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FORCE-DISPLACEMENT RELATIONSHIPS OF A TENSEGRITY
STRUCTURE CONSIDERING BAR INTERFERENCE

Min LIN', Tuanjie LI?, Zhifei JI>, Mingkui CHE"

Tensegrity systems are proposed to be used in several disciplines due to their
advantages. The force-displacement relationships play an important role for their
applications. However, few developments are found to study the force-displacement
relationship considering the bars’ interference. In this work, we compute the force-
displacement relationships by using the Lagrangian formulation considering the
bars’ interference. Afterwards, we have made an experimental prototype. The force-
displacement relationships obtained by experiments are compared with those
computed from the energy-based constraint equations. Finally, the evolution of the
external force has been researched along with the evolution of the stiffnesses of the
Springs.

Keywords: Tensegrity; Energy formulation; Bar interference; Force-displacement
relationship;

List of symbols

g: Vector of generalized coordinates; L: Length of rigid bars
K: Spring constant; Lo, /o2: Rest lengths of springs

f..: Vector of generalized non-conservative forces

U: Potential energy of the system

T kinetic energy of the system; m: Mass of the bars

1. Introduction

Tensegrity systems are formed by a combination of rigid components
(bars) in compression and compliant components (springs or cables) in tension.
These systems have advantages of light-weight, deployability, deformability, etc.
Due to these characteristics, they have been proposed to be applied in many fields,
such as domes [1-4], bridges [5-6], sensors [7], antennas [8-9], mobile robots [10-
11], mechanisms [12-14] and water wave energy harvesters [15].
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The investigation of tensegrity systems can be divided into two branches.
One is the study of statics, and the other is the study of dynamic behaviors. For
the statics of tensegrity systems, an important issue, named form-finding, has been
dealt with by many researchers [16]. Masic et al. [17] proposed an algebraic-based
method to deal with the form-finding of symmetric tensegrity structures. Pagitz
and Tur [18] developed finite element based form-finding method for tensegrities.
More recently, optimization algorithms have been proposed to find the shape of
large irregular tensegrities. Moreover, a review of form-finding methods was
provided by Juan and Tur [19].

The investigations of dynamics of tensegrities are mainly focused on the
force-displacement relationship. This relationship is essential to understand how
the structure behaves when subjected to external perturbations as well as to find
out the new stable configuration under such conditions. This study has been
carried out from two points of view. First, considering the structure is at an
arbitrary position and may experience large deformations. Second, considering the
structure is at an equilibrium configuration and can only experience small
perturbations around it.

When tensegrities experience large deformations, more general methods
use either the Newtonian or Lagrangian formulation to get force-displacement
relationships which are valid in any configurations. Kanchanasaratool and
Williamson [20] studied a 6-bar tensegrity platform using Newtonian formulation.
Skelton et al. [21] found a simplified model of the Newtonian formulation for
class-1 tensegrity shell. Motro et al. [22] performed the study on how tensegrity
structures dynamically behave when external loads are applied on the structure
nodes using Lagrangian formulation. Murakami [23] used the Lagrangian method
to model the dynamic behavior of a tensegrity structure taking into account
additional non-linear effects, such as the deformability of the structure edges and
the non-linear elasticity of the tensional members. When tensegrities experience
small perturbations, they can be considered to be at equilibrium configuration. In
this case, it does not take into account any dynamics, instead, only the geometry
of the tensegrity around an equilibrium position is used to find out the force-
displacement relationship. Oppenheim and Williams [24] proposed a method
which takes into account the fact that all equilibrium configurations have
minimum energy. To the best of our knowledge, few researchers studied the
force-displacement problem considering the bars’ interference which may occur
and be of significance in the real world.

A recursive matrix approach [25] was developed to model the kinematics
and dynamics of parallel mechanisms. In this paper, an adaptation of the method
of matrix approach is used to deal with the kinematics of the tensegrity structure.

