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In the present paper, we introduce a new type of multivalued JS-contractions by
omitting one of the conditions on the auxiliary function and establish some fixed point

theorems for such contractions on complete metric spaces. We derive many existing fixed

point results in the literature by means of our results. We support the results obtained
herein with some nontrivial examples. We also apply our results to prove the existence

of solutions for fractional differential inclusions.
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1. Introduction

Fixed point theory is one of the most significant and beneficial instruments in math-
ematical analysis on account of the fact that it purveys sufficient and necessary conditions
of finding the existence and uniqueness of a solution of mathematical and practical prob-
lems which can be reduced to an equivalent fixed point problem. In particular, Banach
contraction principle, which states that every contraction on a complete metric space has
a unique fixed point, has a variety of applications in many branches of mathematics and
other disciplines. This fundamental principle has been generalized in two main directions;
either by generalizing the domain of the mapping or by weakening the contractive condi-
tion or sometimes even both. Some of those were studied by Berinde [5], Chatterja [7],

Ćirić [8, 9], Hardy and Rogers [11], Kannan [14], Reich [20], Suzuki [21] and Zamfirescu
[24]. In other respects, Nadler [17] extended Banach contraction principle from self-maps to
multivalued mappings by using the notion of Hausdorff metric. The theory of multivalued
mappings has various applications in optimal control theory, convex optimization, integral
inclusions, fractional differential inclusions, economics and game theory. Recently, Jleli and
Samet [13] introduced a new type of contractive self-maps known as JS-contraction and
proved some fixed point theorems for such contractions by using a new technique of proof
via the properties of the function. After then, several researchers extended the results in
[13] to multivalued mappings in different directions, see for example, Nastasi and Vetro [18],
Pansuwan et al. [19] and Vetro [22].

The aim of the present paper is to introduce a new class of contractions for multivalued
mappings by weakening the conditions on the auxiliary function and to establish some
fixed point theorems for such contractions on complete metric spaces. The obtained results
improve and extend existing fixed point results in [8, 13, 17, 20, 22, 24] and many others. We

1Department of Engineering Science, Bandırma Onyedi Eylül University, 10200 Bandırma, Balıkesir,
Turkey, e-mail: isikhuseyin76@gmail.com

13
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supply some examples to illustrate the effectiveness of the new theory. Also, we apply our
results to provide the existence of solutions for Caputo type fractional differential inclusions.

2. Preliminaries and Background

Here, we recollect some basic definitions, lemmas, notations and some known theorems
which are helpful for the understanding of this paper. In the sequel, we will indicate the set
of all non-negative real numbers and the set of all natural numbers by the letters R+ and N,
respectively. Let (Λ, d) be a metric space and denote the family of nonempty, closed and
bounded subsets of Λ by CB(Λ). For U, V ∈ CB(Λ), define H : CB(Λ)× CB(Λ)→ R+ by

H(U, V ) = max

{
sup
u∈U

d(u, V ), sup
v∈V

d(v, U)

}
where d(u, V ) = inf {d(u, ν) : ν ∈ V }. Such a function H is called the Pompeiu-Hausdorff
metric induced by d, for more details, see [6]. Also, denote the family of nonempty and
closed subsets of Λ by CL(Λ) and the family of nonempty and compact subsets of Λ by
K(Λ). Note that H : CL(Λ) × CL(Λ) → [0,∞] is a generalized Pompeiu-Hausdorff metric,
that is, H(U, V ) =∞ if max {supu∈U d(u, V ), supv∈V d(v, U)} does not exist in R.

Lemma 2.1 ([22]). Let (Λ, d) be a metric space and U, V ∈ CL(Λ) with H(U, V ) > 0. Then,
for each r > 1 and for each u ∈ U, there exists v = v(u) ∈ V such that d(u, v) < rH(U, V ).

Following the results in [13], Vetro [22] established fixed point results for multivalued
mappings.

Definition 2.1 ([13, 22]). Let (Λ, d) be a metric space. A map Υ: Λ → CL(Λ) is called a
JS-contraction if there exist r ∈ (0, 1) and θ ∈ J such that

θ(H(Υη,Υζ)) ≤ [θ(d(η, ζ))]r, (1)

for all η, ζ ∈ Λ with H(Υη,Υζ) > 0, where J is the set of functions θ : (0,∞) → (1,∞)
satisfying the following conditions:

(θ1) θ is non-decreasing;
(θ2) for each sequence {hn} ⊂ (0,∞), limn→∞ θ(hn) = 1 if and only if limn→∞ hn = 0;

(θ3) there exist α ∈ (0, 1) and β ∈ (0,∞] such that limh→0+

θ(h)− 1

hα
= β.

