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SPECTRAL DECOMPOSITION OF THE ELASTICITY 
MATRIX 

Dumitru BOLCU1, Sabin RIZESCU2, Marcela URSACHE3, Nicu George 
BÎZDOACĂ4, Marius Marinel STĂNESCU5, Paul RINDERU6 

În Teoria Elasticităţii Anizotrope, matricea coeficienţilor elastici este, până 
la urmă, o transformare liniară, simetrică, pe spaţii vectoriale 6-dimensionale. 
Deci, orice asemenea matrice admite o descompunere spectrală. Structura unei 
descompuneri spectrale este determinată de mulţimile spaţiilor invariante,  specifice 
tipului de simetrie elastică a materialului studiat. Vectorii proprii, cel puţin parţial, 
nu depind de valorile constantelor elastice, în schimb, valorile proprii depind de 
aceste constante. Sunt prezentate matricile coeficienţilor elastici pentru categoriile 
semnificative de simetrie cristalină. Sunt calculate matricile coeficienţilor elastici 
pentru cazuri concrete de materiale reprezentative pentru fiecare categorie de 
simetrie cristalină. 

In the anisotropic elasticity research domain, the elasticity matrix is a 
symmetric linear transformation on the six-dimensional vector spaces. So, the 
elasticity matrix can always have its own spectral decomposition. A spectral 
decomposition is determined by the sets of invariant subspaces that are consistent 
with the specific material symmetry. Eigenvectors, partially, do not depend on the 
values of the elastic constants, but the eigenvalues depend on them. For almost 
every symmetry group of crystallography, the structure of corresponding elasticity 
matrix spectral decomposition is presented. Also, for some representative materials 
belonging to each and every group, numerical results are presented. 

Keywords: spectral decomposition, elasticity matrix, symmetry group,  
                    eigenvalues, eigenvectors 

1. Introduction 

A natural representation of the elasticity matrix in its spectral form is 
always possible, which further allows a simple geometrical interpretation of the 
relationship between stress and strain to take place, regardless the degree of 
anisotropy. 
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The form of the elasticity matrix contains restrictions resulting from the 
symmetry theory of classical crystallography. These restrictions are reflected in the 
invariant structures of the spectral decompositions. The spectral forms are determined 
by the symmetry groups and do not depend on the values of the elastic constants.  

Therefore, it becomes possible to compare different materials within the 
same symmetry group. In some cases, similarities between materials belonging to 
different symmetry groups are revealed. We have noticed striking similarities 
between the metals with cubic, hexagonal and tetragonal symmetry.  

The eigenvalues and eigenvectors of the elasticity tensor were discussed, 
for the first time, by Kelvin (1856), and his results are summarized in 
Encyclopedia Britannica (1878). More recently, Cowin and Mehrabadi [1] and 
Mehrabadi and Cowin [2] have determined the eigenvalues and eigenvectors for 
anisotropic elasticity. Ting [3] has discussed the eigenvalues problem in 
connection with his study on the invariants of the elasticity tensor.  

In these previous works, the elasticity tensor has been induced from a 
fourth-order symmetric linear transformation on the space of all 3×3 second-order 
tensors to an 6×6 second-order tensor.  

Based on modern mathematical and elasticity theories, this paper,   focusing 
some authors’ results [4] on specific cases, presents a relatively simple method for the 
spectral decomposition of the elasticity matrix. There are numerical results presented 
for a selection of representative materials with measured (known) elastic constants, 
belonging to each and every symmetry group. 

The first spectral decomposition of the elasticity tensor was made by 
Rychlewski and Zhang [5], using tensor products. Then, Sutcliffe [6] developed 
this method and he used it for different symmetry groups. 

Due to the fact that composite materials are, generally, kind of non-
homogenous and anisotropic, calculating their elastic characteristics is always a 
tremendous difficult task. In this respect, the elasticity matrix decomposition for 
each constituent proves to be extremely useful [7]. 

But, even in case of some categories of homogenous materials, the spectral 
decomposition of the elasticity matrix has, still, proven to be kind of essential [8-10]. 

Starting from solid mathematical fundamentals, this paper presents a new, 
original and comprehensive matrix-based method for the elasticity matrix spectral 
decomposition of such a homogenous constituent, whatsoever and no matter the 
kind of its anisotropy might be. The matrix-based aspect of this method could be 
rather useful, especially in Dynamics (vibrations) of certain composite structures 
(plates, bars) where the presentation of the mathematical model of those 
vibrations under a matrix-based form makes the model more comprehensive and 
engineering like. More else, when possible, this matrix-based aspect of the 
mathematical model could make the solving process of the model somehow easier 
by using matrix functions. 
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2. Generalities 

Let be K an n dimensional Euclidian space, and B a general base of 
1,..., ne e  vectors. 

