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UNVEILING THE WAVE CONCEPT IN 

ELECTROMAGNETIC THEORY: APPLICATION TO THE 

TRANSVERSE WAVE APPROACH FOR MICROWAVE 

SYSTEMS ANALYSIS 

Zeineb KLAI1, Mohamed Ali HAMMAMI2 

Numerical methods have established their efficacy in diverse domains, 

including electric machines, telecommunications, radar systems, and digital 

computing. Within this paradigm, the Wave Concept emerges as a pivotal tool for 

accelerating these methods. By transforming integral formulations of the 

electromagnetic (EM) field into algebraic problems within the framework of Hilbert 

space methods, the Wave Concept facilitates enhanced computational efficiency. 

This paper delves into the development of the Wave Concept and its 

application within the Transverse Wave Approach, shedding light on its utility in 

addressing EM field challenges. The Transverse Wave Approach is explored as a 

method to convert integral formulations into algebraic problems, offering a novel 

perspective on problem-solving within the electromagnetic domain. To gauge its 

computational effectiveness, a comprehensive evaluation is conducted in the specific 

context of microwave systems. The outcomes of this investigation contribute to a 

deeper understanding of the Transverse Wave Approach's potential impact on 

advancing numerical methods in electromagnetics.  

 

Keywords: Wave Concept, Numerical EM methods, Computational Effort, 

Microwave Systems 

1. Introduction 

Numerical methods play an indispensable role in electromagnetic (EM) 

simulations, offering a comprehensive toolkit for tackling complex challenges 

across various domains. These methods, encompassing finite element methods [1], 

finite difference methods [2], boundary element methods [3], the Discontinuous 

Galerkin method [4-6], and the Method of Moments (MoM) [7], enable the detailed 

modeling and analysis of EM phenomena. By converting complex EM problems 

into manageable mathematical formulations, they facilitate in-depth exploration of 

wave propagation, radiation, and material interactions. 
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The efficiency of these numerical methods is critical, as it directly affects 

their feasibility and scalability. This efficiency hinges on the computational effort 

required to solve the vast systems of equations that arise from discretizing EM 

governing equations. The criteria for assessing method efficiency include accuracy, 

convergence speed, and computational time, with ongoing advancements in 

computational resources and algorithms playing a key role in enhancing these 

aspects. 

Numerical EM methods are employed in a wide range of applications, from 

electric machines [8] and telecommunications [9] to radar systems [10] and 

microwave devices [11]. They equip engineers and researchers with the means to 

design and optimize devices, forecast performance, and tackle EM field-related 

challenges, serving as a foundational toolkit for understanding and leveraging 

electromagnetic phenomena. The continuous enhancement of computational 

efficiency not only expands their application scope but also makes substantial 

contributions across technologically essential sectors. 

This paper introduces the wave concept technique as a novel contribution to 

numerical EM methods, aiming to streamline the analysis process. By transforming 

integral formulations or differential equations into algebraic ones, the wave concept 

technique significantly reduces computational complexities. This innovative 

approach, which we justify and detail in the subsequent sections, particularly 

emphasizes the transverse wave approach for implementing EM solutions. Our 

work seeks to push the boundaries of numerical EM methods, offering a powerful 

tool for rapid simulations and enhanced problem-solving capabilities in 

electromagnetic studies. 

The organization of this paper is as follows: Section 2 presents the 

theoretical background and the mathematical foundations of the wave concept 

technique. Section 3 discusses the implementation of this technique within the 

framework of the transverse wave approach, while Section 4 is dedicated to 

validating and discussing the outcomes of various simulations. Finally, Section 5 

concludes our work, summarizing the key findings and contribution. 

2. Wave Concept: Theory 

2.1. Adopted Mathematical Formalism 

In this investigation, Ω represents a bounded, open, and connected set in ℝ2, 

serving as the designated measure space (definition domain) for the exploration of 

electromagnetic (EM) fields within the realm of radiofrequency (RF) integrated 

circuits applications. The functions introduced in subsequent sections conform to 

the L2-norm, allowing for the manipulation of magnitudes possessing finite energy. 