The following functions θi : (0,∞) → (1,∞) for i ∈ {1, 2} , are elements of J. Fur-
thermore, substituting in (1) these functions, we obtain some contractions known in the
literature: for all η, ζ ∈ Λ with H(Υη,Υζ) > 0,

θ1(h) = e
√
h, H(Υη,Υζ) ≤ r2d(η, ζ),

θ2(h) = e
√
heh ,

H(Υη,Υζ)

d(η, ζ)
eH(Υη,Υζ)−d(η,ζ) ≤ r2.

Theorem 2.1 ([22]). Let (Λ, d) be a complete metric space and Υ: Λ → K(Λ) be a JS-
contraction. Then Υ has a fixed point, that is, there exists a point υ ∈ Λ such that υ ∈ Υυ.

Note that Theorem 2.1 is invalid, if we take CB(Λ) instead of K(Λ). In [22], Vetro
showed that Theorem 2.1 is still true for Υ: Λ→ CB(Λ), whenever θ ∈ J is right continuous.

3. Main Results

We will not be need the condition (θ2) in our results. Thence, we denote by J the set
of all fuctions θ satisfying the conditions (θ1) and (θ3). We can define the functions which
belong to the set J but not to J as shown in the following examples.
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Example 3.1. Define θ : (0,∞)→ (1,∞) with θ(h) = e
√
h+1. Evidently θ satisfies (θ1) and

since limh→0+ (e
√
h+1 − 1)/hα = ∞ for α ∈ (0, 1), also (θ3). However, θ does not satisfy

the condition (θ2). Indeed, consider hn = 1
n for all n ∈ N, then limn→∞ hn = 0 and

limn→∞ θ(hn) = e 6= 1. Consequently, θ ∈ J while θ /∈ J.

Example 3.2. Let a > 1 and θ(h) = a + ln(
√
h + 1). It can easily be seen that θ satisfies

the conditions (θ1) and (θ3). But if we take hn = 1
n for all n ∈ N, then limn→∞ hn = 0 and

limn→∞ θ(hn) = a > 1. Hence, θ ∈ J and θ /∈ J.

The next lemma will help us to make up for the lack of the condition (θ2) in the
proofs.

Lemma 3.1. Let θ : (0,∞) → (1,∞) be a non-decreasing function and {hn} ⊂ (0,∞) a
decreasing sequence such that limn→∞ θ(hn) = 1. Then, we have limn→∞ hn = 0.

Proof. Since the sequence {hn} is decreasing, there exists h ≥ 0 such that limn→∞ hn = h.
Suppose that h > 0. Considering the fact that θ is non-decreasing and hn ≥ h, we get
θ(hn) ≥ θ(h), for all n ≥ 0. Taking the limit as n → ∞ in the last inequality, we deduce
1 = limn→∞ θ(hn) ≥ θ(h) which contradicts by the definition of θ, hence h = 0. �

Now, following the lines in [10], we denote by P the set of all continuous mappings
% : (R+)5 → R+ satisfying the following conditions:

(%1) %(1, 1, 1, 2, 0), %(1, 1, 1, 0, 2), %(1, 1, 1, 1, 1) ∈ (0, 1];
(%2) % is sub-homogeneous, that is, for all (η1, η2, η3, η4, η5) ∈ (R+)5 and δ ≥ 0, we have

%(δη1, δη2, δη3, δη4, δη5) ≤ δ%(η1, η2, η3, η4, η5);

(%3) % is a non-decreasing function, that is, for ηi, yi ∈ R+, ηi ≤ ζi, i = 1, . . . , 5, we have

%(η1, η2, η3, η4, η5) ≤ %(ζ1, ζ2, ζ3, ζ4, ζ5)

and if ηi, ζi ∈ R+, ηi < ζi, i = 1, . . . , 4, then

%(η1, η2, η3, η4, 0) < %(ζ1, ζ2, ζ3, ζ4, 0) and %(η1, η2, η3, 0, η4, ) < %(ζ1, ζ2, ζ3, 0, ζ4).

Then we have the next result.

Lemma 3.2. If % ∈ P and υ, ν ∈ R+ are such that

υ < max {%(ν, ν, υ, ν + υ, 0), %(ν, ν, υ, 0, ν + υ), %(ν, υ, ν, ν + υ, 0), %(ν, υ, ν, 0, ν + υ)} ,
then υ < ν.