In this paper, we studied the force-displacement relationship of a
tensegrity considering the interference between bars. The main contribution of
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this article is threefold. First, by using Lagrangian formulation, we give the
constraint equations representing the force-displacement relationship of a
tensegrity structure. The equations have been solved by the Newton-Raphson
approach. Second, the interference between the bars is discussed explicitly to
determine the maximum of the applied force. Third, we have made an
experimental prototype to certify the correctness of the obtained force-
displacement relationship.

2. Structure description

The tensegrity structure considered here is shown in Figure 1(a). It
consists of three compressive components and six tensile components. The
compressive components are bars of length L joining node pairs 4;8; while the
tensile components are springs joining node pairs 4;B;1jand B;B;+1, (i =1, 2, 3 with
i +1 =1 if i = 3). The structure was firstly researched by Oppenheim and Williams
[24] by making the symmetric hypothesis. In this work, we completed the analysis
of force-displacement relationships without the symmetric hypothesis.

B;

(b)

Fig. 1 Simple tensegrity structure

A fixed reference frame is located at the center of the triangle A,4,43,
denoted by node O, with its Y axis directed toward node 4; and its Z axis
perpendicular to the plane 4,4,45.

The vectors specifying the position of nodes A; and B; in this reference
frame are defined as a; and b;, respectively. The bars of mass m have the following
length

L=\(b-a) (b-a) (1)
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The orientation of bar i relative to the fixed reference frame will be
represented by angles o; and f; as illustrated in Figure 1 (b). In this figure, the
reference frame X'Y'Z' is located at node 4; and have the same orientation as frame
XYZ. The bars are attached with spherical joints to node A4;. Vectors a; take the
following forms:

a; =[0a/(3%%) 01"
a, = [d0.5a d0.5a/(3%) 0]" )
a3 =[0.5a 40.5a/3"° 01"
Furthermore, from Figure 1 (b), it can be seen that
b.=a,+LR,R,T,, (i = 1,2,3) (3)

with Rg = rot(z, I), Rii = rot(z, I[#), Ry = rot(y, Fi), w=[1 0 0]" and
ai={a/3"}Roju;.

We obtain

b, = {a/3°'5}[cosii sinii 0]T +L[cosiiicosif siniiicosii2 sinifT 4)
where [,=1/2, [,=451/6 and L= al/6.

All the springs are assumed to be massless and linear with stiffness K.
Moreover, springs A;B;+1 have the same free length Lo; while springs B;B;; have
the same free length Lo, (i = 1, 2, 3 with i +1 = 1 if i = 3). The stiffnesses of the
bars are considered to be infinite relative to those of the springs.

From the above description of the structure, it can be observed that only

six generalized coordinates are needed to describe the configuration of the
structure. These generalized coordinates are thus chosen as q = [¢1, ¢2, 43, 94, g5,

qs]" = lau, 02, a3, B, Bo, 31"
3. Response of the structure to external loads

The external force applied on node B; is denoted by F; = [Fix Fj, F, ,-Z]T (Fix
represents the component of the force F; along the X axis, etc.). When a bar
interferes with another in a structure, it will not be in tensegrity configurations. In
this section, Lagrangian formulation is used to find the force-displacement
relationship considering bars’ interference.

3.1 Constraint equations for force-displacement relationships

According to the Lagrangian formulation, the dynamic model of the
structure can be written as:

4T _oT oY, (5)
dt oq 09 0Jq
Where 7 and U are the kinetic and potential energies of the system, q = [a1, a2, 03,
b1, B, ﬂg]T is the vector of generalized coordinates and T, = [fac1, fac2, fac3s facas facss
faes]" is the vector of generalized non-conservative forces acting on the system.