The space 𝐿2(𝛺) signifies the standard Lebesgue square-integrable or square-

summable C-valued functions. 
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By introducing an inner product structure on 𝐿2 with respect to a measure 

μ, we establish this vectorial space as the unique Hilbert space within the broader 

class of 𝐿𝑃 spaces (1 ≤ p ≤ ∞) [12]. Using Dirac notation, the functions within this 

Hilbert space adhere to the following expressions: 

∀𝜑, 𝜓 ∈ 𝐿2(𝛺)     ⟨𝜑|𝜓⟩ = ∬ 𝜑∗𝜓𝑑𝜇
𝛺

                                  (1) 

∀𝜑 ∈ 𝐿2(𝛺)     ‖𝜑‖2 = √⟨𝜑|𝜑⟩                                          (2) 

Here, the symbol * denotes the complex conjugate. Additional properties of 

Hilbert space are elaborated in Appendix A. 

2.2. Maxwell’s Equations and the Propagation Wave Equation 

Analyzing electromagnetic fields in distinct spatial regions is paramount for 

understanding the propagation and interaction of EM waves. These regions can be 

categorized based on their geometric uniformity: uniform regions possess 

consistent cross-sectional areas, whereas non-uniform regions exhibit varied 

geometrical features. This distinction is crucial in the study of electromagnetic 

fields within cylindrical waveguides, which present uniform cross sections, and 

more complex structures like non-cylindrical waveguides, each demanding a 

tailored analytical approach. The electromagnetic field behavior in these settings is 

often modeled as a superposition of standard wave functions, facilitating a bridge 

between theoretical predictions and practical engineering applications, particularly 

at ultrahigh frequencies. 

Central to this analysis are Maxwell's equations, which describe the 

dynamics of electric (E) and magnetic (H) fields, serving as the cornerstone for the 

theoretical underpinnings of electromagnetic signal propagation [13]. The 

empirical validation of these equations by Hertz in 1886 ushered in the era of 

practical radio wave applications, highlighting their integral role in modern 

communications. These equations can be represented in both differential and 

integral forms, accommodating analyses in the time domain and emphasizing the 

behavior of time-varying electromagnetic fields. 

In the realm of electromagnetic theory, the application of sinusoidal or time-

harmonic sources is predominant, owing to their relevance in frequency-specific 

applications. The employment of phasor solutions in this context, analogous to the 

concept of rotating phasors in circuit theory, significantly simplifies the analysis of 

electromagnetic fields, particularly for single or narrow-band frequencies. This 

simplification is essential for elucidating the phasor domain representations of 

electric and magnetic fields, as detailed in Appendix B-1, offering a foundational 

understanding of EM wave behavior across various mediums. 

Maxwell's equations delineate key vectors such as electric field intensity (E) 

and magnetic field intensity (H), further expanded upon by constitutive relations 
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that incorporate electric and magnetic polarizations, permeability (μ), and 

permittivity (ϵ), tailored for linear, non-dispersive media. These relationships are 

encapsulated in equations (3) to (6), providing a mathematical framework for the 

interaction between electric and magnetic fields within specified materials. 

( )0 0 01 e r     = + = + = =
e

D E P E E E                                     (3) 

( )0 0 01 m r     = + = + = =
m

B H P H H H                                 (4) 

( )1 tanr ej j      = − = − , tan e
e

 




 +
=


         (5) 

( )1 tanr mj j      = − = − , tan m
m

 




 +
=


     (6) 

In our analysis, particularly in the context of vacuum or hollow waveguides, 

the inclusion of a fictitious magnetic charge in Table 2 serves as a theoretical tool 

to symmetrize Maxwell's equations [22][23]. This strategic incorporation enhances 

analytical clarity while acknowledging that both the electric charge density and the 

magnetic charge density are zero, in accordance with established principles 

[22][23]. It's important to emphasize that this utilization does not imply the physical 

existence of magnetic monopoles. Rather, it aligns with well-established 

methodologies [24][25], facilitating a deeper understanding of electromagnetic 

wave propagation in structurally complex environments such as waveguides. 

