

STUDY ON FRACTIONAL FEJÉR-HADAMARD TYPE INEQUALITIES ASSOCIATED WITH GENERALIZED EXPONENTIALLY CONVEXITY

by Ghulam Farid¹, Liliana Guran², Xiaoli Qiang³ and Yu-Ming Chu⁴

In this paper fractional integral inequalities of Fejér-Hadamard type for a generalized notion of convexity are established. A new generalization of convexity named exponentially $(\alpha, h-m)$ -convex function unifies exponentially $(h-m)$ -convex, exponentially $(\alpha-m)$ -convex and exponentially (s, m) -convex functions. By using the generalized fractional integral operators involving Mittag-Leffler function via a monotonically increasing function we have obtained some fractional versions of Fejér-Hadamard inequality for the generalized convexity. The obtained results lead to many inequalities of Fejér-Hadamard and Hadamard type for well-known fractional integral operators and different kinds of convexities.

MSC2020: 26B25, 26A33, 26A51, 33E12.

Keywords: convex functions, Hadamard inequality, Fejér-Hadamard inequality, generalized fractional integral operators, Mittag-Leffler function

1. Introduction and Preliminaries

The theory of inequalities give an important tool for leading symmetrical phenomena in circumstances of real life. In the same time, the theory of convex functions have important implications in various fields of pure and applied sciences. A close connection exists between theory of convex functions, theory of inequalities and fractional calculus, the last one being one of the most studied field of mathematics due his application in the real world.

Many inequalities are proved for convex functions but, the most known from the related literature, is Hermite-Hadamard inequality.

A function $f : I \rightarrow \mathbb{R}$ on an interval of real line is said to be convex, if for all $u_1, u_2 \in I$ and $\omega \in [0, 1]$, the following inequality holds:

$$f(\omega u_1 + (1 - \omega)u_2) \leq \omega f(u_1) + (1 - \omega)f(u_2). \quad (1.1)$$

In 1883 and 1893 Hermite and Hadamard introduced, independently, the following inequality:

Theorem 1.1. *Let $f : [u_1, u_2] \rightarrow \mathbb{R}$ be a convex function such that $u_1 < u_2$. Then following inequality holds:*

$$f\left(\frac{u_1 + u_2}{2}\right) \leq \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} f(\omega) d\omega \leq \frac{f(u_1) + f(u_2)}{2}. \quad (1.2)$$

¹Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan, e-mail: ghlmfarid@ciit-attock.edu.pk

²Department of Pharmaceutical Sciences, "Vasile Goldiș" Western University, Arad, L. Rebreanu Street, no. 86, 310048, Romania, e-mail: guran.liliana@uvvg.ro

³Institute of Computing Science and Technology, Guangzhou University, 510006, Guangzhou, China, e-mail: qiangxl@gzhu.edu.cn

⁴Department of Mathematics, Huzhou University, Huzhou 313000, China, ⁵Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, China, e-mail: chuyuming2005@126.com

The inequality (1.2) is well-known in related literature as the Hadamard inequality. In 1906 Fejér gave the following generalization of Hadamard inequality:

Theorem 1.2. [14] *Let $f : [u_1, u_2] \rightarrow \mathbb{R}$ be a convex function such that $u_1 < u_2$. Also let $g : [u_1, u_2] \rightarrow \mathbb{R}$ be a positive, integrable and symmetric to $\frac{u_1+u_2}{2}$. Then the following inequality holds:*

$$f\left(\frac{u_1+u_2}{2}\right) \int_{u_1}^{u_2} g(\omega) d\omega \leq \int_{u_1}^{u_2} f(\omega) g(\omega) d\omega \leq \frac{f(u_1) + f(u_2)}{2} \int_{u_1}^{u_2} g(\omega) d\omega. \quad (1.3)$$

The inequality (1.3) is well-known as the Fejér-Hadamard inequality in literature.

In the last years, the classical concept of convex functions was extended in different ways using innovative ideas. The Hadamard and the Fejér-Hadamard inequalities are generalized in various ways (see, [6, 7, 8, 9, 10, 13, 16, 17, 18, 22, 23, 24, 33, 35]).