Since this paper mainly deals with the case that the structure can only experience
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small perturbations, the structure can be always considered to be at equilibrium
configurations. It follows that the kinetic energy U is always equal to zero.
Considering this fact, Eq. (4) can be rewritten as

U_¢ (6)
oq
Eq. (5) represents the relationship between external forces and the generalized
coordinates. Let F= [Fi, Fjy, F, ,~Z]T be the force applied at the node B;, the non-
conservative components of generalized forces can be derived as:
S =LUTR, T,, R, R TF,

2i A"

fier =—LU,TR, T, R, R TF, (7)

2i 0 A"
u§=[0 1 o] ,u3 =[0 0 17", (i=1, 2, 3)
where i'1is the skew-symmetric matrix associated to unit vector u;. We
obtain following six analytical expressions:

Joer =—F Lcos fisine, + F,Lcos f cos (8)
Joer =—F Lsin S cosa, —F Lsin fsine, + F_Lcos 5 9

Sy =—F, Leos By sina, + F, Lcos f, cosa, (10)

Joes =—F, Lsin B, cosa, — F, Lsin 3, sina, + F,_Lcos j3, (11)

Joes =—F Leos Bisina, + F; Lcos f; cosa, (12)

Joee == Lsin B cosa, — F Lsin 8, sine; + F; L cos S (13)

From Egs. (2)-(3), it can be seen that the coordinates of nodes 4; and B; can
be expressed in terms of the generalized coordinates. Furthermore, the lengths of
the springs in the system can be easily expressed as a function of a;, oz, a3, f1, 2
and f;5. The potential energy thus becomes

U= 0.5[£+0.5 [£+0.5mgL [fsin I% (14)
where g is the acceleration due to gravity. Variables L; (i = 1, 2, ..., 6) in the
above equation are detailed in Appendix A. By substituting Egs. (6)-(11) and (12)
into Eq. (5), we obtain

: oL oL, .
2K{Z:(Li —L0,)$+Z‘(Li —L02)£}+FIXL cos S sine, — F, Lcos S cosa, =0
; -

1

(15)

K{Z(L L01)—+Z(L Loz)ﬁ} ’”§Lco s,

+ leL sin ,[)’l cosa, +F Lsinfsina, —F_Lcos 5, =0

(16)

i — ol

3
K[
i=1

02) } s Lcos By sina, —F, Lcos B, cosa, =0 (17)
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op,
+F, Lsmﬁ2 cosa, +F, ,Ls1nﬁ2 sina, —F, Lcos 3, =0

{Z(L -L

OL | mgL
|:Z(L Lm) Z(L Lz) :| 5 cos 3, (18)

02) } s Lcos fysina, — F, Leos By cosa, =0
(19)

2K|:Z(L Lm) Z(L Loz)% COS:B3

+ F, Lsin B, cosa, + F; Lsin B, sina, — F,_Lcos ;=0

By using Eqgs. (13)-(18), the generalized coordinates g can be computed
for a set of given external forces. This means that the force-displacement
relationship of the structure can be obtained by solving Egs. (13)-(18).

mgL
(20)

3.2 Bars’ interference

Bars’ interference might occur in the real world due to the fact that bars
have physical dimensions. It is supposed that the bars are cylindrical with a
diameter D. Then, the shortest distance between the center lines of two adjacent
bars is denoted by D; (i = 1, 2, 3). When two bars interfere, the following
conditions should be satisfied.
D <D (21)
The unit vector in the direction of the common normal between two bar
vectors L; and L1, denoted by n;, can be written as

L X Lz+1 (22)

|L L1+1|
The shortest distance between the two lines defined by the vectors L; and

L;+1, denoted by A,, is given by
Ai = |ni (ai+1 —-q, )| (23)
Generally, the shortest distance between bars (D;) is not equal to the
shortest distance between the bar vectors (A;). The relationship between the two

depends on the location of the intersection points (C; and C;4;) of the bar vectors
L;, L;+; with their common normal n;. The coordinates of C; can be computed by

(8. -a)m

(b, —a)-m
where m; is a vector given by:
m, :n'x(bi+l_ai+1) (25)

c,=a -+ (b a,) (24)




Force-displacement relationships of a tensegrity structure considering bar interference 9

Similarly for c;;. In order to discuss the cases of bars’ interference
explicitly, two ancillary planes, denoted by S, and S,, are introduced. S; is the
plane where L;; is located and its normal vector is parallel to ni. Moreover, the
normal vector of S, is also parallel to n; and L, is located on S,. Fj is the projection
of node B;;; on the line defined by vector L,. E;; is the projection of node B; on
the line defined by vector L;;. According to the location of C; and Cjy, three
different cases need to be distinguished:

Case 1: Both intersection points are on the bars

In this case, as shown in Figure 2 (a), D; = A;, and interference occurs if D;
> A;

Case 2: One of the intersection points is outside the bar.