Proof. Without loss of generality, we can suppose that υ < %(ν, ν, υ, ν+υ, 0). If ν ≤ υ, then

υ < %(ν, ν, υ, ν + υ, 0) ≤ %(υ, υ, υ, 2υ, 0) ≤ υ%(1, 1, 1, 2, 0) ≤ υ
which is a contradiction. Thus, we deduce that υ < ν. �

We are now ready to give the following definition.

Definition 3.1. Let (Λ, d) be a metric space. A multivalued mapping Υ: Λ → CL(Λ) is
called a JS-%-contraction, if there exist θ ∈ J, % ∈ P and r ∈ (0, 1) such that

θ(H(Υη,Υζ)) ≤ [θ(%(d(η, ζ), d(η,Υη), d(ζ,Υζ), d(η,Υζ), d(ζ,Υη)))]r, (2)

for all η, ζ ∈ Λ with H(Υη,Υζ) > 0.

Remark 3.1. Let (Λ, d) be a metric space. If Υ: Λ → CL(Λ) is a JS-%-contraction, then
by (2), we get

ln θ(H(Υη,Υζ)) ≤ r ln θ(%(d(η, ζ), d(η,Υη), d(ζ,Υζ), d(η,Υζ), d(ζ,Υη)))

< ln θ(%(d(η, ζ), d(η,Υη), d(ζ,Υζ), d(η,Υζ), d(ζ,Υη))).
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Since θ is non-decreasing, we obtain

H(Υη,Υζ) < %(d(η, ζ), d(η,Υη), d(ζ,Υζ), d(η,Υζ), d(ζ,Υη)),

for all η, ζ ∈ Λ with Υη 6= Υζ. This implies that

H(Υη,Υζ) ≤ %(d(η, ζ), d(η,Υη), d(ζ,Υζ), d(η,Υζ), d(ζ,Υη)), for all η, ζ ∈ Λ.

for all η, ζ ∈ Λ.

The first result of this study is the following.

Theorem 3.1. Let (Λ, d) be a complete metric space and Υ: Λ→ K(Λ) a JS-%-contraction.
Then Υ has a fixed point.

Proof. Let η0 be an arbitrary point of Λ and η1 ∈ Υη0. If η0 = η1 or η1 ∈ Υη1, then η1 is a
fixed point of Υ and so the proof is completed. Because of this, assume that η0 6= η1 and
η1 /∈ Υη1, then d(η1,Υη1) > 0 and hence H(Υη0,Υη1) > 0. Since Υη1 is compact, there
exists η2 ∈ Υη1 such that d(η1, η2) = d(η1,Υη1). Bearing in mind that the functions θ and %
are non-decreasing, by (2), we have

θ(d(η1, η2)) = θ(d(η1,Υη1)) ≤ θ(H(Υη0,Υη1))

≤ [θ(%(d(η0, η1), d(η0,Υη0), d(η1,Υη1), d(η0,Υη1), d(η1,Υη0)))]r

≤ [θ(%(d(η0, η1), d(η0, η1), d(η1, η2), d(η0, η1) + d(η1, η2), 0))]r. (3)

By Remark 3.1, this inequality implies that

d(η1, η2) < %(d(η0, η1), d(η0, η1), d(η1, η2), d(η0, η1) + d(η1, η2), 0).

From Lemma 3.2, we get that d(η1, η2) < d(η0, η1). Thus, using the properties of θ and % in
(3), we infer

θ(d(η1, η2)) ≤ [θ(%(d(η0, η1), d(η0, η1), d(η1, η2), d(η0, η1) + d(η1, η2), 0))]r

< [θ(%(d(η0, η1), d(η0, η1), d(η0, η1), 2d(η0, η1), 0))]r

≤ [θ(d(η0, η1)%(1, 1, 1, 2, 0))]r ≤ [θ(d(η0, η1))]r.

Following the previous procedures, we can assume that η1 6= η2 and η2 /∈ Υη2. Then
d(η2,Υη2) > 0, and so H(Υη1,Υη2) > 0. Since Υη2 is compact, there exists η3 ∈ Υη2

such that d(η2, η3) = d(η2,Υη2). Considering (θ1), (%3) and (2), we get

θ(d(η2, η3)) = θ(d(η2,Υη2)) ≤ θ(H(Υη1,Υη2))

≤ [θ(%(d(η1, η2), d(η1,Υη1), d(η2,Υη2), d(η1,Υη2), d(η2,Υη1)))]r

≤ [θ(%(d(η1, η2), d(η1, η2), d(η2, η3), d(η1, η2) + d(η2, η3), 0))]r, (4)

follows by Remark 3.1 that

d(η2, η3) < %(d(η1, η2), d(η1, η2), d(η2, η3), d(η1, η2) + d(η2, η3), 0).