We consider a symmetric operator A, having the space K as the domain 
and co-domain of definition, as well. 

Depending on base B, we put in correspondence to the operator A, the 

symmetric matrix [M], with real elements ( ) , , 1,i
ja i j n= , where 

( )

1
, 1,

n i
i jj

j
Ae a e i n

=
= =∑ .             (1) 

The space of linear operators A: K →  K is isomorphic with the space of 
quadratic matrix with real elements, of n order.  

Let λ  be a real number. If there is x∈  K, Kx 0≠ , such that 
 

Ax xλ= ,               (2) 
 

then λ  is called the eigenvalue of operator A and the vector (or vectors) x  is 
called the eigenvector of operator A, corresponding to eigenvalue λ . 

We note by ( )Apσ , the following set: 
 

( ) ( ){ }, 0,p A C x K x Ax xσ λ λ= ∈ ∃ ∈ ≠ = ,      r,p 1= ,          (3) 
 

and we’ll call this set the point spectrum of operator A, C being the set of 
complex numbers. Particularly here, λ  is a real number: R∈λ . 

Since the operator A is kind of symmetric ( ( ) ( ) , , 1,i j
j ia a i j n= = ), then A 

has only real eigenvalues and its corresponding matrix can be a diagonal one. 
Let 1,..., rλ λ  be the real and distinct eigenvalues of the operator A and 

their corresponding multiplicities: rm...,,m1 , such that: 
1

r
p

p
m n

=
=∑ . These 

eigenvalues are representing the solutions of the equation: 
 

[ ] [ ]( )det 0nM Iλ− = ,             (4) 
 

where nI  is the unit matrix of n order. 

The eigenvectors corresponding to eigenvalue , 1,p p rλ =  will be the 
solutions of the following matrix equation: 
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[ ] [ ]( ) 0
pp nM I Xλλ ⎡ ⎤− =⎣ ⎦ ,             (5) 

 

where ( )1...
p

t
nX x xλ⎡ ⎤ =⎣ ⎦ . 

We shall note by ( )pK
λ

 the set of all eigenvectors corresponding to 
eigenvalue , 1,p p rλ =  (and null vector). 

( )pK λ is the subspace of K, called the eigenspace corresponding to the 
specific eigenvalue , 1,p p rλ =  and, moreover,  

 

( )dim p
pK mλ

= .               (6) 

Since
1

r
p

p
m n

=
=∑ , the set { }1

1 1

1 1
1 ,..., ,..., ,..., r

r r

m mB X X X Xλ λ λ λ= , containing 

all the eigenvectors (corresponding to the eigenvalues 1,..., rλ λ ), generates a 
orthogonal base of the space K. 

We shall normalize this base and we’ll further note this new normalized 
base by { }*

1,..., nB X X= . 
Depending on this base, the matrix [M] of the operator A is the diagonal 

matrix: 
 

*

1

1

0 0 ... 0 0 0
0 ... 0 ... 0 0 0
0 0 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 0 0
0 0 0 ... 0 ... 0
0 0 0 ... 0 0

B
r

r

M

λ

λ

λ

λ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎡ ⎤ = ⎜ ⎟⎣ ⎦
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

.                                               (7) 

 

The matrix *BM⎡ ⎤⎣ ⎦  can be represented as follows: 
 

[ ] [ ]* 1 1 ... ,r rBM E Eλ λ⎡ ⎤ = + +⎣ ⎦             (8) 

where , 1,pE p r⎡ ⎤ =⎣ ⎦  are matrices fulfilling the following conditions: 
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[ ] [ ]
[ ] [ ] [ ]1

, 1, ,

0 , , 1, ; ,

... ,

p p p

i j n

r n

E E E p r

E E i j r i j

E E I

⎧⎡ ⎤ ⎡ ⎤ ⎡ ⎤⋅ = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪
⎪ ⎡ ⎤⋅ = = ≠⎨ ⎣ ⎦
⎪

+ + =⎪⎩

            (9) 

 

[ ]0n  is the null matrix of n order. 

If we note by [ ]X  the matrix of n  order having as columns the 

coefficients of each and every eigenvector (the matrix [ ]X  is the transit matrix 

from base B to base *B ), then each and every matrix  [ ] [ ]1 ,..., rE E  of (8) can be 
obtained from the relation: 

 

[ ] ( ) [ ]
1

, 1, ,
pm

t
p k

k

E X I X p r
=

⎡ ⎤⎡ ⎤ = ⋅ ⋅ =⎣ ⎦ ⎣ ⎦∑          (10) 

 

where ( )kI⎡ ⎤
⎣ ⎦  is the matrix having the only element equal with 1 on the k  

position of  its principal diagonal, all the others elements being null. 
The relation (8) is called the spectral decomposition of matrix [M] with 

respect to base { }*
1,..., nB X X=  containing all eigenvectors ( 1, 1,iX i n= = ). 

