),t) =0, uc R" 1t €[0,T],5(0) =S,

ie, G(z,0) = g(z). Using X = x(u,t), and derivation with respect to ¢, we find that the
function G must verify the relation

VG- X;+G =0
or, explicitly, the PDE _

0G Ox* n oG

ort ot ot

0.
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If we impose %l‘ = Y, then we find the PDE G; = —«(VG,Y), with unknown G, fixed
by the initial condition.
Let n = Hg—gll be the versor normal to the hypersurface S(¢). If we accept the

evolution after the normal versor, i.e., %x = fn, then we get Gy = —f||VG||. Some
authors introduce = K, attending a nonlinear second order PDE in the unknown G.
Summing up, we find

Proposition 1.2. The normal evolution of constraint function is described by the flow
Gy = —BlIVG]l, G(z,0) = g(x).
1.3. Evolution of minimum value
Suppose that 2* and f* = f(a*) is solution of the problem
mmin f(z) subject to g(z) = 0.
Let us analyse what happen with these data during the evolution.

Theorem 1.1. The minimum value F™* satisfies the relation
dF* OF* 0G*
a a0 g
Proof. By t-evolution, the Lagrange function I(x) = f(z) + Ag(x) becomes
L(z,t,\) = F(x,t) + A\G(z,1).

The critical point condition g—i = 0 gives x = z(\,t). From the constraint condition
G(z,t) = 0, i.e.,, G(z(\,t),t) = 0, we find A = A(¢) and finally z(t) = x(A(t),t). Conse-
quently the minimum value satisfies the relation in Theorem. O

Remark 1.1. For example, if F(z,t) = f(x) and G(z,t) = g(x) —t, then the previous PDE
reduces to the well-known relation e

= —=A(1).
o (t)
In other words, a classical optimization problem ”f(x)=extremum, subject to g(z) = ¢
is a particular case of evolution of the optimization problem ”f(x)=extremum, subject to

”

g(x)=0".
If F(x,t) is combined to G(z,t) = g(z), then we get
af* _ of*
dt ot

(see also the properties of "minimum functions”).

If G is a vectorial function, then in the relation of Theorem, the right hand term
becomes a scalar product. The optimization problem ”f(x)=extremum, subject to ¢g1(x) =
t, go(x) =t” leads to

df*
P —(A1(t) + A2(2)).

2. Evolution of catastrophe manifold
associated to a Lagrange potential

We start with a Lagrange function
L:R"xR¥ 5 R, L(z,\) = f(z)+ < A\ g(z) >,

where f and g are of class C2. The point x € R" is called state. The point A € R is called
control. The partial function x — L(z, A) is called potential.
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The set of all critical points M C R™ x R* of the potentials z — L(z, ), characterized
by
af 8
Ox? " Ot
is called the catastrophe manifold.
Let 7 : R" x R¥ — R* 7(x,\) = X be the natural projection. The restriction of 7 to
M is denoted by x and is called catastrophe application. The subset S C M consisting of
the singular points of the catastrophe application x : M — R, i.e., the points at which the
rank of the Jacobian matrix J() is smaller than m, is called the singularity set. The set S
is described by the equations

0 f %L
=0,det| =——=— | =0
oa a i7" (8:6’81‘])
The image B = x(S) C R is called bifurcation set. The bifurcation set B is the set on

which the number and nature of critical points change; the change takes place only when
passing through a degenerate critical point.

2.1. Evolution preserving the catastrophe manifold

Now we introduce a variation parameter € € [0,T) independent of . Then it appears
the perturbed functions f(z,€), A(€), g(x, €). We impose the initial conditions

f(@,0) = f(2),A(0) = A, g(x,0) = g(x).
Also, we need a new Lagrange function

L(xa /\(E)a 6) = f(l'a E)+ < A(E),g(l‘; 6) >
and the associated critical point condition

0
(8{+<)\ e )(ﬁc,)\(e),e) = 0.
To continue, we must declare the variational objects
of g oA

E'E:O = ¢(z), Ekzo =n(x), ak:o =
Theorem 2.1. Let x(\) be a critical point. The vector VE(x(X)) belongs to the space
generated by Vn(x (X)) and Vg(z(N)), i.e.,

o0& on 89
-+ <), >+ <g > =0.
ozt " Ot e
Proof. Variant 1 Taking the derivative with respect to e, in critical point condition, setting
e = 0, we find the equation on variations in the Theorem.