Again from Lemma 3.2, we obtain that d(η2, η3) < d(η1, η2). Thereby, using the properties
of θ and % in (4), we deduce

θ(d(η2, η3)) ≤ [θ(%(d(η1, η2), d(η1, η2), d(η2, η3), d(η1, η2) + d(η2, η3), 0))]r

< [θ(%(d(η1, η2), d(η1, η2), d(η1, η2), 2d(η1, η2), 0))]r

≤ [θ(d(η1, η2)%(1, 1, 1, 2, 0))]r ≤ [θ(d(η1, η2))]r.

Repeating this process, we can constitute a sequence {ηn} ⊂ Λ such that ηn 6= ηn+1 ∈ Υηn
and

1 < θ(d(ηn, ηn+1)) < [θ(d(ηn−1, ηn))]r, (5)
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for all n ∈ N. Letting σn := d(ηn, ηn+1) for all n ∈ N ∪ {0}, from (5), we get

1 < θ(σn) < [θ(σ0)]r
n

, for all n ∈ N, (6)

which implies that limn→∞ θ(σn) = 1. On the other side, by the inequality (5), we know that
the sequence {σn} is decreasing and hence we can apply Lemma 3.1 to get limn→∞ σn = 0.
Now, we claim that {ηn} is a Cauchy sequence, for this, consider the condition (θ3). From
(θ3), there exist α ∈ (0, 1) and β ∈ (0,∞] such that

lim
n→∞

θ(σn)− 1

(σn)α
= β. (7)

Take λ ∈ (0, β). From the definition of limit, there exists n0 ∈ N such that

[σn]α ≤ λ−1[θ(σn)− 1], for all n > n0.

Using (6) and the above inequality, we deduce

n[σn]α ≤ λ−1n([θ(σ0)]r
n

− 1), for all n > n0.

This implies that

lim
n→∞

n[σn]α = lim
n→∞

n[d(ηn, ηn+1)]α = 0.

Thence, there exists n1 ∈ N such that

d(ηn, ηn+1) ≤ 1

n1/α
, for all n > n1. (8)

Let m > n > n1. Then, using the triangular inequality and (8), we have

d(ηn, ηm) ≤
m−1∑
j=n

d(ηj , ηj+1) ≤
m−1∑
j=n

1

j1/α
≤
∞∑
j=n

1

j1/α

and hence {ηn} is a Cauchy sequence in Λ. From the completeness of (Λ, d), there exists
υ ∈ Λ such that ηn → υ as n→∞. We now show that υ is a fixed point of Υ. Suppose that
d(υ,Υυ) > 0. Taking Remark 3.1 into account, we have

d(υ,Υυ) ≤ d(υ, ηn+1) + d(ηn+1,Υυ)

≤ d(υ, ηn+1) +H(Υηn,Υυ)

≤ d(υ, ηn+1) + %(d(ηn, υ), d(ηn,Υηn), d(υ,Υυ), d(ηn,Υυ), d(υ,Υηn))

≤ d(υ, ηn+1) + %(d(ηn, υ), d(ηn, ηn+1), d(υ,Υυ), d(ηn, υ) + d(υ,Υυ), d(υ, ηn+1)).

Passing to limit as n→∞ in the above inequality, we obtain

d(υ,Υυ) ≤ %(0, 0, d(υ,Υυ), 0 + d(υ,Υυ), 0),

which implies by Lemma 3.2 that

0 < d(υ,Υυ) < 0,

which is a contradiction. Hence d(υ,Υυ) = 0. Since Υυ is closed, we deduce that υ ∈ Υυ. �

In the next theorem, we replace K(Λ) with CB(Λ) by considering an additional con-
dition for the function θ.

Theorem 3.2. Let (Λ, d) be a complete metric space and Υ: Λ→ CB(Λ) a JS-%-contraction
with right continuous function θ ∈ J. Then Υ has a fixed point.
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Proof. Let η0 ∈ Λ and η1 ∈ Υη0. If η0 = η1 or η1 ∈ Υη1, then η1 is a fixed point of Υ.
Herewith, we assume that η0 6= η1 and η1 /∈ Υη1, and hence d(η1,Υη1) > 0. From (2), we
get

θ(d(η1,Υη1)) ≤ θ(H(Υη0,Υη1))

≤ [θ(%(d(η0, η1), d(η0,Υη0), d(η1,Υη1), d(η0,Υη1), d(η1,Υη0)))]r

≤ [θ(%(d(η0, η1), d(η0, η1), d(η1,Υη1), d(η0, η1) + d(η1,Υη1), 0))]r,

and so

d(η1,Υη1) < %(d(η0, η1), d(η0, η1), d(η1,Υη1), d(η0, η1) + d(η1,Υη1), 0).

