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FORCE-DISPLACEMENT RELATIONSHIPS OF A TENSEGRITY 
STRUCTURE CONSIDERING BAR INTERFERENCE 

Min LIN1, Tuanjie LI2, Zhifei JI3, Mingkui CHE4 

Tensegrity systems are proposed to be used in several disciplines due to their 
advantages. The force-displacement relationships play an important role for their 
applications. However, few developments are found to study the force-displacement 
relationship considering the bars’ interference. In this work, we compute the force-
displacement relationships by using the Lagrangian formulation considering the 
bars’ interference. Afterwards, we have made an experimental prototype. The force-
displacement relationships obtained by experiments are compared with those 
computed from the energy-based constraint equations. Finally, the evolution of the 
external force has been researched along with the evolution of the stiffnesses of the 
springs. 

Keywords: Tensegrity; Energy formulation; Bar interference; Force-displacement 
relationship; 

List of symbols 
q: Vector of generalized coordinates; L: Length of rigid bars 
K: Spring constant; L01, l02: Rest lengths of springs 
fnc: Vector of generalized non-conservative forces 
U: Potential energy of the system 
T: kinetic energy of the system; m: Mass of the bars 

1. Introduction 

Tensegrity systems are formed by a combination of rigid components 
(bars) in compression and compliant components (springs or cables) in tension. 
These systems have advantages of light-weight, deployability, deformability, etc. 
Due to these characteristics, they have been proposed to be applied in many fields, 
such as domes [1-4], bridges [5-6], sensors [7], antennas [8-9], mobile robots [10-
11], mechanisms [12-14] and water wave energy harvesters [15].  
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The investigation of tensegrity systems can be divided into two branches. 
One is the study of statics, and the other is the study of dynamic behaviors. For 
the statics of tensegrity systems, an important issue, named form-finding, has been 
dealt with by many researchers [16]. Masic et al. [17] proposed an algebraic-based 
method to deal with the form-finding of symmetric tensegrity structures. Pagitz 
and Tur [18] developed finite element based form-finding method for tensegrities. 
More recently, optimization algorithms have been proposed to find the shape of 
large irregular tensegrities. Moreover, a review of form-finding methods was 
provided by Juan and Tur [19]. 

The investigations of dynamics of tensegrities are mainly focused on the 
force-displacement relationship. This relationship is essential to understand how 
the structure behaves when subjected to external perturbations as well as to find 
out the new stable configuration under such conditions. This study has been 
carried out from two points of view. First, considering the structure is at an 
arbitrary position and may experience large deformations. Second, considering the 
structure is at an equilibrium configuration and can only experience small 
perturbations around it.  

When tensegrities experience large deformations, more general methods 
use either the Newtonian or Lagrangian formulation to get force-displacement 
relationships which are valid in any configurations. Kanchanasaratool and 
Williamson [20] studied a 6-bar tensegrity platform using Newtonian formulation. 
Skelton et al. [21] found a simplified model of the Newtonian formulation for 
class-1 tensegrity shell. Motro et al. [22] performed the study on how tensegrity 
structures dynamically behave when external loads are applied on the structure 
nodes using Lagrangian formulation. Murakami [23] used the Lagrangian method 
to model the dynamic behavior of a tensegrity structure taking into account 
additional non-linear effects, such as the deformability of the structure edges and 
the non-linear elasticity of the tensional members. When tensegrities experience 
small perturbations, they can be considered to be at equilibrium configuration. In 
this case, it does not take into account any dynamics, instead, only the geometry 
of the tensegrity around an equilibrium position is used to find out the force-
displacement relationship. Oppenheim and Williams [24] proposed a method 
which takes into account the fact that all equilibrium configurations have 
minimum energy. To the best of our knowledge, few researchers studied the 
force-displacement problem considering the bars’ interference which may occur 
and be of significance in the real world.  

A recursive matrix approach [25] was developed to model the kinematics 
and dynamics of parallel mechanisms. In this paper, an adaptation of the method 
of matrix approach is used to deal with the kinematics of the tensegrity structure. 

In this paper, we studied the force-displacement relationship of a 
tensegrity considering the interference between bars. The main contribution of 
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this article is threefold. First, by using Lagrangian formulation, we give the 
constraint equations representing the force-displacement relationship of a 
tensegrity structure. The equations have been solved by the Newton-Raphson 
approach. Second, the interference between the bars is discussed explicitly to 
determine the maximum of the applied force. Third, we have made an 
experimental prototype to certify the correctness of the obtained force-
displacement relationship. 