Convex function play an important role in mathematical inequalities. Its extensions and generalizations have been defined in different ways and are used to extend the associated subjects. In this context the Hadamard inequality is analyzed extensively.

In this paper we present the Fejér-Hadamard inequalities for known generalized fractional integral operators by using a new generalized convexity recently defined in [19]. Let us recall this given notion as follows:

Definition 1.1. [19] *Let $J \subseteq \mathbb{R}$ be an interval containing $(0, 1)$ and let $h : J \rightarrow \mathbb{R}$ be a non-negative function. Then a function $f : I \rightarrow \mathbb{R}$ on an interval of real line is said to be exponentially $(\alpha, h - m)$ -convex, if for all $u_1, u_2 \in I$, $\omega \in (0, 1)$, $\alpha, m \in [0, 1]$ and $\sigma \in \mathbb{R}$, the following inequality holds:*

$$f(\omega u_1 + m(1 - \omega)u_2) \leq h(\omega^\alpha) \frac{f(u_1)}{e^{\sigma u_1}} + mh(1 - \omega^\alpha) \frac{f(u_2)}{e^{\sigma u_2}}. \quad (1.4)$$

The above definition represents different classes of functions. For $\sigma = 0$, one gets the class of $(\alpha, h - m)$ -convex functions and for other values of σ it may not represents $(\alpha, h - m)$ -convex functions; for this we give the following example corresponding to $\sigma = -1$.

Example 1.1. *The function $f(x) = x \exp(-x)$ is exponentially $(1, I_d - 1)$ -convex function but not $(1, I_d - 1)$ -convex function. More precisely the function f is exponentially convex function on $[0, \infty)$ but not a convex function on this domain.*

By taking $\alpha = 1$ in (1.4), we get the following definition of exponentially $(h - m)$ -convex functions.

Definition 1.2. [30] *Let $J \subseteq \mathbb{R}$ be an interval containing $(0, 1)$ and let $h : J \rightarrow \mathbb{R}$ be a non-negative function. Then a function $f : I \rightarrow \mathbb{R}$ on an interval of real line is said to be exponentially $(h - m)$ -convex, if for all $u_1, u_2 \in I$, $\omega \in (0, 1)$, $m \in [0, 1]$ and $\sigma \in \mathbb{R}$, the following inequality holds:*

$$f(\omega u_1 + m(1 - \omega)u_2) \leq h(\omega) \frac{f(u_1)}{e^{\sigma u_1}} + mh(1 - \omega) \frac{f(u_2)}{e^{\sigma u_2}}. \quad (1.5)$$

By taking $h(\omega) = \omega$ in (1.4), then we get the following definition of exponentially $(\alpha - m)$ -convex functions:

Definition 1.3. [30] *A function $f : I \rightarrow \mathbb{R}$ on an interval of real line is said to be exponentially $(\alpha - m)$ -convex, if for all $u_1, u_2 \in I$, $\omega \in (0, 1)$, $\alpha, m \in [0, 1]$ and $\sigma \in \mathbb{R}$, the following inequality holds:*

$$f(\omega u_1 + m(1 - \omega)u_2) \leq \omega^\alpha \frac{f(u_1)}{e^{\sigma u_1}} + m(1 - \omega^\alpha) \frac{f(u_2)}{e^{\sigma u_2}}. \quad (1.6)$$

Remark 1.1. *i) Taking $\alpha = 1$ and $h(\omega) = \omega^s$ in (1.4) we obtain exponentially $(s-m)$ -convex function defined by Qiang et al. in [29].*

ii) Taking $\alpha = m = 1$ and $h(\omega) = \omega^s$ in (1.4) we obtain exponentially s -convex function defined by Mehreen and Anwar in [25].

iii) Taking $\alpha = m = 1$ and $h(\omega) = \omega$ in (1.4) we obtain exponentially convex function defined by Awan et al. in [2].

iv) Taking $\sigma = 0$ in (1.4) we obtain $(\alpha, h-m)$ -convex function defined by Farid et al. in [11].

v) Taking $\sigma = \alpha = 0$ and $\alpha = 1$ in (1.4) we obtain $(h-m)$ -convex function defined by Ozdemir et al. in [27].