Variant 2 We set

f(@) + e€(z) + ole),
g(x,€) = g(x) + en(x) + o(e),
Ale) = A+ es + o(e).

~
—
&
N
Il

Then

Lz, A €) = L(w,A) + e(§(2)+ < A,n(z) > + <<, g(x) >) + ofe).
Taking the partial derivative with respect to 2 and using the initial critical point condition,
we find the equation in Theorem. O



Dynamic of evolutive optimization problems 27

2.2. All ingredients are evolutive

Initially, to an optimization problem, we attach the Lagrange function

Lz, \) = f(z)+ < A\ g(x) >

and the critical point conditions

of
axz+<Aaz>_0 i=1,.

We consider a differentiable variation z(e) and we introduce the general perturbation

L(x(€); Me), €) = f(z(e), )+ < Ale), g(z(e),€) >

together critical point condition

<g‘fz+ <ng o ) (z(€), A(e),€) = 0.

By derivation with respect to €, setting e = 0, and denoting %\620 = y, we produce
a variational linear system associated to the system describing catastrophe manifold. Of
course, we use the differential operator

a9 0
de  0xi de = O€’
together variational objects (hypothesis)

dax? . Of dg o\
_— =/ — 0 = — | —n = — | —n =
de |e:0 Y, 86 ‘670 f(.’l?), 86 |670 77(1‘>7 86 |€—0 S,

The differential operators 3‘97_- and 3@ commute.
xr €

Theorem 2.2. At a critical point x()\), the tangent space to catastrophe manifold, if it
exists, is described by the system

0% f 0%g I3 dg n
(axiaxﬁ‘ T <A G0 >> ' o s

Proof. Applying % to (1), we find

0 <df)+<8>\ Og N 0 dg

ozt \ de a’ﬁxi>+< " Oxt de

>= 0.

where

df  of dzd  Of dg 9y dz?  Og

de ~ 017 de ' e’ de  0xI de | O
Setting ¢ = 0, we get the linear system in Theorem. More precisely, at a nonsingular
critical point z()\) of catastrophe manifold, we have a unique solution y?(x())), i.e., an n-
dimensional vector of parameter A; at a singular point x(\) of catastrophe manifold, we have
a linear variety of solutions, i.e., n-dimensional vectors depending on A and p parameters,
v (x(N);ar, ..., ap). O
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3. Evolution of an optimal control problem

The constituents of an optimal control problem are: the independent variable (gen-
erally speaking, time) ¢, the initial time ¢, the terminal time ¢;, the state vector z(t), the
control vector u(t), a cost functional J, and a dynamic constraint (controlled ODE system)
or an isoperimetric constraint.

Let us consider an abstract optimal control problem of the form: minimize the continuous-
time cost functional

tf
J= / L(t, (1), u(t))dt,
to
subject to the first-order dynamic constraints (the state controlled ODE)
B(t) = X(t, (1), u(t)).

The function L is called Lagrangian.

We consider an evolution after 7 € [0, €), where w = w(t, 7), 7 € [0, ¢€), is fixed by the
partial flow

w,; = p(t, T, w(t,7),v(t, 7)), w(t,0) = x(t), v(t,0) = u(t).
The objective functional is changed into
tf
3 = L(t7 T7w(t7 T)7v(t7 T))dtﬂ
to
with the initial condition
£(t,0,w(t,0),v(t,0)) = L(t, x(t), u(t)).
The ODE constraint is changed into a dynamic PDE
’LUt(t, T) = :X:(t, T, U)(t, T)a U(tv T))a
with the properties
x(tv T, UJ(t, T)7 U(tv T))|7'=O = X(tv Jj(t), U(t)), Pt = xT + I)ngo + vaT-
For the new problem we can use the Hamiltonian
H = L(t, 7, w(t,7),v(t, 7)) + q() X (t, 7, w(t, T),v(t,T)).
Theorem 3.1. The evolution of an optimal control problem is characterized by FEuler-
Lagrange PDE for
L —%+%aﬂ+%@—aj+% _;’_ai@
T 9r Towar " wor or ow? dwor
3.1. Evolution of a curve described by
a second order ODE
Let us consider a C? curve x = x(t), t € I, solution of the second order ODE
F(t,z(t),z(t),2(t)) =0,t € J D I.