As shown in Figure 2 (b), if C; is located beyond B;, but C;;; and E;;; is on
the (i+1)th bar, then D;, which is the distance from B; to the (i+1)th bar, is given
by:

_ |(bz _ai+1)x Li+l
l Li+1|

As shown in Figure 2(c), if C; is located beyond B;, but Cj; is on the
(i+1)th bar with E;+ not on the (i+1)th bar, then D;, which is the distance from B;
to the (i+1)th bar, is given by:

(26)

D, = |bi _ai+1| 27)

Ain -7

Ai+1 Eiﬂf’

0D
-7
o
T

By
S

oY I S
1

Si

(@) (b) (©)
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Fig. 2 Different cases of bars’ interference

If Ciy; is located beyond B;i, but C;and Ejis on the ith bar as shown in Figure
2(d), then D;, which is the distance from B;;; to the ith bar, is given by
D = |(bi+1 _ai)x Li|

’ L
If Ci1y is located beyond B;1j, but C; is on the ith bar with E; not on the ith bar as
shown in Figure 2(e), then D;, which is the distance from B to the ith bar, is

given by

(28)

D, =|b,

i+l ai| (29)
Case 3: Both intersection points are not on the bars
In this case, as shown in Figure 2(f-h), D; depends on the location of E..
There are three possibilities:
(1) If Ei4; is located on the bar B;y14;+1 while E; is out of the bar B;4;, as shown in
Figure 2(f), then D; is given by Eq. (24).
(2) If E; is located on the bar B;4; while E;1; is out of the bar B;114,+1, as shown in
Figure 2(g), then D; is given by Eq.(26).
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(3) If both E; and E;+; are located out of the bars, as shown in Figure 2(h), then D;
is the distance between two joints B; and B;41.

4. Experiments

4.1 Experimental prototype

The experimental prototype is shown in Figure 3. Carbon fiber tubes are

used for the bars whose inside and outside diameters are 0.006 m and 0.008 m
respectively. The length of bars are chosen as L = 0.578 m. The density of carbon
fiberis p=1.8 x 10° kg/m3 . The mass of a bar in the structure can be computed as

2 2
mzpzr(D d’)L 0
4

where D and d denote the outside and inside diameters respectively. The rest
length of side springs (springs 4182, A>B3 and A3B) is 0.336 m while the rest
length of the top springs (springs BB, B»B3 and B3B;) is 0.356 m. Moreover, the
spring constant is 173.2 N/m. In Figure 3, the sides of the fixed platform, denoted
by 414243, are 0.41 m long. Moreover, calipers with accuracy of 0.1 mm are used
to measure the current length of the springs. Since the rest lengths of springs are
known, their extensions can be easily computed. Generally, when an external
force is applied on the node B;, the prototype will generate deformations. During
this process, energy will be stored in the springs. The increased energy of the
system can be represented by the extensions of the springs which are measured by
the calipers. From Section 3.1, we know that the force-displacement relationship
can be represented by the relationship between the external forces and the
generalized coordinates. However, in the real world, the generalized coordinates
are difficult to measure. Therefore, in the experiments, we try to reveal the force-
displacement relationship of the prototype by using the relationship between the
external force and the extensions of the springs.