vi) Taking $\sigma = 0$ and $h(\omega) = \omega$ in (1.4) we obtain $(\alpha-m)$ -convex function defined by Mihesan in [26].

vii) Taking $\sigma = 0$, $\alpha = 1$ and $h(\omega) = \omega^s$ in (1.4) we obtain $(s-m)$ -convex function defined by Efthekhari in [3].

viii) Taking $\sigma = 0$, $\alpha = m = 1$ and $h(\omega) = \omega^s$ in (1.4) we obtain s -convex function defined by Hudzik and Maligranda in [15].

ix) Taking $\sigma = 0$, $\alpha = 1$ and $h(\omega) = \omega$ in (1.4) we obtain m -convex function defined by Toader in [36].

x) Taking $\sigma = 0$ and $\alpha = m = 1$ in (1.4) we obtain h -convex function defined by Varosanec in [38].

xi) Taking $\sigma = 0$, $\alpha = m = 1$ and $h(\omega) = \omega$ in (1.4) we obtain convex function.

Fractional integral operators also play important role in the field of mathematical analysis. A large number of integral inequalities exist in literature due to fractional integral operators. For details see [4, 12, 20, 21, 37] and references therein. Recently, in [1], Andrić et al. defined the generalized fractional integral operators containing an extended Mittag-Leffler function as follows.

Definition 1.4. Let $\mu, \nu, \kappa, l, \eta, c \in \mathbb{C}$, $\Re(\nu), \Re(\kappa), \Re(l) > 0$, $\Re(c) > \Re(\eta) > 0$ with $p \geq 0$, $r > 0$ and $0 < q \leq r + \Re(\nu)$. Let $f \in L_1[u_1, u_2]$ and $x \in [u_1, u_2]$. Then the generalized fractional integral operators $\zeta_{\nu, \kappa, l, \mu, u_1+}^{\eta, r, q, c} f$ and $\zeta_{\nu, \kappa, l, \mu, u_2-}^{\eta, r, q, c} f$ are defined by:

$$\left(\zeta_{\nu, \kappa, l, \mu, u_1+}^{\eta, r, q, c} f \right) (x; p) = \int_{u_1}^x (x - \omega)^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu(x - \omega)^\nu; p) f(\omega) d\omega, \quad (1.7)$$

$$\left(\zeta_{\nu, \kappa, l, \mu, u_2-}^{\eta, r, q, c} f \right) (x; p) = \int_x^{u_2} (\omega - x)^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu(\omega - x)^\nu; p) f(\omega) d\omega, \quad (1.8)$$

where $E_{\nu, \kappa, l}^{\eta, r, q, c}(\omega; p)$ is the generalized Mittag-Leffler function defined as follows:

$$E_{\nu, \kappa, l}^{\eta, r, q, c}(\omega; p) = \sum_{n=0}^{\infty} \frac{\beta_p(\sigma + nq, c - \sigma)}{\beta(\sigma, c - \sigma)} \frac{(c)_{nq}}{\Gamma(\nu n + \kappa)} \frac{\omega^n}{(l)_{nr}}.$$

In [5] Farid defined the following unified integral operators:

Definition 1.5. Let $f, g : [u_1, u_2] \rightarrow \mathbb{R}$, $0 < u_1 < u_2$ be the functions such that f be a positive and integrable and g be a differentiable and strictly increasing. Also, let $\frac{\gamma}{x}$ be an increasing function on $[u_1, \infty)$ and $\mu, \nu, \kappa, l, \eta, c \in \mathbb{C}$, $\Re(\kappa), \Re(l) > 0$, $\Re(c) > \Re(\eta) > 0$ with $p \geq 0$, $\nu, r > 0$ and $0 < q \leq r + \nu$. Then for $x \in [u_1, u_2]$ the integral operators ${}_g \zeta_{\nu, \kappa, l, u_1+}^{\gamma, \eta, r, q, c} f$ and ${}_g \zeta_{\nu, \kappa, l, u_2-}^{\gamma, \eta, r, q, c} f$ are defined by:

$$\left({}_g \zeta_{\nu, \kappa, l, u_1+}^{\gamma, \eta, r, q, c} f \right) (x; p) = \int_{u_1}^x \frac{\gamma(g(x) - g(\omega))}{g(x) - g(\omega)} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu(g(x) - g(\omega))^\nu; p) f(\omega) d(g(\omega)), \quad (1.9)$$

$$\left({}_g \zeta_{\nu, \kappa, l, u_2-}^{\gamma, \eta, r, q, c} f \right) (x; p) = \int_x^{u_2} \frac{\gamma(g(\omega) - g(x))}{g(\omega) - g(x)} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu(g(\omega) - g(x))^\nu; p) f(\omega) d(g(\omega)). \quad (1.10)$$