Then Lemma 3.2 gives that d(η1,Υη1) < d(η0, η1). Thus, we obtain

θ(d(η1,Υη1)) ≤ θ(H(Υη0,Υη1))

≤ [θ(%(d(η0, η1), d(η0, η1), d(η1,Υη1), d(η0, η1) + d(η1,Υη1), 0))]r

< [θ(%(d(η0, η1), d(η0, η1), d(η0, η1), 2d(η0, η1), 0))]r

≤ [θ(d(η0, η1)%(1, 1, 1, 2, 0))]r

≤ [θ(d(η0, η1))]r,

and hence

θ(H(Υη0,Υη1)) < [θ(d(η0, η1))]r.

By the property of right continuity of θ ∈ J, there exists a real number h1 > 1 such that

θ(h1H(Υη0,Υη1)) ≤ [θ(d(η0, η1))]r. (9)

From

d(η1,Υη1) ≤ H(Υη0,Υη1) < h1H(Υη0,Υη1),

by Lemma 2.1, there exists η2 ∈ Υη1 such that d(η1, η2) ≤ h1H(Υη0,Υη1). Thus, by (9), we
infer that

θ(d(η1, η2)) ≤ θ(h1H(Υη0,Υη1)) ≤ [θ(d(η0, η1))]r.

Continuing in this manner, we build two sequences {ηn} ⊂ Λ and {hn} ⊂ (1,∞) such that
ηn 6= ηn+1 ∈ Υηn and

1 < θ(d(ηn, ηn+1)) ≤ θ(hnH(Υηn−1,Υηn)) ≤ [θ(d(ηn−1, ηn))]r,

for all n ∈ N. Hence,

1 < θ(d(ηn, ηn+1)) ≤ [θ(d(η0, η1))]r
n

, for all n ∈ N,

which gives that

lim
n→∞

θ(d(ηn, ηn+1)) = 1.

The rest of the proof is analogous with the proof of Theorem 3.1. �

The following corollaries express us that we can obtain various types of contractive
multivalued mappings by using JS-%-contraction.

Corollary 3.1. ([17]) Let (Λ, d) be a complete metric space and Υ: Λ → CB(Λ) (resp.
K(Λ)) a JS-contraction of Nadler type, that is, there exist θ ∈ J and r ∈ (0, 1) such that

θ(H(Υη,Υζ)) ≤ [θ(d(η, ζ))]r, for all η, ζ ∈ Λ with H(Υη,Υζ) > 0.

Then Υ has a fixed point.

Proof. Consider % ∈ P given by %(η1, η2, η3, η4, η5) = η1. Then Υ is a JS-%-contraction and
the result follows from Theorem 3.2 (resp. Theorem 3.1). �
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Corollary 3.2. ([20]) Let (Λ, d) be a complete metric space and Υ: Λ → CB(Λ) (resp.
K(Λ)) a JS-contraction of Reich type, that is, there exist θ ∈ J, r ∈ (0, 1) and non-negative
real numbers α, β, γ with α+ β + γ ≤ 1 such that

θ(H(Υη,Υζ)) ≤ [θ(αd(η, ζ) + βd(η,Υη) + γd(ζ,Υζ))]r,

for all η, ζ ∈ Λ with H(Υη,Υζ) > 0. Then Υ has a fixed point.

Proof. Consider % ∈ P given by %(η1, η2, η3, η4, η5) = αη1 + βη2 + γη3. Then Υ is a JS-%-
contraction and the result follows from Theorem 3.2 (resp. Theorem 3.1). �

Corollary 3.3. ([8]) Let (Λ, d) be a complete metric space and Υ: Λ→ CB(Λ) (resp. K(Λ))

a JS-contraction of Ćirić type I, that is, there exist θ ∈ J and r ∈ (0, 1) such that

θ(H(Υη,Υζ)) ≤ [θ(max{d(η, ζ), d(η,Υη), d(ζ,Υζ),
1

2
[d(η,Υζ) + d(ζ,Υη)]})]r,

for all η, ζ ∈ Λ with H(Υη,Υζ) > 0. Then Υ has a fixed point.