Our recognition of the theoretical nature of magnetic monopoles is 

consistent with broader scientific consensus [24][25], underscoring the utility of 

employing non-physical constructs to elucidate complex electromagnetic 

phenomena. 

The synergy between electric and magnetic fields gives rise to the 

generation of electromagnetic waves, a phenomenon that surpasses the constraints 

of lumped-element models. Central to the propagation of these waves is the 

complex propagation constant (γ), which encompasses both the attenuation and 

phase progression of electromagnetic waves within a medium. Equation (7), 

outlined in Appendix B-2, provides a comprehensive expression for γ, 

accommodating a wide range of material properties. 

 
2 2 0F F + =          (7) 
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( ) z z

Reflected waveIncident wave

V z V e V e −

+ −= +     (10) 

( )1( ) z z

cI z Z V e V e − −

+ −= −      (11) 

 

The wave equation (8) and its solution (9) demonstrate the positive and 

negative propagation of waves, providing insights into incident and reflected 

waves. The wave equation's analogy with distributed circuits is expressed in 

equations (10) and (11), incorporating characteristic impedance (Zc). The figure 

presented below depicts a case of a uniform transmission line. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Example of uniform transmission line 

 

The Poynting vector delineates the density of power flux or instantaneous 

power. In the context of time-harmonic fields, equations (12) and (13) introduce the 

phasor Poynting vector and average power density, respectively. The direction of 

power flow, as determined by the right-hand rule, is consistently perpendicular to 

both the electric and magnetic fields. Equation (14) quantifies the total average 

power traversing a surface (S). 

𝑃 = 𝐸 × 𝐻∗       (12)  

𝑃𝐴𝑉 =
1

2
𝑅𝑒(𝐸 × 𝐻∗)      (13) 

𝑃𝑇𝐴𝑉
=

1

2
𝑅𝑒 ∬ (𝐸 × 𝐻) ⋅ 𝑑𝑆

𝑆
     (14) 

 

2.3. Wave Concept 

The significance of the Wave Concept becomes apparent through the 

exploration of waveguide principles. Waveguides, diverse in forms like conducting 

or dielectric cylinders, twisted wire pairs, coaxial conductors, or single wires, play 

a crucial role in directing energy along a specific path without radiating into the 
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surroundings. Hollow waveguides [14], particularly vital in microwave technology 

for low attenuation and high-power applications, serve as fundamental elements in 

microwave circuits. 

The behavior of propagating waves in waveguides is intricately tied to the 

concept of modes, solutions to Maxwell's equations that adhere to necessary 

boundary conditions. Each mode within a waveguide exhibits a unique pattern for 

electric and magnetic fields, contributing to the overall characteristics of the guided 

energy. Waveguides typically feature a countable set of modes, each with a cutoff 

frequency dictating its propagation range. Hollow conducting cylinders, including 

rectangular and circular waveguides, constitute a significant waveguide class. 

Propagation of modes in such waveguides is contingent on the wavelength being 

smaller than the largest cross-sectional dimension. Even configurations with non-

separable geometries or bends can be effectively analyzed using numerical 

electromagnetic methods. 

The classification of waveguide modes encompasses TEM (Transverse 

Electromagnetic), TE (Transverse Electric), TM (Transverse Magnetic), and 

Hybrid modes, each characterized by specific field patterns. The expressions for 

field intensities are deconstructed based on translational invariance along the 

waveguide as follows: 

𝐸 = 𝐸𝑇(𝑥, 𝑦)𝑒±𝛾𝑧      (15) 

𝐻 = 𝐻𝑇(𝑥, 𝑦)𝑒±𝛾𝑧     (16) 

       

where   

𝛾 = 𝛼⏟
Evanescent

modes

+ 𝑗𝛽⏟
Propagating

modes

    (17) 

    

Modes within waveguides can be further categorized into propagating and 

evanescent modes, distinguished by the nature of their propagating coefficients. 

Subdividing an electromagnetic structure into substructures allows for complete 

sets of modal field solutions, forming a basis for expanding field solutions and 

ensuring alignment with boundary conditions. 