3. Decomposition of the elasticity matrix 

In case of the linear-elastic materials, the dependence between the 
deformation matrix components and the stress matrix components is a linear one: 

 
3 3

1 1
ij ijkl kl

k l
Sσ ε

= =
= ∑∑ .            (11) 

 
This dependence can be written as follows: 

 
[ ]Sσ ε= ,             (12) 

 
where: 
 

( )11 22 33 23 13 12; ; ; 2 ; 2 ; 2
t

ε ε ε ε ε ε ε= ;

 ( )11 22 33 23 13 12; ; ; 2 ; 2 ; 2
t

σ σ σ σ σ σ σ= ;         (13) 
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[ ]

1111 1122 1133 1123 1113 1112

2211 2222 2233 2223 2213 2212

3311 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233 1223 1

2 2 2

2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

S S S S S S

S S S S S S

S S S S S S
S

S S S S S S

S S S S S S

S S S S S

=

213 12122S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

;      (14) 

and: 
 ijkl jikl ijlk klijS S S S= = = .           (15) 
 

We present the elasticity matrix for usual symmetry cases.  
Triclinic:  

 

[ ]

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

C C C C C C
C C C C C C
C C C C C C

S
C C C C C C
C C C C C C
C C C C C C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.         (16) 

 

Monoclinic: 
 

[ ]

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0
0 0
0 0

0 0 0 0
0 0 0 0

0 0

C C C C
C C C C
C C C C

S
C C
C C

C C C C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.                    (17) 

Orthorhombic: 
 

[ ]

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

S
C

C
C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.                                     (18) 
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Trigonal: 
 

[ ]

11 12 13 15

12 11 13 15

13 13 33

44 15

15 15 44

15 11 12

0 2 0

0 2 0
0 0 0

0 0 0 0 2

2 2 0 0 0
0 0 0 2 0

C C C C

C C C C
C C CS

C C

C C C
C C C

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎢ ⎥
⎢ ⎥−⎣ ⎦

.       (19) 

 

Tetragonal: 
 

[ ]

11 12 13

12 11 13

13 13 33

44

44

66

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

S
C

C
C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.        (20) 

 

Hexagonal: 
 

[ ]

11 12 13

12 11 13

13 13 33

44

44

11 12

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

S
C

C
C C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

.           (21) 

Cubic: 
 

[ ]

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

S
C

C
C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.        (22) 
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Homogenous and isotropic: 
 

[ ]

11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

S
C C

C C
C C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

.       (23) 

 
The triclinic symmetry does not require any restriction in terms of spectral 

decomposition of the elasticity matrix. Each and every one-dimension subspace of 
the symmetric tensors space remains invariant with respect to this kind of 
symmetry. So, the spectral decomposition of the elasticity matrix in case of 
triclinic systems consists in the existence of six distinct one-dimension 
eigenspaces and six distinct eigenvalues. In this kind of respect we have to add 
that the determining the eigenvalues formally leads the whole issue to the difficult 
task of solving an algebraic equation of 6th degree in the unknown λ . Due to 
obvious reasons, in the most fortunate cases, the degree of the mentioned equation 
can’t be ever smaller than three. Solving symbolically equations like these is 
really difficult (the Cardano formulae at least) and it’s kind of ineffective due to 
the complicated form of the solutions. Solving numerically these equations, for 
specific cases, is kind of easy and effective. 

Concerning the monoclinic symmetry systems, affirmations of here-above 
kind remain available, except the fact that the issue of finding the eigenvalues 
always leads to solve an algebraic equation of 4th degree in the unknown λ . We 
have to add that, in this case, among the six subspaces, only four of them are 
eigenspaces, literally. 

It is, also, important to notice that the specific case of orthorhombic symmetry 
can always be regarded as a particular case of the monoclinic symmetry.  

