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SPECTRAL DECOMPOSITION OF THE ELASTICITY
MATRIX

Dumitru BOLCU', Sabin RIZESCU?, Marcela URSACHE?, Nicu George
BiZDOACA*, Marius Marinel STANESCU?®, Paul RINDERU®

In Teoria Elasticitdtii Anizotrope, matricea coeficientilor elastici este, pand
la urmd, o transformare liniard, simetricd, pe spatii vectoriale 6-dimensionale.
Deci, orice asemenea matrice admite o descompunere spectrald. Structura unei
descompuneri spectrale este determinata de multimile spatiilor invariante, specifice
tipului de simetrie elastica a materialului studiat. Vectorii proprii, cel putin partial,
nu depind de valorile constantelor elastice, in schimb, valorile proprii depind de
aceste constante. Sunt prezentate matricile coeficientilor elastici pentru categoriile
semnificative de simetrie cristalind. Sunt calculate matricile coeficientilor elastici
pentru cazuri concrete de materiale reprezentative pentru fiecare categorie de
simetrie cristalind.

In the anisotropic elasticity research domain, the elasticity matrix is a
symmetric linear transformation on the six-dimensional vector spaces. So, the
elasticity matrix can always have its own spectral decomposition. A spectral
decomposition is determined by the sets of invariant subspaces that are consistent
with the specific material symmetry. Eigenvectors, partially, do not depend on the
values of the elastic constants, but the eigenvalues depend on them. For almost
every symmetry group of crystallography, the structure of corresponding elasticity
matrix spectral decomposition is presented. Also, for some representative materials
belonging to each and every group, numerical results are presented.

Keywords: spectral decomposition, elasticity matrix, symmetry group,
eigenvalues, eigenvectors

1. Introduction

A natural representation of the elasticity matrix in its spectral form is
always possible, which further allows a simple geometrical interpretation of the
relationship between stress and strain to take place, regardless the degree of
anisotropy.
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The form of the elasticity matrix contains restrictions resulting from the
symmetry theory of classical crystallography. These restrictions are reflected in the
invariant structures of the spectral decompositions. The spectral forms are determined
by the symmetry groups and do not depend on the values of the elastic constants.

Therefore, it becomes possible to compare different materials within the
same symmetry group. In some cases, similarities between materials belonging to
different symmetry groups are revealed. We have noticed striking similarities
between the metals with cubic, hexagonal and tetragonal symmetry.

The eigenvalues and eigenvectors of the elasticity tensor were discussed,
for the first time, by Kelvin (1856), and his results are summarized in
Encyclopedia Britannica (1878). More recently, Cowin and Mehrabadi [1] and
Mehrabadi and Cowin [2] have determined the eigenvalues and eigenvectors for
anisotropic elasticity. Ting [3] has discussed the eigenvalues problem in
connection with his study on the invariants of the elasticity tensor.

In these previous works, the elasticity tensor has been induced from a
fourth-order symmetric linear transformation on the space of all 3x3 second-order
tensors to an 6x6 second-order tensor.

Based on modern mathematical and elasticity theories, this paper, focusing
some authors’ results [4] on specific cases, presents a relatively simple method for the
spectral decomposition of the elasticity matrix. There are numerical results presented
for a selection of representative materials with measured (known) elastic constants,
belonging to each and every symmetry group.

The first spectral decomposition of the elasticity tensor was made by
Rychlewski and Zhang [5], using tensor products. Then, Sutcliffe [6] developed
this method and he used it for different symmetry groups.

Due to the fact that composite materials are, generally, kind of non-
homogenous and anisotropic, calculating their elastic characteristics is always a
tremendous difficult task. In this respect, the elasticity matrix decomposition for
each constituent proves to be extremely useful [7].

But, even in case of some categories of homogenous materials, the spectral
decomposition of the elasticity matrix has, still, proven to be kind of essential [8-10].

Starting from solid mathematical fundamentals, this paper presents a new,
original and comprehensive matrix-based method for the elasticity matrix spectral
decomposition of such a homogenous constituent, whatsoever and no matter the
kind of its anisotropy might be. The matrix-based aspect of this method could be
rather useful, especially in Dynamics (vibrations) of certain composite structures
(plates, bars) where the presentation of the mathematical model of those
vibrations under a matrix-based form makes the model more comprehensive and
engineering like. More else, when possible, this matrix-based aspect of the
mathematical model could make the solving process of the model somehow easier
by using matrix functions.
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2. Generalities

Let be K an n dimensional Euclidian space, and B a general base of
el,...,e, vectors.