The utilization of modal basis functions within a function space is a key 

aspect of numerical electromagnetic methods, notably the Method of Moments 

(MoM)[7]. This approach provides precise solutions, enabling expansions in TEmn 

and TMmn modes and contributing to a comprehensive understanding of 

waveguide behavior. 

Let k serve as a concise notation representing the double index mn for TEmn 

and TMmn modes. Summation over k implies a sum over all TEmn and TMmn 

modes. The total transverse field is expressed as a superposition of transverse 

modes: 
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𝐸𝑇(𝑧) = ∑ (𝑉𝑘
(+)

𝑒−𝛾𝑘𝑧 + 𝑉𝑘
(−)

𝑒𝛾𝑘𝑧)𝑘 ⋅ 𝑒𝑘(𝑢, 𝑣)   (18) 

𝐻𝑇(𝑧) = ∑
1

𝑍𝑊,𝑘
(𝑉𝑘

(+)
𝑒−𝛾𝑘𝑧 − 𝑉𝑘

(−)
𝑒𝛾𝑘𝑧)𝑘 ⋅ ℎ𝑘(𝑢, 𝑣)  (19) 

The electric and magnetic structure vectors are orthogonal at any point and 

the structure forms 𝑒𝑘(𝑢, 𝑣) and ℎ𝑘(𝑢, 𝑣) fulfill:  

𝑒𝑘(𝑢, 𝑣) = −(𝑑𝑧 ∧ ℎ𝑘(𝑢, 𝑣))
∗
                                                         (20) 

ℎ𝑘(𝑢, 𝑣) = (𝑑𝑧 ∧ 𝑒𝑘(𝑢, 𝑣))
∗
                                                            (21) 

Here (u,v,z) represents a general cylindrical coordinate system, where z is a 

linear coordinate, and u,v are orthogonal curvilinear coordinates transverse to z. 

The structures forms 𝑒𝑘(𝑢, 𝑣) and ℎ𝑘(𝑢, 𝑣)constitute an orthogonal basis: 

⟨𝑒𝑘|ℎ𝑙⟩𝑆 = −⟨ℎ𝑘|𝑒𝑙⟩𝑆 = 𝛿𝑘𝑙      (22) 

where 𝛿𝑘𝑙 denotes the Kronecker symbol. 

 

With the equation (21), we can represent the fields by Hilbert space vectors as: 

 |𝐸𝑇(𝑧)⟩ = ∑ (𝑉𝑘
(+)

𝑒−𝛾𝑘𝑧 + 𝑉𝑘
(−)

𝑒𝛾𝑘𝑧)𝑘 ⋅ |𝑒𝑘⟩        (23) 

|𝐻𝑇(𝑧)⟩ = ∑
1

𝑍𝑊,𝑘
(𝑉𝑘

(+)
𝑒−𝛾𝑘𝑧 − 𝑉𝑘

(−)
𝑒𝛾𝑘𝑧)𝑘 ⋅ |ℎ𝑘⟩       (24) 

where the |𝑒𝑘⟩and |ℎ𝑘⟩ constitute a bi-orthogonal set of basis vectors. The 

electric and magnetic field expressions can be determined by calculating them from 

their respective Hilbert space vectors through:  

𝐸𝑇(𝑧) = ∑ 𝑒𝑘(𝑢, 𝑣)⟨ℎ𝑘|𝐸𝑇⟩𝑘       (25) 

𝐻𝑇(𝑧) = ∑
1

𝑍𝑊,𝑘
ℎ𝑘(𝑢, 𝑣)⟨𝑒𝑘|𝐻𝑇⟩𝑘      (26) 

We define the wave impedance operator by: 

𝒁̂𝑾 = ∑ 𝑍𝑊,𝑘(|ℎ𝑛⟩⟨𝑒𝑛| − |𝑒𝑛⟩⟨ℎ𝑛|)∞
𝑛=1     (27) 

Its inverse termed wave admittance operator is given by: 