Fig. 3 Experimentalprototype
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4.2 Main results

In the experiments, we only studied the cases that only one force (F3) is
exerted on node B along the Z axis. However, the method used in this work can
be applied to the case that the external force is exerted on any node of the
structure in any direction. By increasing the force from 0 N to 10 N, we obtained
the lengths of the springs which are measured by calipers. Then, the
corresponding extensions of the springs can be computed as shown in Table 1.

Table 1
Extensions of the springs obtained by experiments

F3,/N AL/mm ALy/mm ALz/mm ALy/mm ALs/mm ALg/mm
0 32.5988 32.1836 31.4954 50.9270 52.9330 48.5386
-1 33.084 34.0658 31.8073 51.0543 54.8730 44.2030
-2 34.2044 35.8326 32.0441 51.2912 56.9919 40.5982
-3 36.0226 38.3626 32.2730 51.5185 59.1224 37.0855
-4 37.0640 40.7714 32.4363 52.0554 61.4896 33.2460
-5 38.0762 43.7000 32.6557 53.0155 63.8568 28.9545
-6 39.5940 46.2817 32.9000 53.6815 67.2633 24.9076
-7 41.0598 47.4249 33.0083 54.0226 69.5150 22.4607
-8 42.0945 48.8453 33.2185 54.2254 72.5750 17.2679
-9 43.0469 52.7333 33.4594 54.4337 75.3464 13.6363
-10 44.0208 54.8176 33.8072 54.6998 78.4065 10.3799

In Table 1, AL; is the extension of the spring i, as shown in Figure 1(a).
Furthermore, AL; can also be computed from Egs. (13)-(18) for a set of given
external forces by using the Newton-Raphson algorithm, as shown in Table 2.

Table 2
Extensions of the springs computedfromEgs. (13)-(18)

F3,/N AL/mm ALy/mm ALz/mm ALy/mm ALs/mm ALg/mm
0 31.3242 31.3212 31.3173 50.5953 50.5881 50.590840
-1 32.3180 33.1572 31.4903 50.9329 52.5784 46.494939
-2 33.3551 35.1283 31.6627 51.2700 54.6671 42.388409
-3 34.4389 37.2472 31.8372 51.6082 56.8603 38.277880
-4 35.5729 39.5262 32.0175 51.9496 59.1638 34.170881
-5 36.7614 41.9789 32.2083 52.2970 61.5835 30.075916
-6 38.0090 44.6188 32.4163 52.6535 64.1249 26.002510
-7 39.3212 47.4593 32.6494 53.0230 66.7930 21.961228
-8 40.7040 50.5131 32.9180 53.4100 69.5916 17.963650
-9 42.1642 53.7913 33.2343 53.8184 72.5232 14.022284

-10 43.7094 57.3025 33.6127 54.2537 75.5889 10.150407
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Fig. 4 Variations of the spring extensions along with the external force

Here, it is interesting to study the relationship between the external force
F3, and the extensions AL; This relationship obtained from Egs. (13)-(18) is
compared with that obtained from experiments. From Figure 4 (a-f), it can be seen
that the law how the extensions AL; vary over the external force is almost linear.
This fact can be tested by experimental and theoretical results respectively.
Furthermore, the force-displacement relationships obtained by Eqgs. (13)-(18) are
quite agree with experimental results. Let AL,,, obtained by experiments, denote
the extension of spring i, and AL;; denote the extension of spring i computed from

Egs. (13)-(18), the relative error is defined as
|ALis — ALie
o =i Tie]

AL,

s

The relative errors between the experimental and theoretical results can be
computed by Eq. (29), shown in Table 3.