We consider a symmetric operator 4, having the space K as the domain
and co-domain of definition, as well.

Depending on base B, we put in correspondence to the operator 4, the

symmetric matrix [M], with real elements as.i), i,j= I,_n, where
(i) T
Aei=Zaj ej,izl,n. (D
j=1

The space of linear operators 4: K — K is isomorphic with the space of
quadratic matrix with real elements, of n order.
Let A be a real number. If there is x € K, x # 0, , such that

Ax=Ax, ()

then A is called the eigenvalue of operator 4 and the vector (or vectors) x is
called the eigenvector of operator 4, corresponding to eigenvalue A .
We note by o, (4), the following set:

ap(A):{/ieC‘(El)xeK,x;tO,szix}, p=Lr, 3)
and we’ll call this set the point spectrum of operator A, C being the set of
complex numbers. Particularly here, A is a real number: 1 € R .

. . . i i ..

Since the operator 4 is kind of symmetric (ag-) = al( ), i,j=Ln), then 4
has only real eigenvalues and its corresponding matrix can be a diagonal one.

Let A,...,4,. be the real and distinct eigenvalues of the operator 4 and

-
their corresponding multiplicities: m,,...,m,, such that: Zmpzn. These
p=1

eigenvalues are representing the solutions of the equation:
det([M]-A4[1,])=0, 4)
where [, is the unit matrix of n order.

The eigenvectors corresponding to eigenvalue A,, pzl,_r will be the

solutions of the following matrix equation:
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([M]-2,[1]) %5, | =0, )

where [X/lp J =(x1...x,, )t .

A . .
We shall note by K( ’ ) the set of all eigenvectors corresponding to
eigenvalue 4,, p =1,7 (and null vector).

K(l")is the subspace of K, called the eigenspace corresponding to the

specific eigenvalue A4,, p =1,7 and, moreover,

dim k%) - m,. 6)

-

. _ _ 1 m 1 m, ..

Since z m,=n, the setB) = {X/ll "“’Xﬂl ""’Xﬂr ’""Xﬂr }, containing
r=l

all the eigenvectors (corresponding to the eigenvalues Aj,...,4,.), generates a

orthogonal base of the space K.
We shall normalize this base and we’ll further note this new normalized

base byB* ={ X1, Xy}

Depending on this base, the matrix [M] of the operator 4 is the diagonal
matrix:

4 0 0 .. 0 0 0
0 ..
00 4 .. 0 0 0
[MB*]= R B (7)
0 o A0
00 0 .. 0 ..
00 0 .. 0 0 A

The matrix [M 5 ] can be represented as follows:

[ My |=a[E ]+t 4, [E,], (®)

where [E » ] , p =1,r are matrices fulfilling the following conditions:
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B [Ep =By | p=r,
[E][E; ] =104, 0=Trsi = j, ©)
[E]+..+[E]=[1,].
[0,,] is the null matrix of » order.
If we note by [X] the matrix of »n order having as columns the

coefficients of each and every eigenvector (the matrix [X ] is the transit matrix

from base B to base B'), then each and every matrix [El],...,[Er] of (8) can be

obtained from the relation:
[Ep]:;[X]'[](k)][X]ta p=Lr, (10)

where [l( k)} is the matrix having the only element equal with 1 on the k&

position of its principal diagonal, all the others elements being null.
The relation (8) is called the spectral decomposition of matrix [M] with

respect to base B = {Xl,...,Xn} containing all eigenvectors (||Xl-|| =1, i=Ln ).

3. Decomposition of the elasticity matrix

In case of the linear-clastic materials, the dependence between the
deformation matrix components and the stress matrix components is a linear one:

3 3
O-l'j:zzsijklgkl . (11)
k=1/=1
This dependence can be written as follows:
o =[S]e. (12)
where:
— t
(‘?=<¢’>"11§f‘?22;1’333;\/E 2332 &332 512) ’
— t
CT=<f711;<7222<7332\/E 02332 01342 012) ; (13)
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S Sz Sim o V28 V2813 281 |
Soit Som Son V2Sm3 V28w V2S5mp
oS S S:33 V2833 V283313 V2851

[S]= .