Proof. Consider % ∈ P given by %(η1, η2, η3, η4, η5) = max{η1, η2, η3,
η4+η5

2 }. Then Υ is a
JS-%-contraction and the result follows from Theorem 3.2 (resp. Theorem 3.1). �

Corollary 3.4. ([24]) Let (Λ, d) be a complete metric space and Υ: Λ → CB(Λ) (resp.
K(Λ)) a Zamfirescu type JS-contraction, that is, there exist θ ∈ J and r ∈ (0, 1) such that

θ(H(Υη,Υζ)) ≤ [θ(max{d(η, ζ),
1

2
[d(η,Υη) + d(ζ,Υζ)],

1

2
[d(η,Υζ) + d(ζ,Υη)]})]r,

for all η, ζ ∈ Λ with H(Υη,Υζ) > 0. Then Υ has a fixed point.

Proof. Consider % ∈ P given by %(η1, η2, η3, η4, η5) = max{η1,
η2+η3

2 , η4+η5
2 }. Then Υ is a

JS-%-contraction and the result follows from Theorem 3.2 (resp. Theorem 3.1). �

4. An Application

Consider the following nonlocal integral boundary value problem of Caputo type
fractional differential inclusion:

CDδ
h0
η(h) ∈ F(h, η(h)), h ∈ Q = [h0, H], n− 1 < δ < n,

η(j)(σ) = cj +
σ∫
h0

ρj(s, η(s))ds, j = 0, 1, . . . , n− 1, σ ∈ (h0, H),
(10)

where F : Q × R → P(R) is a multivalued map, P(R) is the family of all nonempty subsets
of R, ρj : Q× R→ R is a given continuous function, cj ∈ R and CDδ

h0
denotes the Caputo

fractional derivative of order δ, n = [δ] + 1, [δ] denotes the integer part of the real number
δ.

We now recall some basic definitions of fractional calculus [15] and multivalued anal-
ysis [12]. We also refer the reader to [1, 2, 3, 4, 16, 23] for more details.

Let Λ := C(Q,R) be the Banach space of all continuous real valued functions defined
on Q endowed with the norm defined by ‖η‖ = sup{|η(h)| : h ∈ Q}. By L1(Q,R), we denote
the Banach space of all measurable functions η : Q → R which are Lebesgue integrable
endowed with the norm

‖η‖L1 =

∫ H

h0

|η(h)| dh.

Definition 4.1. The Riemann-Liouville fractional integral of order δ for a function g ∈ Λ
is given by

Iδg(h) =
1

Γ(δ)

∫ h

h0

(h− s)δ−1g(s)ds, δ > 0,
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provided the right hand-side is point-wise defined on [h0,∞), where Γ(·) is the gamma func-
tion, which is defined by Γ(δ) =

∫∞
0
hδ−1e−hdh.

Definition 4.2. Let g : [h0,∞)→ R be such that g ∈ ACn(Q,R), then the Caputo derivative
of fractional order δ for g is defined by

CDδ
h0
g(h) =

1

Γ(n− δ)

∫ h

h0

(h− s)n−δ−1g(n)(s)ds, n− 1 < δ < n, n = [δ] + 1,

where ACn(Q,R) is the space of all real valued functions g(h) which have absolutely contin-
uous derivative up to order (n− 1) on Q.

Definition 4.3. A multivalued mapping F : Q → K(R) is called measurable if for every
ζ ∈ R, the function

h→ d(ζ,F(h)) = inf{|ζ − ξ| : ξ ∈ F(h)}
is measurable.

Definition 4.4. Let F : Q × R → K(R) be a multivalued map and υ ∈ Λ, then the set of
selections of F(·, ·), denoted by SF,υ, is of lower semi-continuous type if

SF,υ = {θ ∈ L1(Q,R) : θ(h) ∈ F(h, υ(h)), for almost each h ∈ Q}
is lower semi-continuous with nonempty closed and decomposable values.

In this section, we present an application of Theorem 3.1 in establishing the existence
of solutions for problem (10). To define the solution of problem (10), let us consider its
linear variant given by

CDδ
h0
η(h) = g̃(h), h ∈ Q,

η(j)(σ) = cj +
σ∫
h0

ρj(s)ds, j = 0, 1, . . . , n− 1, σ ∈ Q,
(11)

where η ∈ ACn(Q,R), g̃ ∈ AC(Q,R) and ρj ∈ Λ.

Lemma 4.1. ([2]) The fractional nonlocal boundary value problem (11) is equivalent to the
integral equation

η(h) = Iδ g̃(h) +

n−1∑
j=0

(h− σ)j

j!
(cj +

∫ σ

h0

ρj(s)ds− Iδ−j g̃(σ)), h ∈ Q.