In the case of the trigonal symmetry, the eigenvalues are: 
 

 

( )2 2
1 11 12 33 11 12 33 13

1 8
2

C C C C C C Cλ ⎡ ⎤= + + + + − +⎢ ⎥⎣ ⎦
,  

( )2 2
2 11 12 33 11 12 33 13

1 8
2

C C C C C C Cλ ⎡ ⎤= + + − + − +⎢ ⎥⎣ ⎦
, 

( )2 2
3 6 11 12 44 11 12 44 15

1 16
2

C C C C C C Cλ λ ⎡ ⎤= = − + + − − +⎢ ⎥⎣ ⎦
, 

( )2 2
4 5 11 12 44 11 12 44 15

1 16
2

C C C C C C Cλ λ ⎡ ⎤= = − + − − − +⎢ ⎥⎣ ⎦
.       (24) 
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and the matrix of eigenvectors is: 
 

[ ]

1 1 1 1sin cos cos 0 sin 0
2 2 2 2

1 1 1 1sin cos cos 0 sin 0
2 2 2 2
cos sin 0 0 0 0

0 0 0 cos 0 sin
0 0 sin 0 cos 0
0 0 0 sin 0 cos

X

α α β β

α α β β

α α
β β

β β
β β

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

,       (25) 

 

where: 
 

( )
1 11 12

22
13 1 11 12

cos
2

C C

C C C

λ
α

λ

− −
=

+ − −
;  

( )
2 11 12

22
13 2 11 12

sin
2

C C

C C C

λ
α

λ

− −
=

+ − −
; 

( )
11 12 3

2 2
11 12 3 15

sin
4

C C

C C C

λ
β

λ

− −
=

− − +
;  

( )
11 12 4

2 2
11 12 4 15

cos
4

C C

C C C

λ
β

λ

− −
=

− − +
.           (26) 

 
The matrix of the spectral decomposition will be: 
 

[ ]

2 2

2 2

21

1 1 1sin sin sin cos 0 0 0
2 2 2
1 1 1sin sin sin cos 0 0 0
2 2 2

1 1sin cos sin cos cos 0 0 0
2 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

E

α α α α

α α α α

α α α α α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,                  (27) 
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[ ]

2 2

2 2

22

1 1 1cos cos sin cos 0 0 0
2 2 2
1 1 1cos cos sin cos 0 0 0
2 2 2

1 1sin cos sin cos sin 0 0 0
2 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

E

α α α α

α α α α

α α α α α

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,       (28) 

 

 

[ ]

2 2

2 2

3
2

2

2

1 1 1cos cos 0 0 sin cos 0
2 2 2
1 1 1cos cos 0 0 sin cos 0
2 2 2

0 0 0 0 0 0

0 0 0 sin 0 sin cos
1 1sin cos sin cos 0 0 sin 0
2 2

0 0 0 sin cos 0 cos

E

β β β β

β β β β

β β β

β β β β β

β β β

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,            (29) 

 

[ ]

2 2

2 2

4
2

2

2

1 1 1sin sin 0 0 sin cos 0
2 2 2
1 1 1sin sin 0 0 sin cos 0
2 2 2

0 0 0 0 0 0

0 0 0 cos 0 sin cos
1 1sin cos sin cos 0 0 cos 0
2 2

0 0 0 sin cos 0 sin

E

β β β β

β β β β

β β β

β β β β β

β β β

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥

−⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

.      (30) 

 
In the case of the tetragonal symmetry, the eigenvalues are: 

 

( )2 2
1 11 12 33 11 12 33 13

1 8
2

C C C C C C Cλ ⎡ ⎤= + + + + − +⎢ ⎥⎣ ⎦
, 

( )2 2
2 11 12 33 11 12 33 13

1 8
2

C C C C C C Cλ ⎡ ⎤= + + − + − +⎢ ⎥⎣ ⎦
, 
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3 11 12C Cλ = − ,  4 5 44Cλ λ= = ,  6 66Cλ = .         (31) 
 
and the matrix of eigenvectors is: 
 

[ ]

1 1 1sin cos 0 0 0
2 2 2

1 1 1sin cos 0 0 0
2 2 2
cos sin 0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

X

α α

α α

α α

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,        (32) 

 
where: 
 

          
( )

1 11 12
22

13 1 11 12

cos
2

C C

C C C

λ
α

λ

− −
=

+ − −
,

( )
2 11 12

22
13 2 11 12

sin
2

C C

C C C

λ
α

λ

− −
=

+ − −
. (33) 

 
The matrices of the spectral decomposition will be: 

 

 

[ ]

2 2

2 2

21

1 1 1sin sin sin cos 0 0 0
2 2 2
1 1 1sin sin sin cos 0 0 0
2 2 2

1 1sin cos sin cos cos 0 0 0
2 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

E

α α α α

α α α α

α α α α α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,                                           (34) 

 

[ ]

2 2

2 2

22

1 1 1cos cos sin cos 0 0 0
2 2 2
1 1 1cos cos sin cos 0 0 0
2 2 2

1 1sin cos sin cos sin 0 0 0
2 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