V28311 V2800 2533 2533 2Sn 25mp

V2851 V283 V2S5m 283 2833 2550

V28011 V28 V283 283 2Spi3 2Spn |

and:
Sijtd =S jitd = Sijik = Skiij -

We present the elasticity matrix for usual symmetry cases.
Triclinic:

(G G G3 CGg Cs Cg |
Co Cpn G Gy G5 Oy
[5]= Gz C3 Gy Gy G35 Gae .

Ca Gy Gy Cyq Cys Cyg
Gs Cs (G5 G5 Css Csg
G C C36 Ca6 Csg Cop |

Monoclinic:
(G G G3 0 0 Cg
Gy Cp Gz 0 0 Gy
[s]- Gy C3 Gz 0 0 Gy
0 0 0 Cu Cis 0
0 0 0 Cuy Css 0
1[G Cs Gz 0 0 Cgg |
Orthorhombic:
(h Go Gz 0 0
Cp Cpp CG3 0 0
[5]= Gz Cp3 Gz 0 0
0 0 0 Cy O
0 0 0 0 Cs 0
0 0 0 0 0 Ce]

S o o O

(14)

(15)

(16)

(17)

(18)
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Trigonal:
G Gy G3 0 —2Gs 0 |
G Gi Gy 0 2Gs 0
G G C 0 0 0
0 0 0 Cy O 2G5
2G5 2G5 0 0 Cy 0
0 0 0 2Gs 0 G-Gy]
Tetragonal:
ESTRRCTRNCE 0 0]
Chr G Gz 0 0 0
C CG3 Gz 0 0 0
[S]= (20)
0 0 0 Cy O 0
0 0 0 0 Cqya O
00 0 0 0 Cg
Hexagonal:
Gy Gy Gz 00 0 ]
C3 Gz Gy3 0 0 0
[S]= 21)
0 0 0 Cy O 0
0 0 Cy 0
L 0 0 Cll—clz
Cubic:
C; Cp, Cp 0 0 0]
Chr ¢ (G 0 0 0
[S]= (22)
0 0 Cyuy O 0
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Homogenous and isotropic:

1 Ch Cp 0 0 0
Ch Ci Cp 0 0 0

(5] Ch, Cp Cp 0 0 0 23
0 0 0 C;-Cph 0 0
0 0 0 0 C-Cp 0
0 0 0 0 0 C1-Cpo |

The triclinic symmetry does not require any restriction in terms of spectral
decomposition of the elasticity matrix. Each and every one-dimension subspace of
the symmetric tensors space remains invariant with respect to this kind of
symmetry. So, the spectral decomposition of the elasticity matrix in case of
triclinic systems consists in the existence of six distinct one-dimension
eigenspaces and six distinct eigenvalues. In this kind of respect we have to add
that the determining the eigenvalues formally leads the whole issue to the difficult
task of solving an algebraic equation of 6™ degree in the unknown A. Due to
obvious reasons, in the most fortunate cases, the degree of the mentioned equation
can’t be ever smaller than three. Solving symbolically equations like these is
really difficult (the Cardano formulae at least) and it’s kind of ineffective due to
the complicated form of the solutions. Solving numerically these equations, for
specific cases, is kind of easy and effective.

Concerning the monoclinic symmetry systems, affirmations of here-above
kind remain available, except the fact that the issue of finding the eigenvalues
always leads to solve an algebraic equation of 4t degree in the unknown 4. We
have to add that, in this case, among the six subspaces, only four of them are
eigenspaces, literally.

It is, also, important to notice that the specific case of orthorhombic symmetry
can always be regarded as a particular case of the monoclinic symmetry.