Our hypotheses are on the following data :

(A) Let F : Q× R→ K(R) be such that F(·, η) : Q→ K(R) is measurable for each η ∈ R;

(B) for almost all h ∈ Q and η, η̃ ∈ R with λ ∈ C(Q, (0,∞))

H(F(h, η),F(h, η̃)) ≤ λ(h) |η − η̃|
and d(0,F(h, 0)) ≤ λ(h);

(C) there exist functions µj ∈ C(Q, (0,∞)) such that

|ρj(h, η)− ρj(h, η̃)| ≤ µj(h) |η − η̃| ,
for h ∈ Q, j = 0, 1, . . . , n− 1 and η, η̃ ∈ R;

(D) there exists τ ∈ (0,∞) such that

φ1 ‖λ‖+ φ2 ≤ e−τ ,
where

φ1 =

 2

Γ(δ + 1)
+

n−1∑
j=1

1

j! Γ(δ − j + 1)

 (H − h0)δ
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and

φ2 =

n−1∑
j=0

(H − h0)j ‖µj‖
j!

.

We are now ready to present main result of this section.

Theorem 4.1. Assume that the conditions (A)− (D) hold. Then the fractional differential
inclusion problem (10) has at least one solution on Λ.

Proof. Using Lemma 4.1, define an operator ΥF : Λ→ P(Λ) by

ΥF(η) =

{
υ ∈ Λ: υ(h) =

∫ h

h0

(h− s)δ−1

Γ(δ)
g(s)ds

+

n−1∑
j=0

(h− σ)j

j!

(
cj +

∫ σ

h0

ρj(s, η(s))ds−
∫ σ

h0

(σ − s)δ−j−1

Γ(δ − j)
g(s)ds

)
for g ∈ SF,η. Note that the set SF,η is nonempty for each η ∈ Λ by assumption (A), so
F has a measurable selection (see Theorem 3.6 in [12]). Also, ΥF(η) is compact for each
η ∈ Λ. This is obvious since SF,η is compact (F has compact values), and therefore we omit
its proof. We now prove that ΥF is a JS-%-contraction. Let η, η̃ ∈ C(Q,R) and υ1 ∈ ΥF(η).
Then there exists θ1(h) ∈ F(h, η(h)) such that for all h ∈ Q, we obtain

υ1(h) =

∫ h

h0

(h− s)δ−1

Γ(δ)
θ1(s)ds

+

n−1∑
j=0

(h− σ)j

j!

(
cj +

∫ σ

h0

ρj(s, η(s))ds−
∫ σ

h0

(σ − s)δ−j−1

Γ(δ − j)
θ1(s)ds

)
.

By the assumption (B), we have

H(F(h, η),F(h, η̃)) ≤ λ(h) |η(h)− η̃(h)| .

So, there exists k? ∈ F(h, η̃(h)) such that

|θ1(h)− k?| ≤ λ(h) |η(h)− η̃(h)| , h ∈ Q.

Define the operator Ω: Q→ P(R) by

Ω(h) = {k? ∈ R : |θ1(h)− k?| ≤ λ(h) |η(h)− η̃(h)|}.

Since Ω(h) ∩ F(t, η̃(t)) is measurable (see Proposition 3.4 in [12]), there exists a function
θ2(h) which is a measurable selection for Ω. Hence, θ2(h) ∈ F(h, η̃(h)) and for all h ∈ Q,

|θ1(h)− θ2(h)| ≤ λ(h) |η(h)− η̃(h)| .

Now, we define

υ2(h) =

∫ h

h0

(h− s)δ−1

Γ(δ)
θ2(s)ds

+

n−1∑
j=0

(h− σ)j

j!

(
cj +

∫ σ

h0

ρj(s, η̃(s))ds−
∫ σ

h0

(σ − s)δ−j−1

Γ(δ − j)
θ2(s)ds

)
.
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It follows that, for all h ∈ Q

|υ1(h)− υ2(h)| ≤
∫ h

h0

(h− s)δ−1

Γ(δ)
|θ1(s)− θ2(s)| ds

+

n−1∑
j=0

(h− σ)j

j!

∫ σ

h0

(σ − s)δ−j−1

Γ(δ − j)
|θ1(s)− θ2(s)| ds

+

n−1∑
j=0

(h− σ)j

j!

∫ σ

h0

|ρj(s, η(s))− ρj(s, η̃(s))| ds

≤


 1

Γ(δ + 1)
+

n−1∑
j=0

1

j! Γ(δ − j + 1)

 (H − h0)δ ‖λ‖

+

n−1∑
j=0

(H − h0)j ‖µj‖
j!

}
‖η − η̃‖ ,

and so

|υ1(h)− υ2(h)| ≤


 2

Γ(δ + 1)
+

n−1∑
j=1

1

j! Γ(δ − j + 1)

 (H − h0)δ ‖λ‖

+

n−1∑
j=0

(H − h0)k ‖µj‖
j!