Its evolution w = w(t, 7), 7 € [0,€), given by w, = (¢, 7, w(t, 7)), wr—o = x, is a surface,
solution of the PDE

Ft,m,w(t, ), ws, wy) =0, Frep = F.
The new function JF is solution of a linear PDE,

5E+aj Jraiw +—a§w =0
ar T ow T ows " owy T
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since the derivatives w,, w,4 are obtained from evolution condition.

Remark 3.1. This theory can be applied to auto-parallel curves,
E(t) + Ty (2(8)37 ()3 (t) = 0, @(ty) = xo, &' (to) = &,

3.2. Evolution of a surface described by
a second order PDE

We start with a C? surface u = u(x,y), (z,y) € D, solution of second order PDE
F(z,y,u(x,y), Ug, Uy, Uzg, Ugy, Uyy) = 0, (x,y) € E D D.
Tts evolution w = w(x,y,t), t € [0,¢€) is given by the condition
wy = @(t, z,y,w(z,y,1), w—o =1u,
satisfying a new PDE
Ft,z,y, w(z,y,t), Wy, Wy, Weg, Wey, Wyy) =0, Fr=g = F.

The function JF is solution of a linear PDE,

oF 0F oF oF oF oF oF
A, + =Wt + - Wgt + 7wyt + a5 Wzat + 7wzyt + 7wyyt = 07

ot ow Owy Owy OWgy OWgy Owyy

since the derivatives Wy, ..., Wyy: are obtained from evolution condition.

Example 3.1. Let us take the Laplace PDE ugy,; + uy, = 0, with a solution (harmonic
surface) u(z,y) = 22 — y2. We impose the evolution w; = w + z2. It follows the Poisson
PDE wy, + wy, = 2e' — 2, as equation F = 0. The function w(z,y,t) = (2e! — 1)z? — ely?
verifies both the evolution condition and the Poisson PDE. The uniqueness is connected to

problems on PDEs with unique solutions.

Example 3.2. Now we start with wave PDE ug,; — uy, = 0, and the solution u(z,y) =
z2 4+ y2. We impose the evolution w; = w + 2. It follows the nonhomogeneous wave PDE
Waye — Wyy = 2¢’ — 2, as equation F = 0. The general solution of the last PDE is

w(z,y,t) = f(x+y,t) +g(x—y,t) +e'a® —y?

and the function that verifies both the initial condition and the evolution relation is

w(z,y,t) = (222 + y?)e’ — 22

Example 3.3. Let us consider the Tzitzeica PDE

2 _ 4
ZraZyy — Zgy = C(Tzz + Y2y — 2)7,

and a solution z = f—y, zy # 0, 9a® = % We impose the evolution w; = w + 22, wl|;—o = z.
It follows the evolution PDE

(Wew — 2)e™ " + 2)wyye_t — wi e = c((zwy + ywy — w)e "+ sc2(1 — e_t))4,

Yy

as equation F = 0. The function w(x,y,t) (fy + x2) et — 2?2 verifies both the evolution

condition and the equation F = 0.
Example 3.4. Let us take into discussion the Monge-Ampere PDE
Z:Eaczyy - Ziy = H(I7 Y, 2y Zxs Zy)v

and a solution z = ¢(x,y). We impose the evolution w; = w + 2%, w|4—g = <. It follows the
evolution PDE

(Wge — 2)e™ " + 2)wyye ™" — wgyefm =H(t, z,y, w, wy, wy),
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as equation F = 0. The function w(z,y,t) = (s(z,y) + 2%) e’ —a? verifies both the evolution
condition and the equation F = 0.