E

α α α α

α α α α

α α α α α

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥

=⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,         (35) 
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[ ]3

1 1 0 0 0 0
2 2
1 1 0 0 0 0
2 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

E

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,           (36) 

 

[ ]4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,           (37) 

 

[ ]6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.           (38) 

 
In the case of the hexagonal symmetry, the eigenvalues are: 

 

( )2 2
1 11 12 33 11 12 33 13

1 8
2

C C C C C C Cλ ⎡ ⎤= + + + + − +⎢ ⎥⎣ ⎦
, 

( )2 2
2 11 12 33 11 12 33 13

1 8
2

C C C C C C Cλ ⎡ ⎤= + + − + − +⎢ ⎥⎣ ⎦
, 

3 6 11 12C Cλ λ= = − ,  4 5 44Cλ λ= = .                  (39) 
 

The matrix of eigenvectors will be given by (32). The matrices [ ]1E , [ ]2E  
and [ ]4E  are given by relations (34), (35), (37) and the matrix [ ]3E  is: 
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[ ]3

1 1 0 0 0 0
2 2
1 1 0 0 0 0
2 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

E

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.          (40) 

 
In case of the cubic symmetry, the eigenvalues are: 

 

1 11 122C Cλ = + ,  2 3 11 12C Cλ λ= = − ,  4 5 6 44Cλ λ λ= = = .          (41) 
 

The matrix of eigenvectors is: 
 

[ ]

1 1 1 0 0 0
3 6 2

1 1 1 0 0 0
3 6 2

1 2 0 0 0 0
3 6

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

X

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.         (42) 

 
The matrices of the spectral decomposition will be: 

 

[ ]1

1 1 1 0 0 0
3 3 3
1 1 1 0 0 0
3 3 3
1 1 1 0 0 0
3 3 3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,          (43) 
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[ ]2

2 1 1 0 0 0
3 3 3
1 2 1 0 0 0
3 3 3
1 1 2 0 0 0
3 3 3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

E

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥

= ⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,          (44) 

 

[ ]4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.          (45) 

 
For homogenous and isotropic materials, the eigenvalues are: 

 
1 11 122C Cλ = + , 2 3 4 5 6 11 12C Cλ λ λ λ λ= = = = = − .        (46) 

 
The matrix of eigenvectors will be given by relation (42).  
Finally, we obtain the values for the matrices of spectral decomposition: 

 

[ ]1

1 1 1 0 0 0
3 3 3
1 1 1 0 0 0
3 3 3
1 1 1 0 0 0
3 3 3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,          (47) 
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[ ]2

2 1 1 0 0 0
3 3 3
1 2 1 0 0 0
3 3 3
1 1 2 0 0 0
3 3 3

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

E

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥

= ⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.          (48) 

 
Finally, we have to add that using our new method of elasticity matrix spectral 

decomposition in some cases like: 
- tourmaline and α-quartz concerning trigonal symmetry; 
- tin and pentaerytritol concerning tetragonal symmetry; 
- cobalt and beryl concerning hexagonal symmetry; 
- topaz concerning orthorhombic symmetry (which is a particular case of 

monoclinic symmetry); 
- copper concerning cubic symmetry; 

and starting from the same values of elastic constants used by Sutcliffe in [6], we 
obtain the same numerical results he obtained in [6]. It’s, also kind of appropriate 
to add that these results are experimentally validated and well-known in the 
Materials Research Domain. 

4. Conclusions 

 Composite materials are, basically, kind of anisotropic and non-
homogenous. In case that we have to deal with a non-homogenous material, the 
calculus of its elastic constants, based on elastic characteristics of its constituents, 
is kind of essential. 
 In order to study the elastic behavior of a certain composite material, one 
or other so-called homogenization theory is often used. When such a theory is, 
effectively, used it has to take into account the phenomena occurring on the 
separation surfaces between whatever two constituents (phases). Basically, 
whatever homogenization theory is used, it has to deal with existing reality of the 
continuity of displacements and stresses of both phases concerning the same 
separation surface. In this kind of respect the spectral decomposition-based 
homogenization theories were built. 

The elasticity matrix can be regarded as a linear transformation and it can 
be expressed in terms of its spectral decomposition. The structures of the spectral 
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decomposition are determined by the sets of invariant subspaces that are 
consistent with material symmetry. Eigenvalues depend on the values of the 
elastic constants, but eigenvectors are, partially, independent of the values of the 
elastic constants and that could be kind of important in terms of choosing 
constituents and arrangements of them in order to build-up new composite 
materials having required elastic characteristics.   
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