In the case of the trigonal symmetry, the eigenvalues are:

1 2 2
ﬂ’l =5|:C11+C12+C33 +\/(C11+C12—C33) +8C13i|,

1 2 2
%) =2[C11+C12 +C33—\/(C11+C12—C33) +8C13}>

1 2 2
=17 =2[C11 —Cp+Cyy +\/(C11 ~Cp—Cyy) +16C15}

1 2 2
Ay = s zz[ql ~C1p+Cay —\/(c11 ~Cjy—Cyy) +16C15] (24)
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and the matrix of eigenvectors is:

1 1
——=Cos

1 1
—sina — 008 0 —sin
n TR g N
1 1 1
—Ssin@ ——=cosa ——CoS 0 —=sin
e e T m o
[4]= cos sina 0 0 0
0 0 0 wsf 0
0 0 —sin 3 0 cos
0 0 0 -snf 0
where:
A4 —-C—-C
oS 4 =G =g ;
2
\/2C13+(/11—C11—C12)
-Cy—C
Sing - 42— C11 - Cpy —;
2
\/2C13+(%—C11—C12)
Ci1—Cih— A
Sin ff = ICli—Cia 23| :
2
\/(Cn—clz—/is) +4Cys
Ci1-CH -4
cos fi = Cli—Cip = A4

\/(Cll—clz—/14)2+4c125

The matrix of the spectral decomposition will be:

—sin“ a —sin“ &
V2
1.9 .2 1 .
—sin“ o —sin“ o —sinacosax 0 0
2 7
[E]=| 1 . 1 . 2
—sinacosa ——=sinacosa cos” a 00
2 V2
0 0 0 00
0 0 0 00
L 0 0 0 00

1 .
—sinacosax 0 0

) (25)

(26)

; 27)
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1coszot lcoszat —isinacosa 000
2 V2
1 2 | ) 1 .
—cos” a —cos“a ——sinacosax 0 0 O
2 2 2
5] 1 | i , (28)
217 ——sinacosa ——sinacosa sin“ a 000
V2 V2
0 0 0 000
0 0 0 000
i 0 0 0 0 0 0]
i 1ol g 0 0 —Lingwp 0 ]
2 2 D)
10082 10082 1.
— - 0 0 — 0
wp adp sy
(5] 0 0 0 0 0 0o | (29)
0 0 0 sin’p 0 sinfoos 3
1. 1. .2
——=sinfosff —=sinPosf 0 0 Sin 0
5 poos 5 poos it
0 0 0 sinfocsf 0 as’f |
i Lan? 5 Ja2g 0 o L gin Bous 3 o |
2 2 2
1.9 1., 1.
— — o 0 — 0
2sm p 2sm p \/Esmﬂoosﬂ G0)
] © 0 0 0 0 0
0 0 0 oos’p 0 —sin Boos B
%sinﬂoosﬂ —%sinﬂoosﬂ 0 0 oos” B 0
0 0 0 —sinfcos 3 0 sin?f |

In the case of the tetragonal symmetry, the eigenvalues are:

1 2 2
A =5{C11 +Cpp +C33+\/(C11 +Cjy —C33) +8C13}

1 2 2
) =E{C11+C12 +C33—\/(C11+C12—C33) +8C13}
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3=C=Cy, M=4A5=Cyy, 46 =Cgs- (3D
and the matrix of eigenvectors is:
_—sina —Lcosa 1 00 0_
D N RN
Lsinoz —Lcosa —L 0 0 0
X|= 2 V2 V2 32
[X]= cosa sina 0 00 0] (32)
0 0 0 1 00
0 0 0 010
. 0 0 0 0 0 1]
where:
A —Ci—C Ay —Cj1-C
cosa = | 1l 12| 2,sinoc: | 2 12| > .(33)
2 2
\/2C13+(/11—C11—C12) \/2C13+(/12—C11—C12)
The matrices of the spectral decomposition will be:
1.5 1.2 1. |
—sin“ & Esm a Esmacosa 000
1.9 1.9 1 .
—sin” o Esm a Esmacosa 00 0}, (34)
[El]z %sinacosa %sinaoosa cos’ ax 000
0 0
0
0 0 0 00 0]
| %oosza %oosza lesmaasa 00 Oﬁ
%oosza %oosza lesinaoosa 00 0] (35)
[EZ]: lesinaoosa %sinaoosa sin®a 000
0 0 0 000
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L Lvoo0o0
2 2
—l l 00 0O
2 2
[B]=| 0 0 0 0 0 of (36)
0 0O 0 0 0 O
0 0O 0 0 0 O
0 0 00 0 0]
[0 0 0 0 0 O]
0O 0 0 0 0O
0O 0 0 0 0O
Eq = R 37
[£4] 000100 37
0O 0 0 01 O0
0000 0 0]
[0 0 0 0 0 0]
0 00 0 0O
0O 00 OO0 O
Eq|= 38
[ ] 000000 (38)
0O 00 O0O O
0000 0 1]
In the case of the hexagonal symmetry, the eigenvalues are:
1 2 2
/11ZE{C11+C12+C33+\/(C11+C12—C33) +8C13}
1 2 2
/12=5{C11+C12+C33—\/(C11+C12—C33) +8C13}
B3=Ag=C11—Cp, A4g=45=Cyy. (39)