Remark 3.2. Evolution PDFE - based methods are widely used in image processing and com-
puter vision. For many of these evolution PDFEs, we can formulate the following questions:
(i) how are they created? (ii) what we can say about the existence and reqularity of solu-
tions? (i1i) how to implement them effectively to produce the desired effects? In this work,
we study the generation of an arbitrary evolution PDE starting from a stationary ODE or
PDE.

On the other hand, PDEs can be regarded as evolution equations on an infinite di-
mensional state space. The solution u(x,t) belongs to a function space in x at each instant
of time t. For example, second order PDFEs are evolution equations for second order ODEs.

The monographs [1] offers the reader a treatment of the theory of evolution PDEs with
nonstandard growth conditions. This class includes parabolic and hyperbolic equations with
variable or anisotropic nonlinear structure. Similar problems are found in [4].

Problem Given a second order PDE regarded as evolutionary equation,
Ft, 1, w(t, ), ws, Wr, Wep, Wi, wer) =0, (¢, 7) € E DD
with respect to the parameter 7, find an originating ODE
F(t,u(t),u(t),i(t)) =0,te J DI,
where F' = F,—, u(t) = w(t,0).
Example 3.5. Let us take the Laplace PDE
Ugg + Uyy =0

as evolution equation with respect to the parameter y. Since the general solution of the
Laplace PDE is of the form u(z,y) = f(z + iy) + g(z — iy), the attached generating ODE
must be of the form

Uza(2,Y) = (@ +iy) + (z —iy).
Let us consider the wave PDE
Uy, — Uyy =0
as evolution equation with respect to the parameter y. Since the general solution of the

wave PDE is of the form u(z,y) = f(x+ay)+g(z —ay), the attached generating ODE must
be of the form

Uae(2,y) = p(z + ay) + ¢(z — ay).

Example 3.6. A conditioning system of two diffusion PDEs
w(z,y, 7= (71,72)); Wr1 = Wey, Wr2 = Wyy, W1 +wy2 =0,
on Ozy7t!72, has as trace on the plane Ozy, the Laplace PDE
Wgg + Wyy = 0.
Example 3.7. Let us consider two Newton Laws
e (2,y) = F(2,y,u), uyy(z,y) = G(z,y,u).
The equilibrium condition
F(z,y,u) + G(z,y,u) =0

leads to Laplace PDE wug, + 4y, = 0. Another condition, as for example,

F(z,y,u) = *G(z,y,u)
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gives the wave PDE u,, — cQuyy =0.

3.3. Evolution of a curve satisfying
a first order PDE

Problem Solve the first order pseudo-linear PDE
ol .0) 3 + ¥, 05 = Fle ),
with the condition that, at y = 0, the function u(x,0) to be solution of the Cauchy problem
U= g(x’ 7.14)7 u(an 0) = Ug-
Let us show that this problem lies with a problem of evolution. We look for the
evolution of the curve u = u(x) satisfying the Cauchy problem

= g(z,u), u(zg) = ug,

with respect to the parameter y. We accept that the evolution is via the surface w = w(z, y)
described by first order pseudo-linear PDE

0 0
e,y w) g + by w) G = f(y,w), w(w, 0) = u(a).

To solve the problem, suppose we have two first integrals C7, C5 for the characteristic system
dx dy dw
ale,y,w) ~ bay,w)  flayw)
associated to the last PDE. The general solution of the PDE is given implicitly by

F(Cy(z,y,w), Ca(z,y,w)) =0,

where F is an arbitrary function of class C' that we must determine. The function F' can
be recovered in three steps: (i) we replace y = 0, obtaining

F(Ci(z,0,u),Co(x,0,u)) = 0;
(ii) taking the derivative with respect to z, it follows
o8 (30, 9015) | OF (960, 200)
0Cy, \ Ox ou 0Cy, \ Ox ou
and hence

(9F 801 301 (9F 801 801 _n.
ac, <ax * aug@’“)) e (a * aug(”““’”) =0

(iii) from the algebraic system C4 (z,0,u) = C1, Ca(x,0,u) = Ca, we obtain = z(C1,Ca),u =
u(Cy, Cs), which fix the relation in (ii) as a linear PDE

oF or
A(Ch 02)7 =+ B(Cl, 02)876'2 =

ac, 0.
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