Replacing $\gamma(x) = x^\kappa$ in (1.9) and (1.10), we get the following generalized fractional integral operators containing Mittag-Leffler function:

Definition 1.6. Let $f, g : [u_1, u_2] \rightarrow \mathbb{R}$, $0 < u_1 < u_2$ be the functions such that f be a positive and integrable and g be a differentiable and strictly increasing. Also let $\mu, \kappa, l, \eta, c \in \mathbb{C}$, $\Re(\kappa), \Re(l) > 0$, $\Re(c) > \Re(\eta) > 0$ with $p \geq 0$, $\nu, r > 0$ and $0 < q \leq r + \nu$. Then for $x \in [u_1, u_2]$ the integral operators ${}_g\zeta_{\nu, \kappa, l, \mu, u_1+}^{\eta, r, q, c} f$ and ${}_g\zeta_{\nu, \kappa, l, \mu, u_2-}^{\eta, r, q, c} f$ are defined by:

$$\left({}_g\zeta_{\nu, \kappa, l, \mu, u_1+}^{\eta, r, q, c} f \right) (x; p) = \int_{u_1}^x (g(x) - g(\omega))^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu(g(x) - g(\omega))^\nu; p) f(\omega) d(g(\omega)), \quad (1.11)$$

$$\left({}_g\zeta_{\nu, \kappa, l, \mu, u_2-}^{\eta, r, q, c} f \right) (x; p) = \int_x^{u_2} (g(\omega) - g(x))^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu(g(\omega) - g(x))^\nu; p) f(\omega) d(g(\omega)). \quad (1.12)$$

Remark 1.2. Integral operators (1.11) and (1.12) are the generalizations of some well-known fractional integral operators:

- (i) Taking $g(x) = x$ we obtain the fractional integral operators (1.7) and (1.8).
- (ii) Taking $g(x) = x$ and $p = 0$ we obtain the fractional integral operators defined by Salim and Faraj in [32].
- (iii) Taking $g(x) = x$ and $l = r = 1$ we obtain the fractional integral operators defined by Rahman et al. in [31].
- (iv) Taking $g(x) = x$, $p = 0$ and $l = r = 1$ we obtain the fractional integral operators defined by Srivastava-Tomovski in [34].
- (v) Taking $g(x) = x$, $p = 0$ and $l = r = q = 1$ we obtain the fractional integral operators defined by Prabhakar in [28].
- (vi) Taking $g(x) = x$ and $\mu = p = 0$ we obtain the Riemann-Liouville fractional integral operators.

The aim of this paper is to establish the fractional integral inequalities of Fejér-Hadamard type for exponentially $(\alpha, h-m)$ -convex functions, exponentially $(h-m)$ -convex functions and exponentially $(\alpha-m)$ -convex functions. We gave these inequalities utilizing the generalized fractional integral operators (1.11) and (1.12) containing Mittag-Leffler function via a monotone increasing function. These inequalities lead to produce the Fejér-Hadamard type inequalities for various kinds of convexities and well-known fractional integral operators given in Remark 1.1 and Remark 1.2 respectively.

In Section 2, we prove two versions of the Fejér-Hadamard type inequalities for generalized fractional integral operators (1.11) and (1.12) via exponentially $(\alpha, h-m)$ -convex functions. Also their consequences are given in remarks. In Section 3 we give the Fejér-Hadamard type inequalities for exponentially $(h-m)$ -convex functions. In Section 4, we give these inequalities for exponentially $(\alpha-m)$ -convex functions.