The matrix of eigenvectors will be given by (32). The matrices[E, |, [E,]
and [E4] are given by relations (34), (35), (37) and the matrix [E 3] is:
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1 0 00O
2 2
SR 0 00O
2 2
[Es]=| 0 0 00 0 of (40)
0 0 00 O0O0
0O 0 O0O0O0O
0 0 0 0 0 1]
In case of the cubic symmetry, the eigenvalues are:
A =C1+2C,, Lh==01-Cy, I4=4=1s=Cy. (41)
The matrix of eigenvectors is:
! 1 1 ]
— — — 0 0 0
3ooVJe 2
1 1 1
— — —= 0 0 0
VRN
[X ] =L 2 0O 0 0 O (42)
NERN
0 0 0 1 00
0 0 0 010
| 0 0 0 0 0 1]
The matrices of the spectral decomposition will be:
0 0 O
0 0 O
[£1]= (43)

©S O O W W= W=
()
e}
el
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2 11 0 00
3 3 3
2 T
3 3 3
[B]=_1 L 2 4 4 ol (44)
3 3 3
0 0 000
0 0 0 000
i 0 0 0 0 0]
0 0 0 0 0 O]
0 00 0 0O
[E ]_ 0 0 0 0 0 O
7o 001 0 0 (45)
0 0 001 0
00 0 0 0 1]
For homogenous and isotropic materials, the eigenvalues are:
A =C+2Cn, ==k =4s=16=C11 ~Ca. (46)

The matrix of eigenvectors will be given by relation (42).
Finally, we obtain the values for the matrices of spectral decomposition:

33 3
L S
33 3
[E]=1L L L o ol 47)
33 3
00 0000
00 0000
0 0 0 0 0 0
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2L Ty
33 3
Lz 100
3 3 3
[B2]=]_1 1 2 4 40 (48)
3 3 3
0 0 0 0
O o0 o0 010
i 0 0 0 1]

Finally, we have to add that using our new method of elasticity matrix spectral
decomposition in some cases like:

- tourmaline and a-quartz concerning trigonal symmetry;

- tin and pentaerytritol concerning tetragonal symmetry;

- cobalt and beryl concerning hexagonal symmetry;

- topaz concerning orthorhombic symmetry (which is a particular case of

monoclinic symmetry);

- copper concerning cubic symmetry;
and starting from the same values of elastic constants used by Sutcliffe in [6], we
obtain the same numerical results he obtained in [6]. It’s, also kind of appropriate
to add that these results are experimentally validated and well-known in the
Materials Research Domain.

4. Conclusions

Composite materials are, basically, kind of anisotropic and non-
homogenous. In case that we have to deal with a non-homogenous material, the
calculus of its elastic constants, based on elastic characteristics of its constituents,
is kind of essential.

In order to study the elastic behavior of a certain composite material, one
or other so-called homogenization theory is often used. When such a theory is,
effectively, used it has to take into account the phenomena occurring on the
separation surfaces between whatever two constituents (phases). Basically,
whatever homogenization theory is used, it has to deal with existing reality of the
continuity of displacements and stresses of both phases concerning the same
separation surface. In this kind of respect the spectral decomposition-based
homogenization theories were built.

The elasticity matrix can be regarded as a linear transformation and it can
be expressed in terms of its spectral decomposition. The structures of the spectral
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decomposition are determined by the sets of invariant subspaces that are
consistent with material symmetry. Eigenvalues depend on the values of the
elastic constants, but eigenvectors are, partially, independent of the values of the
elastic constants and that could be kind of important in terms of choosing
constituents and arrangements of them in order to build-up new composite
materials having required elastic characteristics.
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