2. Structure description 

The tensegrity structure considered here is shown in Figure 1(a). It 
consists of three compressive components and six tensile components. The 
compressive components are bars of length L joining node pairs AiBi while the 
tensile components are springs joining node pairs AiBi+1and BiBi+1, (i = 1, 2, 3 with 
i +1 = 1 if i = 3). The structure was firstly researched by Oppenheim and Williams 
[24] by making the symmetric hypothesis. In this work, we completed the analysis 
of force-displacement relationships without the symmetric hypothesis. 
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(a)                                                          (b) 

Fig. 1 Simple tensegrity structure 
 

A fixed reference frame is located at the center of the triangle A1A2A3, 
denoted by node O, with its Y axis directed toward node A1 and its Z axis 
perpendicular to the plane A1A2A3.  

The vectors specifying the position of nodes Ai and Bi in this reference 
frame are defined as ai and bi, respectively. The bars of mass m have the following 
length 

 ( ) ( )T
i i i iL = − −b a b a  (1) 
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The orientation of bar i relative to the fixed reference frame will be 
represented by angles αi and βi as illustrated in Figure 1 (b). In this figure, the 
reference frame X'Y'Z' is located at node Ai and have the same orientation as frame 
XYZ. The bars are attached with spherical joints to node Ai. Vectors ai take the 
following forms: 

a1 = [0 a/(30.5) 0]T 
 a2 = [â0.5a   â 0.5a/(30.5)  0]T                   (2) 
a3 = [0.5a  â0.5a/30.5 0]T  

Furthermore, from Figure 1 (b), it can be seen that 
 ( )1 2 1,  1, 2,3i i i i uL i= + =b a R R T  (3) 

with R0i = rot(z, Îi), R1i = rot(z, Î±i), R2i = rot(y, Î2i), u1=[1 0 0]T and 
ai={a/30.5}R0iu1. 

We obtain 
 { }0.5 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ/ 3 cosI sinI 0 cosI cosI sinI cosI sinI

T T

i i i i i ia L i i⎡ ⎤ ⎡ ⎤= + ± ±⎣ ⎦ ⎣ ⎦b   (4) 

where Î1=Ï/2, Î2=â5Ï/6 and Î3= âÏ/6. 
All the springs are assumed to be massless and linear with stiffness K. 

Moreover, springs AiBi+1 have the same free length L01 while springs BiBi+1 have 
the same free length L02 (i = 1, 2, 3 with i +1 = 1 if i = 3). The stiffnesses of the 
bars are considered to be infinite relative to those of the springs. 

From the above description of the structure, it can be observed that only 
six generalized coordinates are needed to describe the configuration of the 
structure. These generalized coordinates are thus chosen as q = [q1, q2, q3, q4, q5, 
q6]T = [α1, α2, α3, β1, β2, β3]T. 

3. Response of the structure to external loads 
The external force applied on node Bi is denoted by Fi = [Fix Fiy Fiz]T (Fix 

represents the component of the force Fi along the X axis, etc.). When a bar 
interferes with another in a structure, it will not be in tensegrity configurations. In 
this section, Lagrangian formulation is used to find the force-displacement 
relationship considering bars’ interference.  

3.1 Constraint equations for force-displacement relationships 

According to the Lagrangian formulation, the dynamic model of the 
structure can be written as: 

 nc
d T T U
dt

∂ ∂ ∂
− + =

∂ ∂ ∂
f

q q q
 (5) 

Where T and U are the kinetic and potential energies of the system, q = [α1, α2, α3, 
β1, β2, β3]T is the vector of generalized coordinates and fnc = [fnc1, fnc2, fnc3, fnc4, fnc5, 
fnc6]T is the vector of generalized non-conservative forces acting on the system. 
Since this paper mainly deals with the case that the structure can only experience 
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small perturbations, the structure can be always considered to be at equilibrium 
configurations. It follows that the kinetic energy U is always equal to zero. 
Considering this fact, Eq. (4) can be rewritten as 

 nc
U∂

=
∂q

f  (6) 

Eq. (5) represents the relationship between external forces and the generalized 
coordinates. Let Fi= [Fix, Fiy, Fiz]T be the force applied at the node Bi, the non-
conservative components of generalized forces can be derived as: 