𝒀̂𝑾 = ∑ 𝑌𝑊,𝑘(|ℎ𝑛⟩⟨𝑒𝑛| − |𝑒𝑛⟩⟨ℎ𝑛|)∞
𝑛=1 = ∑ 𝑍𝑊,𝑘

−1 (|ℎ𝑛⟩⟨𝑒𝑛| − |𝑒𝑛⟩⟨ℎ𝑛|)∞
𝑛=1  (28) 

With this we introduce the wave amplitude vectors |𝐴⟩ and |𝐵⃗⃗⟩ as  
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|𝐴⟩ =
1

2
[|𝐸𝑇⟩ + 𝒁𝑾|𝐻𝑇⟩]      (29) 

|𝐵⃗⃗⟩ =
1

2
[|𝐸𝑇⟩ − 𝒁𝑾|𝐻𝑇⟩]      (30) 

We compute the transverse electric and magnetic fields form the wave 

amplitudes via  

|𝐸𝑇⟩ = |𝐴⟩ + |𝐵⃗⃗⟩       (31) 

|𝐻𝑇⟩ = 𝒁𝑾
−1(|𝐴⟩ − |𝐵⃗⃗⟩)      (32) 

We introduce the operator  𝜞̂(𝑧) and its inverse as 

𝜞̂(𝑧) = ∑ 𝑒−𝛾𝑘𝑧(|ℎ𝑛⟩⟨𝑒𝑛| − |𝑒𝑛⟩⟨ℎ𝑛|)∞
𝑛=1     (33) 

𝜞̂−1(𝑧) = ∑ 𝑒𝛾𝑘𝑧(|ℎ𝑛⟩⟨𝑒𝑛| − |𝑒𝑛⟩⟨ℎ𝑛|)∞
𝑛=1     (34) 

Consequently, and referring to (28), the equation (33) can be expressed as: 

𝜞̂(𝑧) = (𝑰̂ + 𝑍𝑊𝒀̂𝑾(𝑧))
−1

(𝑰̂ − 𝑍𝑊𝒀̂𝑾(𝑧))    (35) 

where 𝑰̂ is the identity operator. 

3. Application of Wave Concept in Transverse wave approach 

Drawing from the wave concept introduced in the preceding section, solving 

electromagnetic (EM) problems becomes feasible without resorting to intensive 

computations required for resolving integral formulations or differential equations. 

Within this framework, the wave concept is founded on the linear combination of 

the transverse electric field (ET) and the transverse magnetic field (HT). This 

combination facilitates the derivation of incident and reflected at the discontinuity 

interface. The combinations between both incident 𝐴𝑟 and reflected 𝐵⃗⃗𝑟 waves can 

be expressed in matrix form by: 

|
𝐴𝑟

𝐵⃗⃗𝑟

| = 𝜧̂ |
𝐸⃗⃗𝑇

𝑟

𝐻⃗⃗⃗𝑟
𝑇 × 𝑛⃗⃗𝑟

| = 𝜧̂ |
𝐸⃗⃗𝑇

𝑟

𝐽𝑇
𝑟

|     (36) 

𝜧̂ ensures the transition between integral EM field and algebraic EM wave:  

𝜧̂ =
1

2
|
𝑍0𝑟

−
1

2 𝑍0𝑟

1

2

𝑍0𝑟

−
1

2 −𝑍0𝑟

1

2

|       (37) 
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Here 𝑍0𝑟 denotes the real wave impedance from region r defined by: 

𝑍0𝑟 = √
𝜇0

𝜀0𝜀𝑟𝑟

       (38) 

Also, Equation (39) defines the average power density (PAV) in a region (r) 

as the difference between the power of the incident wave (|𝐴𝑟|
2
) and the power of 

the reflected wave (|𝐵⃗⃗𝑟|
2
).  

  𝑃𝐴𝑉 =
1

2
𝑅𝑒 (𝐸⃗⃗𝑇

𝑟 × 𝐽𝑇
𝑟

∗
) = |𝐴𝑟|

2
− |𝐵⃗⃗𝑟|

2
   (39) 

This mathematical representation, rooted in the conservation of energy, 

suggests that the power generated within the region is balanced by subtracting the 

power dissipated and the rate of stored energy increase. While the physical 

interpretation of this equation poses challenges, it can be understood as the incident 

wave contributing to energy generation in the region, while the reflected wave 

encapsulates the combined effects of dissipated power and the rate of stored energy 

increase within that region. 