€1y
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Table 3
Relative errors between the experimental and theoretical results
F3, /N el e es e4 es es
0 4.07% 2.75% 0.57% 0.66% 4.64%  4.06%
-1 237% 2.74% 1.01% 0.24% 4.36% 4.93%
-2 2.55% 2.00% 1.21% 0.04% 4.25% 4.22%
-3 4.59% 2.99% 137% 0.17% 3.98% 3.12%
-4 4.19% 3.15% 131% 020% 3.93% 2.71%
-5 3.58% 4.10% 139% 1.37% 3.69% 3.73%
-6 4.17% 3.73% 1.49% 195% 4.89% 4.21%
-7 4.42% 0.07% 1.10% 1.89% 4.08% 2.27%
-8 342% 330% 091% 1.53% 4.29% 3.87%
-9 2.09% 1.97% 0.68% 1.14% 3.89% 2.75%
-10 0.71% 434% 058% 0.82% 3.73%  2.26%
From Table 3, it can be seen that the maximal relative error is less than
5%. The differences between the experimental and theoretical results are due to
the fact that the mass of springs and the joint friction are not considered during the
theoretical computation. However, the relative errors shown in Table 3 are
acceptable in engineering.

5. Conclusion

Based on the analytical and experimental investigations presented in this
paper, the following conclusions can be drawn:

1. On the basis of the Lagrangian formulation, we have derived the
constraint equations which can be used to obtain the force-displacement
relationship for a tensegrity structure. This method does not need any symmetry
of the structure.

2. We have discussed bars’ interferences that may occur in the real world.
The interference conditions should be considered during finding the force-
displacement relationships.

3. An experimental prototype has been made to certify the correctness of
the obtained relationships between the external force applied on node B3 along the
Z axis and the extensions of the springs. The experimental results indicate that the
force-displacement relationship obtained by the Lagrangian formulation are
acceptable in engineering.
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Appendix A. Details of variables L;

Using the notations P =14l P ,=[+2dl, and P s=[+3dl5, due to the symmetry of
the spatial mechanism, the lengths L, Ly, L3, L4, Ls and L¢ have, in fact, the
following interesting expressions:

(1]
(2]
(3]
(4]
(3]
(6]

L* = [*+a*+2Lacos*2cos(1*,41/6) (A.1)
Ly*=L*+a*+2Lacos*scos(I41/6) (A.2)
Ls*=Ly+ay+2Lacosl* cos(F14i/6) (A.3)

Li=2L*+a*+2Lacosl \cos(F+i/6)+2Lacos Pacos(FP,al/6)+

2L%cosP\cosPacos(P1d Pyti/3)aL sin FPisin I (A.4)

Ls*=2L*+a*+2Lacos I* 1cos(f3 2+I"/6)+2Lacosf23cos(f3 3dl/6) +

2L%cosPacosPscos(Prdl s+H13)d L sinPasins (A.S5)

L62=2L2+a2+2Lac0sfzgcos(f3 3+f/6)+2Lacosf2 icos I 1cos(f3 1al/6)+

2Lycoslscos icos(P3al \+i/3)d Laosinssin (A.6)
REFERENCES

D. Cadoni and A. Micheletti, “Structural performances of single-layer tensegrity domes”,
International Journal of Space Structures, Vol. 27, no. 2, 2012, pp. 167-178.

F Fu, “Structural behavior and design methods of tensegrity domes”, Journal of
Constructional Steel Research, Vol. 61, no. 1, 2005, pp. 23-35.

B. Gao, Q. Lu, and S. Dong, “Geometrical nonlinear stability analyses of cable-truss domes”,
Journal of Zhejiang University Since A, Vol. 4, no. 3, 2003, pp. 317-323.

S. Pellegrino, “A class of tensegrity domes”, International Journal of Space Structures, Vol. 7,
1992, pp. 127-142.

L. Rhode-Barbarigos, N. B. H. Ali, R. Motro, R. and I. F. Smith, “Designing tensegrity
modules for pedestrian bridges”, Engineering Structures Vol. 32, no. 4, 2010, pp. 1158-1167.
R. Skelton, F. Fraternali, G. Carpentieri and A. Micheletti, “Minimum mass design of
tensegrity bridges with parametric architecture and multiscale complexity”, Mechanics
Research Communications, Vol. 58, 2014, pp. 124-132.



16 Min Lin, Tuanjie Li, Zhifei Ji, Mingkui Che

[7] C. Sultan and R. Skelton, “A force and torque tensegrity sensor”, Sensors and Actuators A:
Physical, Vol. 112, no. 2, 2004, pp. 220-231.