 

( )

1 3 2 2 1''1

2 2 2 2 1''1
T T

2 3[0 1 0] , [0 0 1] ,  1,  2,  3

inc i i i i

inc i i i iA
T T

f L T
f L T

i

Α=

= −

= = =

u TR T R R F
u R T R R TF

u u

 (7) 

where '' 1A is the skew-symmetric matrix associated to unit vector u1. We 
obtain following six analytical expressions: 

1 1 1 1 1 1 1cos sin cos cosnc x yf F L F Lβ α β α= − +  (8) 
 2 1 1 1 1 1 1 1 1sin cos sin sin cosnc x y zf F L F L F Lβ α β α β= − − +  (9) 
 3 2 2 2 2 2 2cos sin cos cosnc x yf F L F Lβ α β α= − +  (10) 
 4 2 2 2 2 2 2 2 2sin cos sin sin cosnc x y zf F L F L F Lβ α β α β= − − +  (11) 
 5 3 3 3 3 3 3cos sin cos cosnc x yf F L F Lβ α β α= − +  (12) 
 6 3 3 3 3 2 3 3 3sin cos sin sin cosnc x y zf F L F L F Lβ α β α β= − − +  (13) 
From Eqs. (2)-(3), it can be seen that the coordinates of nodes Ai and Bi can 

be expressed in terms of the generalized coordinates. Furthermore, the lengths of 
the springs in the system can be easily expressed as a function of α1, α2, α3, β1, β2 
and β3. The potential energy thus becomes 

 U = 0.5Î£+0.5 Î£+0.5mgL Î£sin Î2
i (14) 

where g is the acceleration due to gravity. Variables Li (i = 1, 2, …, 6) in the 
above equation are detailed in Appendix A. By substituting Eqs. (6)-(11) and (12) 
into Eq. (5), we obtain 

3 6
i i

i 01 i 02 1 1 1 1 1 1
1 41 1

2 ( ) ( ) cos sin cos cos 0x y
i i

L LK L L L L F L F Lβ α β α
α α= =

⎡ ⎤∂ ∂
− + − + − =⎢ ⎥∂ ∂⎣ ⎦

∑ ∑
 (15) 

 

3 6
i i

i 01 i 02 1
1 41 1

1 1 1 1 1 1 1 1

2 ( ) ( ) cos
2

      sin cos sin sin cos 0
i i

x y z

L L mgLK L L L L

F L F L F L

β
β β

β α β α β
= =

⎡ ⎤∂ ∂
− + − +⎢ ⎥∂ ∂⎣ ⎦

+ + − =

∑ ∑  (16) 

3 6
i i

i 01 i 02 2 2 2 2 2 2
1 42 2

2 ( ) ( ) cos sin cos cos 0x y
i i

L LK L L L L F L F Lβ α β α
α α= =

⎡ ⎤∂ ∂
− + − + − =⎢ ⎥∂ ∂⎣ ⎦

∑ ∑ (17) 
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3 6
i i

i 01 i 02 2
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2 2 2 2 2 2 2 2

2 ( ) ( ) cos
2

      sin cos sin sin cos 0
i i

x y z

L L mgLK L L L L

F L F L F L

β
β β

β α β α β
= =

⎡ ⎤∂ ∂
− + − +⎢ ⎥∂ ∂⎣ ⎦

+ + − =

∑ ∑  (18) 

3 6
i i

i 01 i 02 3 3 3 3 3 3
1 43 3

2 ( ) ( ) cos sin cos cos 0x y
i i

L LK L L L L F L F Lβ α β α
α α= =

⎡ ⎤∂ ∂
− + − + − =⎢ ⎥∂ ∂⎣ ⎦

∑ ∑
 (19) 

 

3 6
i i

i 01 i 02 3
1 43 3

3 3 3 3 2 3 3 3

2 ( ) ( ) cos
2

      sin cos sin sin cos 0
i i

x y z

L L mgLK L L L L

F L F L F L

β
β β

β α β α β
= =

⎡ ⎤∂ ∂
− + − +⎢ ⎥∂ ∂⎣ ⎦

+ + − =

∑ ∑  (20) 

By using Eqs. (13)-(18), the generalized coordinates q can be computed 
for a set of given external forces. This means that the force-displacement 
relationship of the structure can be obtained by solving Eqs. (13)-(18). 