Leveraging the principles of the wave concept, the Transverse Wave 

Approach (TWA) [15-20] is introduced into numerical electromagnetic methods. 

In contrast to traditional approaches that rely solely on electric fields or current 

density, TWA operates through their linear combination. This methodology yields 

highly precise simulation results while minimizing computational complexity, 

eliminating the necessity for matrix inversion. Importantly, TWA guarantees 

convergence irrespective of the structure's interfaces and imposes no constraints on 

component shapes. It proficiently handles bounded operators, avoiding the 

inversion of integral operators. By iteratively addressing integral relations in the 

spectral domain and continuity conditions in the spatial domain, TWA adeptly 

distinguishes the topological characteristics of circuits from their embedding 

environment. 

The TWA iterative process hinges on interconnected equations repeated 

until a solution is reached. The spatial domain initially formulates incident waves 

to meet electromagnetic field boundary conditions based on the excitation source. 

In contrast, reflected waves are expressed in the modal domain, considering 

electromagnetic wave properties in homogeneous media. 

Assuming an excited structure, like a bilateral source polarized in the x-

direction, generating waves on both sides of the discontinuity surface Ω, the 

iterative process unfolds. Each iteration sees incident waves (A1, A2) diffracted by 

the obstacle, creating new reflected waves (B1, B2). These reflected waves 

contribute to subsequent incident waves in successive iterations until system 

convergence. 
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The interaction between incident (A) and reflected (B) waves is represented 

by the equations:  

{
𝐴 = 𝜞̂𝐵
𝐵 = 𝑺̂𝐴 + 𝐵0

                 (40)   

Here,  𝜞̂ is the reflection operator connecting incident and reflected waves 

in the modal domain, while 𝑺̂  is the diffraction operator linking incident and 

reflected waves in the spatial domain. 

 B0 represents the global excitation wave on the source. 

The time efficiency comparison between the direct method, involving the 

resolution of integral and differential equations, and the numerical method, 

specifically the Transverse Wave Approach (TWA) based on the wave concept, is 

unequivocal. The computational effort for the direct method exhibits a complexity 

of 𝑂(𝑛3) [7], indicating a cubic relationship with the problem size. In contrast, the 

TWA falls into the linearithmic class (𝑂(𝑛𝑙𝑜𝑔 𝑛)), showcasing a remarkable 

reduction in the number of operations required for computation. 

4. Results & Discussion 

To validate the Transverse Wave Approach (TWA) utilizing the wave 

concept, a comprehensive analysis was conducted on a printed rectangular spiral 

antenna with significant applications, particularly in the field of biomedicine [21]. 

The simulation employed specific modeling and geometric parameters detailed in 

Table 1. The simulations were conducted utilizing our proprietary EM tool 

developed in C++, which is based on the Transverse Wave Approach (TWA) 

derived from the wave concept. 
 

Table 1  

Modeling and geometric parameters of the rectangular spiral antenna 

Geometric Parameters Description Modeling Parameters Description 

Initial Length 0.19487mm Resonance Frequency 60Ghz 

Initial Height 0.12991mm Type of polarization Bilateral in x-direction 

Number of Arms  2 Number of iterations Niter = 100 

Number of turns 1.53   

Conductor Copper Waveband Fmin = 30GHz 

Conductivity 5.96e+4 (S/mm)  Fmax = 70GHz 

Thickness 0.03556 mm  StepFrq = 0.5GHz 

 

The critical parameter, impedance (Zin) or admittance (Yin), as perceived 

by the excitation source, was meticulously calculated for each iteration based on 

electromagnetic quantities. This parameter plays a pivotal role in determining the 

convergence of the system. 
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Fig. 2. Convergence Analysis of Admittance (Yin) Observed by the Excitation Source Over 

Iterations 

 

Fig.2 serves as a compelling visual confirmation of the Transverse Wave 

Approach's (TWA) convergence, showcasing remarkable stability achieved in 

fewer than 100 iterations. This convergence assessment is conducted at a 

representative frequency of 60 GHz, emphasizing the efficiency of the TWA in 

swiftly reaching a solution. 