2. Fejér-Hadamard type inequalities for exponentially $(\alpha, h-m)$ -convex functions

First we give the following Fejér-Hadamard inequality for exponentially $(\alpha, h-m)$ -convex functions via generalized fractional integral operators.

Theorem 2.1. Let $f, g : [u_1, mu_2] \subset [0, \infty) \rightarrow \mathbb{R}$, $0 < u_1 < mu_2$ be the functions satisfying the assumptions:

- i) f be positive, integrable and exponentially $(\alpha, h-m)$ -convex function,
- ii) g be differentiable, strictly increasing and $g(x) = g(u_1) + mg(u_2) - mg(x)$.

Also, let $\gamma : [u_1, mu_2] \rightarrow \mathbb{R}$ be a non-negative and integrable function. Then for generalized fractional integral operators, the following inequalities hold:

$$\begin{aligned}
& f\left(\frac{g(u_1) + mg(u_2)}{2}\right) G(\sigma) \left({}_g\zeta_{\nu, \kappa, l, \bar{\mu}m^\nu, u_2}^{\eta, r, q, c} - \gamma \circ g\right) \left(g^{-1}\left(\frac{g(u_1)}{m}\right); p\right) \\
& \leq \left(h\left(\frac{1}{2^\alpha}\right) + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right)\right) \left({}_g\zeta_{\nu, \kappa, l, \bar{\mu}m^\nu, u_2}^{\eta, r, q, c} (f \circ g)(\gamma \circ g)\right) \left(g^{-1}\left(\frac{g(u_1)}{m}\right); p\right) \quad (2.1) \\
& \leq \frac{(mg(u_2) - g(u_1))^\kappa}{m^\kappa} \left[\left(h\left(\frac{1}{2^\alpha}\right) \frac{f(g(u_1))}{e^{\sigma g(u_1)}} + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} \right) \right. \\
& \quad \times \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right) h(\omega^\alpha) d\omega \\
& \quad + m \left(h\left(\frac{1}{2^\alpha}\right) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f\left(\frac{g(u_1)}{m^2}\right)}{e^{\sigma \frac{g(u_1)}{m^2}}} \right) \\
& \quad \left. \times \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right) h(1-\omega^\alpha) d\omega \right],
\end{aligned}$$

where $G(\sigma) = e^{\sigma g(u_2)}$ for $\sigma < 0$, $G(\sigma) = e^{\sigma g(u_1)}$ for $\sigma \geq 0$ and $\bar{\mu} = \frac{\mu}{(mg(u_2) - g(u_1))^\nu}$.

Proof. Since f is exponentially $(\alpha, h-m)$ -convex function, we have the following inequalities:

$$\begin{aligned}
f\left(\frac{g(u_1) + mg(u_2)}{2}\right) & \leq h\left(\frac{1}{2^\alpha}\right) \frac{f(\omega g(u_1) + m(1-\omega)g(u_2))}{e^{\sigma(\omega g(u_1) + m(1-\omega)g(u_2))}} \quad (2.2) \\
& \quad + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right)}{e^{\sigma\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right)}}.
\end{aligned}$$

Then, we have

$$\begin{aligned}
& h\left(\frac{1}{2^\alpha}\right) f(\omega g(u_1) + m(1-\omega)g(u_2)) + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) f\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right) \quad (2.3) \\
& \leq \left(h\left(\frac{1}{2^\alpha}\right) \frac{f(g(u_1))}{e^{\sigma g(u_1)}} + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} \right) h(\omega^\alpha) \\
& \quad + m \left(h\left(\frac{1}{2^\alpha}\right) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f\left(\frac{g(u_1)}{m^2}\right)}{e^{\sigma \frac{g(u_1)}{m^2}}} \right) h(1-\omega^\alpha).
\end{aligned}$$

Multiplying (2.2) with $\omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right)$ on both sides and integrating over $[0, 1]$, we get the following inequality:

$$\begin{aligned}
& f\left(\frac{g(u_1) + mg(u_2)}{2}\right) \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right) d\omega \quad (2.4) \\
& \leq h\left(\frac{1}{2^\alpha}\right) \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \frac{f(\omega g(u_1) + m(1-\omega)g(u_2))}{e^{\sigma(\omega g(u_1) + m(1-\omega)g(u_2))}} \\
& \quad \times \gamma\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right) d\omega + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \\
& \quad \times \frac{f\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right)}{e^{\sigma\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right)}} \gamma\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right) d\omega.
\end{aligned}$$

For $g(x) = (1 - \omega) \frac{g(u_1)}{m} + \omega g(u_2)$ in (2.4) and using (1.12) and (ii) ($g(x) = g(u_1) + mg(u_2) - mg(x)$) then we get the first inequality of (2.1).