}
‖η − η̃‖ .

Thus, we obtain

‖υ1 − υ2‖ ≤ (φ1 ‖λ‖+ φ2) ‖η − η̃‖ ≤ e−τ ‖η − η̃‖ .

Now, by just interchanging the role of η and η̃, we reach to

H(ΥF(η),ΥF(η̃)) ≤ e−τ ‖η − η̃‖ . (12)

Consider % ∈ P and θ ∈ J given by %(η1, η2, η3, η4, η5) = η1 and θ(h) = e
√
h, respectively.

Then, by (12), we infer

e
√
H(ΥF(η),ΥF(η̃)) ≤ e

√
e−τ‖η−η̃‖ ≤

[
e
√
‖η−η̃‖

]r
,

which implies that

θ(H(ΥF(η),ΥF(η̃))) ≤ [θ(%(‖η − η̃‖ , ‖η −ΥF(η)‖ , ‖η̃ −ΥF(η̃)‖ ,
‖η −ΥF(η̃)‖ , ‖η̃ −ΥF(η)))‖]r ,

for all η, η̃ ∈ Λ, where r =
√
e−τ . Since τ > 0, then r ∈ (0, 1). This means that ΥF is a

JS-%-contraction. Consequently, by Theorem 3.1, ΥF has a fixed point η ∈ Λ which is a
solution of the problem (10). �

Example 4.1. Consider the fractional differential inclusion problem given by
CD6.7

0 η(h) ∈ F(h, η(h)), h ∈ [0, 1],

η(j)(0.5) = 1 +
0.5∫
0

sj

3(j+1)e
−η(s)ds, j = 0, 1, . . . , 6,

(13)

where h0 = 0, H = 1, δ = 6.7, σ = 0.5, cj = 1, ρj(h, η(h)) = hj

3(j+1)e
−η(h) and F : [0, 1]×R→
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P(R) is a multivalued mapping given by

F(h, η) =

[
0,

h |η(h)|
8 (1 + |η(h)|)

]
.

Note that

h→ F(h, η) =

[
0,

h |η(h)|
8 (1 + |η(h)|)

]
is measurable for each η ∈ R, since both the lower and upper functions are measurable on
[0, 1]× R. Also

|ρj(h, η)− ρj(h, η̃)| ≤ hj

3 (j + 1)

∣∣∣e−η(h) − e−η̃(h)
∣∣∣ .

Here µj(h) = hj

3 (j+1) and so

‖µj‖ =
1

3 (j + 1)
, for j = 0, 1, . . . , 6.

On the other hand, we infer that

sup{|ζ| : ζ ∈ F(h, η)} ≤ h |η(h)|
8 (1 + |η(h)|)

≤ 1

8
,

for each (h, η) ∈ [0, 1]× R, and

H(F(h, η),F(h, η̃)) =

([
0,

h |η(h)|
8 (1 + |η(h)|)

]
,

[
0,

h |η̃(h)|
8 (1 + |η̃(h)|)

])
≤ h

8
|η − η̃| .

Here λ(h) = h
8 with ‖λ‖ ≈ 0.125. Besides, we find that

φ1 =
2

Γ(7.7)
+

1

Γ(6.7)
+

1

Γ(5.7)
+

1

Γ(4.7)
+

1

Γ(3.7)
+

1

Γ(2.7)
+

1

Γ(1.7)
≈ 2.07,

φ2 =
1

3
+

1

6
+

1

9
· 1

2
+

1

12
· 1

6
+

1

15
· 1

24
+

1

18
· 1

120
+

1

21
· 1

720
= 0.5727,

and so

φ1 ‖λ‖+ φ2 ≈ (2.07) · (0.125) + 0.5727 = 0.83145 ≤ e−τ

where τ ∈
(
0, 1

6

]
.

Thus, all conditions of Theorem 4.1 are satisfied. The compactness of F together with
the above calculations lead to the existence of solution of the problem (13) by Theorem 4.1.

5. Conclusions

In this paper, a new type of contractions has been proposed for multivalued mappings
by weakening the conditions on θ and by using auxilary functions. New fixed point theorems
have been derived for multivalued mappings on complete metric spaces by means of this
new class of contractions, which generalize the results in [8, 13, 17, 20, 22, 24] and many
others in the literature. To support of effectiveness and usability of new theory have been
furnished several examples. Finally, sufficient conditions have been investigated to ensure
the existence of solutions for the nonlocal integral boundary value problem of Caputo type
fractional differential inclusions by using the results obtained herein.
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