[8] N. Fazli and A. Abedian, “Design of tensegrity structures for supporting deployable mesh
antennas”, Scientia Iranica, Vol. 18, no. 5, 2011, pp. 1078-1087.

[9] B. F. Knight, Deployable antenna kinematics using tensegrity structure design, PhD Thesis,
University of Florida, 2004.

[10] C. Paul, F. J. Valero-Cuevas and H. Lipson, “Design and control of tensegrity robots for
locomotion”, IEEE Transactions on Robotics, Vol. 22, 2006, pp. 944-957.

[11]1 A. G Rovira and J. M. M. Tur, “Control and simulation of a tensegrity-based mobile robot”,
Robotics and Autonomous Systems, Vol. 57, 2009, pp. 526-535.

[12] M. Arsenault and C. M. Gosselin, “Kinematic and static analysis of a three-degree-of-freedom
spatial modular tensegrity mechanism”, The International Journal of Robotics Research, Vol.
27, no. 8, 2008, pp. 951-966.

[13]1 Z. Ji, T. Li, and M. Lin, “Kinematics and stiffness of a planar tensegrity parallel mechanism”,
Periodica Polytechnica, Mechanical Engineering, Vol. 58, no.2, 2014, pp. 101-111.

[14] Z. Ji, T. Li, and M. Lin, “Kinematics, workspaces and stiffness of a planar class-2 tensegrity
mechanism”, U.P.B. Scientific Bulletin, Series D: Mechanical Engineering, Vol. 76, no. 3,
2014, pp. 53-64.

[15] R. E. Vasquez, C. D. Crane and J. C. Correa, “Analysis of a Planar Tensegrity Mechanism for
Ocean Wave Energy Harvesting”, Journal of Mechanisms and Robotics, Vol. 6, no. 3, 2014,
pp. 031015.

[16] A. Tibert, and S. Pellegrino, “Review of form-finding methods for tensegrity structures”,
International Journal of Space Structures, Vol. 18, no. 4 2003, pp. 209-223.

[17] M. Masic, R. E. Skelton and P. E. Gill, “Algebraic tensegrity form-finding”, International
Journal of Solids and Structures, Vol. 42, no. 16, 2005, pp. 4833-4858.

[18] M. Pagitz and J. M. Tur, “Finite element based form-finding algorithm for tensegrity
structures”, International Journal of Solids and Structures, Vol. 46, no. 17, 2009, pp. 3235-
3240.

[19]1 S. H. Juan, and J. M. M. Tur, “Tensegrity frameworks: static analysis review”, Mechanism
and Machine Theory, Vol. 43, no. 7, 2008, pp. 859-881.

[20] N. Kanchanasaratool and D. Williamson, “Modelling and control of class NSP tensegrity
structures”, International Journal of Control, Vol. 75, no. 2, 2005, pp. 123-139.

[211 R. E. Skelton, J. P. Pinaud and D. Mingori, “Dynamics of the shell class of tensegrity
structures”, Journal of the Franklin Institute, Vol. 338, no. 2, 2001, pp. 255-320.

[22] R. Motro, S. Najari and P. Jouanna, “Static and dynamic analysis of tensegrity systems”,
Shell and Spatial Structures: Computational Aspects, Proceedings of the International
Symposium,1987, pp. 270-279.

[23]1 H. Murakami, “Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear
equations of motion”, International Journal of Solids and Structures, Vol. 38, no. 20, 2001, pp.
3599-3613.

[24] I. Oppenheim and W. Williams, “Geometric effects in an elastic tensegrity structure”, Journal
of Elasticity, Vol. 59, no. 1, 2000, pp. 51-65.

[25] S. Staicu, “Matrix modeling of inverse dynamics of spatial and planar parallel robots”,
Multibody System Dynamics, Vol. 27, no. 2, 2012, pp. 239-265.