Delving into Fig.3-(a), a more nuanced analysis of the admittance (Yin) is 

presented. Specifically, the real part, representing conductance, manifests peaks at 

resonance frequencies, signifying maximum values. Simultaneously, the imaginary 

part, indicative of susceptance, adeptly identifies sign changes at these resonant 

frequencies. These observed behaviors align seamlessly with electromagnetic 

theory, offering a robust and theoretically consistent representation. 

The distinctive peaks in the conductance reveal the antenna's heightened 

responsiveness at resonance frequencies, emphasizing its optimal performance 

during these specific conditions. Meanwhile, the sign changes in susceptance 

underscore dynamic shifts in the antenna's reactive components, providing valuable 

insights into the intricate interplay of electric fields. 

This comprehensive frequency-dependent profile of admittance, 

encompassing both conductance and susceptance, enhances our understanding of 

the antenna's response across varying frequencies. Such insights are instrumental in 

tailoring antenna designs to specific frequency requirements, ensuring optimal 

performance in resonance conditions. Overall, the detailed analysis presented in 

Fig.3-(a) not only validates the TWA's convergence but also offers a deeper 

understanding of the antenna's behavior through its admittance characteristics. 
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Fig. 3. Frequency-Dependent Evolution of (a) Reflection Coefficient S11(dB) and (b) Impedance 

(Conductance and Susceptance) 

 

 
Fig. 4. Behavior at 60 GHz of (a) Directivity Pattern, (b) Current Distribution 

 

The resonance phenomenon at 60 GHz takes center stage in our analysis, 

accentuated through the insightful depiction of the reflection coefficient S11 (dB) 

evolution in Fig.3- (b). Here, a conspicuous peak in the reflection coefficient 

underlines the antenna's resonance at this specific frequency. Fig.4-(a) extends this 

exploration by spotlighting the antenna's directivity, illustrating its peak 

performance precisely at 60 GHz. 

Fig.4-(b) delves into the intricacies of the antenna's current distribution after 

100 iterations, offering a granular understanding of the electric field distribution. 

This visualization goes beyond a surface-level examination, providing a detailed 

insight into how electric fields are distributed both along the transverse and normal 

directions relative to the excitation source. The comprehensive depiction of the 

current distribution enhances our comprehension of the antenna's behavior, 

shedding light on the spatial orientation and intensity of electric fields at this critical 

stage of iteration. 
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In essence, the combined analysis of Figures Fig.3 and Fig.4 not only 

reaffirms the resonance characteristics at 60 GHz but also delves deeper into the 

antenna's performance metrics. The distinct peak in the reflection coefficient, 

optimal directivity, and nuanced current distribution collectively contribute to a 

holistic understanding of the antenna's behavior, crucial for informed design 

decisions and applications. 

In summation, the obtained simulation results affirm the stability and 

efficacy of the numerical approach based on the wave concept. The convergence 

within a limited number of iterations, resonance behavior, and the consistent 

agreement with electromagnetic theory collectively validate the reliability and 

efficiency of the Transverse Wave Approach in addressing the complexities of the 

printed rectangular spiral antenna. 

5. Conclusions 

This paper has successfully developed and presented the theoretical 

groundwork and mathematical underpinnings of the wave concept in the context of 

numerical electromagnetic methods. The integration of this concept into the 

transverse wave approach has demonstrated its effectiveness and prowess in 

electromagnetic investigation and the comprehensive analysis of planar microwave 

structures across various disciplines. 

The diverse simulation results obtained from the examination of a chosen 

printed rectangular spiral antenna consistently align with electromagnetic theory. 