3.2 Bars’ interference 

Bars’ interference might occur in the real world due to the fact that bars 
have physical dimensions. It is supposed that the bars are cylindrical with a 
diameter D. Then, the shortest distance between the center lines of two adjacent 
bars is denoted by Di (i = 1, 2, 3). When two bars interfere, the following 
conditions should be satisfied. 

 iD D≤  (21) 
The unit vector in the direction of the common normal between two bar 

vectors Li and Li+1, denoted by ni, can be written as 

 1

1

i i
i

i i

+

+

×
=

×
L Ln
L L

 (22) 

The shortest distance between the two lines defined by the vectors Li and 
Li+1, denoted by ∆i, is given by 

 ( )1i i i i+Δ = −n a a  (23) 
Generally, the shortest distance between bars (Di) is not equal to the 

shortest distance between the bar vectors (∆i). The relationship between the two 
depends on the location of the intersection points (Ci and Ci+1) of the bar vectors 
Li, Li+1 with their common normal ni. The coordinates of Ci can be computed by 

 ( )
( ) ( )1i i i

i i i i
i i i

+ − ⋅
= + −

− ⋅
a a m

c a b a
b a m

 (24) 

where mi is a vector given by: 
 ( )1 1i i i i+ += × −m n b a  (25) 
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Similarly for ci+1. In order to discuss the cases of bars’ interference 
explicitly, two ancillary planes, denoted by S1 and S2, are introduced. S1 is the 
plane where Li+1 is located and its normal vector is parallel to ni. Moreover, the 
normal vector of S2 is also parallel to ni and Li is located on S2. Ei is the projection 
of node Bi+1 on the line defined by vector Li. Ei+1 is the projection of node Bi on 
the line defined by vector Li+1. According to the location of Ci and Ci+1, three 
different cases need to be distinguished: 

Case 1: Both intersection points are on the bars 
In this case, as shown in Figure 2 (a), Di = ∆i, and interference occurs if Di 

> ∆i. 
Case 2: One of the intersection points is outside the bar. 
As shown in Figure 2 (b), if Ci is located beyond Bi, but Ci+1 and Ei+1 is on 

the (i+1)th bar, then Di, which is the distance from Bi to the (i+1)th bar, is given 
by:  

   
( )1 1

1

i i i
i

i

D + +

+

− ×
=

b a L
L

 (26) 

As shown in Figure 2(c), if Ci is located beyond Bi, but Ci+1 is on the 
(i+1)th bar with Ei+1 not on the (i+1)th bar, then Di, which is the distance from Bi 
to the (i+1)th bar, is given by: 

  1i i iD += −b a                           (27) 
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Fig. 2 Different cases of bars’ interference 
 

If Ci+1 is located beyond Bi+1, but Ci and Ei is on the ith bar as shown in Figure 
2(d), then Di, which is the distance from Bi+1 to the ith bar, is given by 

 
( )1i i i

i
i

D + − ×
=

b a L
L

 (28) 

If Ci+1 is located beyond Bi+1, but Ci is on the ith bar with Ei not on the ith bar as 
shown in Figure 2(e), then Di, which is the distance from Bi+1 to the ith bar, is 
given by 

 1i i iD += −b a  (29) 
Case 3: Both intersection points are not on the bars 
In this case, as shown in Figure 2(f-h), Di depends on the location of Ei. 

There are three possibilities: 
(1) If Ei+1 is located on the bar Bi+1Ai+1 while Ei is out of the bar BiAi, as shown in 

Figure 2(f), then Di is given by Eq. (24). 
(2) If Ei is located on the bar BiAi while Ei+1 is out of the bar Bi+1Ai+1, as shown in 

Figure 2(g), then Di is given by Eq.(26). 
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(3) If both Ei and Ei+1 are located out of the bars, as shown in Figure 2(h), then Di 
is the distance between two joints Bi and Bi+1. 

4. Experiments 

4.1 Experimental prototype 

The experimental prototype is shown in Figure 3. Carbon fiber tubes are 
used for the bars whose inside and outside diameters are 0.006 m and 0.008 m 
respectively. The length of bars are chosen as L = 0.578 m. The density of carbon 
fiber is ρ = 1.8 × 103 kg/m3. The mass of a bar in the structure can be computed as 

 
( )2 2

4
D d L

m
ρπ −

=  (30) 

where D and d denote the outside and inside diameters respectively. The rest 
length of side springs (springs A1B2, A2B3 and A3B1) is 0.336 m while the rest 
length of the top springs (springs B1B2, B2B3 and B3B1) is 0.356 m. Moreover, the 
spring constant is 173.2 N/m. In Figure 3, the sides of the fixed platform, denoted 
by A1A2A3, are 0.41 m long. Moreover, calipers with accuracy of 0.1 mm are used 
to measure the current length of the springs. Since the rest lengths of springs are 
known, their extensions can be easily computed. Generally, when an external 
force is applied on the node Bi, the prototype will generate deformations. During 
this process, energy will be stored in the springs. The increased energy of the 
system can be represented by the extensions of the springs which are measured by 
the calipers. From Section 3.1, we know that the force-displacement relationship 
can be represented by the relationship between the external forces and the 
generalized coordinates. However, in the real world, the generalized coordinates 
are difficult to measure. Therefore, in the experiments, we try to reveal the force-
displacement relationship of the prototype by using the relationship between the 
external force and the extensions of the springs. 
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Fig. 3 Experimental prototype 
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4.2 Main results 

In the experiments, we only studied the cases that only one force (F3) is 
exerted on node B3 along the Z axis. However, the method used in this work can 
be applied to the case that the external force is exerted on any node of the 
structure in any direction.  By increasing the force from 0 N to 10 N, we obtained 
the lengths of the springs which are measured by calipers. Then, the 
corresponding extensions of the springs can be computed as shown in Table 1. 

Table 1  
Extensions of the springs obtained by experiments 

F3z/N ∆L1/mm ∆L2/mm ∆L3/mm ∆L4/mm ∆L5/mm ∆L6/mm 
0 32.5988 32.1836 31.4954 50.9270 52.9330 48.5386 
-1 33.084 34.0658 31.8073 51.0543 54.8730 44.2030 
-2 34.2044 35.8326 32.0441 51.2912 56.9919 40.5982 
-3 36.0226 38.3626 32.2730 51.5185 59.1224 37.0855 
-4 37.0640 40.7714 32.4363 52.0554 61.4896 33.2460 
-5 38.0762 43.7000 32.6557 53.0155 63.8568 28.9545 
-6 39.5940 46.2817 32.9000 53.6815 67.2633 24.9076 
-7 41.0598 47.4249 33.0083 54.0226 69.5150 22.4607 
-8 42.0945 48.8453 33.2185 54.2254 72.5750 17.2679 
-9 43.0469 52.7333 33.4594 54.4337 75.3464 13.6363 
-10 44.0208 54.8176 33.8072 54.6998 78.4065 10.3799 

In Table 1, ∆Li is the extension of the spring i, as shown in Figure 1(a). 
Furthermore, ∆Li can also be computed from Eqs. (13)-(18) for a set of given 
external forces by using the Newton-Raphson algorithm, as shown in Table 2. 

Table 2  
Extensions of the springs computedfromEqs. (13)-(18) 

F3z/N ∆L1/mm ∆L2/mm ∆L3/mm ∆L4/mm ∆L5/mm ∆L6/mm 
0 31.3242 31.3212 31.3173 50.5953 50.5881 50.590840
-1 32.3180 33.1572 31.4903 50.9329 52.5784 46.494939

27-2 33.3551 35.1283 31.6627 51.2700 54.6671 42.388409
56-3 34.4389 37.2472 31.8372 51.6082 56.8603 38.277880
21-4 35.5729 39.5262 32.0175 51.9496 59.1638 34.170881
85-5 36.7614 41.9789 32.2083 52.2970 61.5835 30.075916
99-6 38.0090 44.6188 32.4163 52.6535 64.1249 26.002510
52-7 39.3212 47.4593 32.6494 53.0230 66.7930 21.961228
3-8 40.7040 50.5131 32.9180 53.4100 69.5916 17.963650
35-9 42.1642 53.7913 33.2343 53.8184 72.5232 14.022284
42-10 43.7094 57.3025 33.6127 54.2537 75.5889 10.150407
64
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     (d)                                                (e)                                                 (f) 
Fig. 4 Variations of the spring extensions along with the external force 