These results robustly affirm the validity, stability, and efficiency of the numerical 

approach anchored in the wave concept. This validation not only contributes 

significantly to the current understanding but also sets the stage for future 

developments. It provides a gateway to exploring new trends, including the 

regeneration or formulation of innovative numerical electromagnetic approaches 

rooted in the wave concept. These advancements hold the potential to address 

numerous electromagnetic challenges that traditionally require substantial 

computational efforts. Moving forward, one promising avenue for future work 

involves exploring the incorporation of the concept of fictitious magnetic charges 

into the numerical electromagnetic methods. By considering the theoretical 

framework of magnetic charges, it may be possible to extend the analysis to a wider 

range of applications in electrodynamics. This contribution not only advances the 

existing body of knowledge but also lays the foundation for pioneering 

methodologies in the dynamic field of electromagnetic research. 
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APPENDICES 

Appendix A 

 

If a unitarity vector space of countable infinite dimension is complete, it is 

called a Hilbert space. Operators of the Hilbert space define mappings of Hilbert 

space vectors. 

Dirac introduced a compact notation of states and operators by interpreting 

the expression ⟨𝜓|𝜑⟩as the inner product of the vectors ⟨𝜓|and|𝜑⟩. Since formally 

the bracket expression has been subdivided, Dirac has divided the word “braket” 

also in two parts and introduced the denomination bra-vector for the expression ⟨𝜓| 
and ket-vector for the vector |𝜑⟩. In another word, ⟨𝜓|represents matrix of 
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type(1 × 𝑁)i.e., row vector and |𝜑⟩ matrix of type(1 × 𝑁)i.e., column vector as 

shown in figure A.1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5- Representation of bra and ket-vectors 

 

To any vectors of a Hilbert space is assigned a complex number as a scalar 

product. In a vector space with a positive definite metric (which we are assuming 

in the following), a scalar of a vector with itself is positive and real unless the vector 

is a null vector. The sum of two vectors |𝜓⟩ and |𝜑⟩ of Hilbert space again is a 

vector of Hilbert space. 

For this vector we can use the notation |𝜓 + 𝜑⟩and obtain  

|𝜓⟩ + |𝜑⟩ = |𝜓 + 𝜑⟩ (41) 

The sum of vectors of Hilbert space is commutative and associative. 
 

Appendix B 

1. Table 2 meticulously presents Maxwell's equations in integral and differential 

forms, encompassing various aspects of electromagnetic theory. These equations 

are fundamental principles governing the behavior of electric and magnetic fields 

in both spatial and temporal domains. Notably, the table includes formulations of 

Maxwell's equations that incorporate theoretical considerations of magnetic 

charges, serving as hypothetical entities representing sources or sinks of magnetic 

fields. While our research acknowledges the presence of these theoretical constructs 

within electromagnetic theory, it is essential to clarify that our specific investigation 

does not directly involve the use or reliance on magnetic charges.  
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Table2.   

Time and phasor domain forms of Maxwell’s equations in both integral and differential 

forms 

 

where E  (V/m) is the electric field intensity, H  (A/m) is the magnetic field 

intensity, D  (C/m2) is the electric flux density, B  (W/m2) is the magnetic flux 

density, M  (V/m2) is the (fictitious) magnetic current density, J  (A/m2) is the 

electric current density, eQ  (C/m3) is the electric charge density, and mQ  (C/m3) is 

the (fictitious) magnetic charge density.  

 Our primary focus is on analyzing the transmission of electromagnetic 

waves in specific environments, such as vacuum or hollow waveguides, where the 

influence of magnetic charges may not be pertinent. Therefore, while the inclusion 

of magnetic charges in Table 2 provides a comprehensive overview of Maxwell's 

equations, it is not the central emphasis or premise of our research. Instead, our 

objective is to investigate the behavior of electromagnetic waves under particular 

conditions.  

 

2. Table 3 presents the complex propagation constant across several materials. This 

parameter is essential for defining the propagation of electromagnetic waves 

through different substances, including both attenuation and phase progression. The 

 Integral Form Differential Form 
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table functions as a concise guide for comprehending the variations in wave 

behavior across various materials, assisting in the development and enhancement 

of electromagnetic systems. 

Table 3  

The complex propagation constant for different types of materials 
 

   

General form √𝑗𝜔𝜇(𝜎 + 𝑗𝜔𝜀) 
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