Here, it is interesting to study the relationship between the external force 
F3z and the extensions ∆Li. This relationship obtained from Eqs. (13)-(18) is 
compared with that obtained from experiments. From Figure 4 (a-f), it can be seen 
that the law how the extensions ∆Li vary over the external force is almost linear. 
This fact can be tested by experimental and theoretical results respectively. 
Furthermore, the force-displacement relationships obtained by Eqs. (13)-(18) are 
quite agree with experimental results. Let ∆Lie, obtained by experiments, denote 
the extension of spring i, and ∆Lis denote the extension of spring i computed from 
Eqs. (13)-(18), the relative error is defined as 

 is ie
i

is

L L
e

L
Δ −Δ

=
Δ

 (31) 

The relative errors between the experimental and theoretical results can be 
computed by Eq. (29), shown in Table 3. 
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Table 3 
 Relative errors between the experimental and theoretical results 

F3z /N e1 e2 e3 e4 e5 e6 
0 4.07% 2.75% 0.57% 0.66% 4.64% 4.06% 
-1 2.37% 2.74% 1.01% 0.24% 4.36% 4.93% 
-2 2.55% 2.00% 1.21% 0.04% 4.25% 4.22% 
-3 4.59% 2.99% 1.37% 0.17% 3.98% 3.12% 
-4 4.19% 3.15% 1.31% 0.20% 3.93% 2.71% 
-5 3.58% 4.10% 1.39% 1.37% 3.69% 3.73% 
-6 4.17% 3.73% 1.49% 1.95% 4.89% 4.21% 
-7 4.42% 0.07% 1.10% 1.89% 4.08% 2.27% 
-8 3.42% 3.30% 0.91% 1.53% 4.29% 3.87% 
-9 2.09% 1.97% 0.68% 1.14% 3.89% 2.75% 

-10 0.71% 4.34% 0.58% 0.82% 3.73% 2.26% 
From Table 3, it can be seen that the maximal relative error is less than 

5%. The differences between the experimental and theoretical results are due to 
the fact that the mass of springs and the joint friction are not considered during the 
theoretical computation. However, the relative errors shown in Table 3 are 
acceptable in engineering.  

5. Conclusion 

Based on the analytical and experimental investigations presented in this 
paper, the following conclusions can be drawn: 

1. On the basis of the Lagrangian formulation, we have derived the 
constraint equations which can be used to obtain the force-displacement 
relationship for a tensegrity structure. This method does not need any symmetry 
of the structure. 

2. We have discussed bars’ interferences that may occur in the real world. 
The interference conditions should be considered during finding the force-
displacement relationships. 

3. An experimental prototype has been made to certify the correctness of 
the obtained relationships between the external force applied on node B3 along the 
Z axis and the extensions of the springs. The experimental results indicate that the 
force-displacement relationship obtained by the Lagrangian formulation are 
acceptable in engineering.  
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Appendix A. Details of variables Li 

Using the notations Î3
1=Î±1âÎ1, Î3

2=Î±2âÎ2 and Î3
3=Î±3âÎ3, due to the symmetry of 

the spatial mechanism, the lengths L1, L2, L3, L4, L5 and L6 have, in fact, the 
following interesting expressions: 

L1
2 = L2+a2+2LacosÎ22cos(Î3

2âÏ/6)                                                     (A.1)
 

L2
2=L2+a2+2LacosÎ2

3cos(Î3
3âÏ/6)                                                       (A.2)

 

L3
2=L2+a2+2LacosÎ2

1cos(Î3
1âÏ/6)                                                       (A.3) 

L4
2=2L2+a2+2LacosÎ2

1cos(Î3
1+Ï/6)+2Lacos Î2

2cos(Î3
2âÏ/6)+                       

2L2cosÎ2
1cosÎ2

2cos(Î3
1â Î3

2+Ï/3)â2L2sin Î2
1sin Î2

2                        (A.4) 

 L5
2=2L2+a2+2Lacos Î2

1cos(Î3
2+Ï/6)+2LacosÎ2

3cos(Î3
3âÏ/6) +                      

2L2cosÎ2
2cosÎ2

3cos(Î3
2âÎ3

3+Ï/3)â2L2sinÎ2
2sinÎ2

3                          (A.5) 

L6
2=2L2+a2+2LacosÎ2

3cos(Î3
3+Ï/6)+2LacosÎ2

1cos Î2
1cos(Î3

1âÏ/6)+              

2L2cosÎ2
3cosÎ2

1cos(Î3
3âÎ3

1+Ï/3)â2L2sinÎ2
3sinÎ2

1                           (A.6) 
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