Multiplying (2.3) with $\omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left((1 - \omega) \frac{g(u_1)}{m} + \omega g(u_2)\right)$ on both sides and integrating over $[0, 1]$, we have

$$\begin{aligned}
& h\left(\frac{1}{2^\alpha}\right) \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) f(\omega g(u_1) + m(1 - \omega)g(u_2)) \\
& \times \gamma\left((1 - \omega) \frac{g(u_1)}{m} + \omega g(u_2)\right) d\omega + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \\
& \times f\left((1 - \omega) \frac{g(u_1)}{m} + \omega g(u_2)\right) \gamma\left((1 - \omega) \frac{g(u_1)}{m} + \omega g(u_2)\right) d\omega \\
& \leq \left(h\left(\frac{1}{2^\alpha}\right) \frac{f(g(u_1))}{e^{\sigma g(u_1)}} + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} \right) \\
& \times \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left((1 - \omega) \frac{g(u_1)}{m} + \omega g(u_2)\right) h(\omega^\alpha) d\omega \\
& + m \left(h\left(\frac{1}{2^\alpha}\right) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f\left(\frac{g(u_1)}{m^2}\right)}{e^{\sigma \frac{g(u_1)}{m^2}}} \right) \\
& \times \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left((1 - \omega) \frac{g(u_1)}{m} + \omega g(u_2)\right) h(1 - \omega^\alpha) d\omega.
\end{aligned} \tag{2.5}$$

Replacing $g(x) = (1 - \omega) \frac{g(u_1)}{m} + \omega g(u_2)$ in (2.5) and using (1.12), by (ii), we get the second inequality of (2.1). \square

Remark 2.1. *i) Taking $\sigma = p = 0$, $\alpha = m = 1$, $g(x) = x$, $\gamma(g(x)) = 1$ and $h(\omega) = \omega$ in (2.1) we get [6, Theorem 2.1].*
ii) Taking $\sigma = p = 0$, $\alpha = 1$, $g(x) = x$, $\gamma(g(x)) = 1$ and $h(\omega) = \omega$ in (2.1) we get [7, Theorem 3].
iii) Taking $\sigma = p = \mu = 0$, $\alpha = 1$, $g(x) = x$, $\gamma(g(x)) = 1$ and $h(\omega) = \omega$ in (2.1) we get [8, Theorem 2.1].
iv) Taking $\sigma = 0$, $\alpha = 1$, $g(x) = x$ and $\gamma(g(x)) = 1$ in (2.1) we get [17, Theorem 2.1].
v) Taking $\sigma = 0$, $\alpha = m = 1$, $g(x) = x$, $\gamma(g(x)) = 1$ and $h(\omega) = \omega$ in (2.1) we get [18, Theorem 2.1].
vi) Taking $\sigma = 0$, $\alpha = 1$, $g(x) = x$ and $h(\omega) = \omega$ in (2.1) we get [18, Theorem 3.2].
vii) Taking $\sigma = p = \mu = 0$, $\alpha = m = 1$, $g(x) = x$, $\gamma(g(x)) = 1$ and $h(\omega) = \omega$ in (2.1) we get [33, Theorem 2].

Further let us we give another version of the Fejér-Hadamard inequality.

Theorem 2.2. *Under the assumptions of Theorem 2.1, the following inequalities hold:*

$$\begin{aligned}
& f\left(\frac{g(u_1) + mg(u_2)}{2}\right) G(\sigma) \left(g\zeta_{\nu, \kappa, l, \bar{\mu}(2m)^\nu, \left(g^{-1}\left(\frac{g(u_1) + mg(u_2)}{2m}\right)\right)^{-\gamma} \circ g} \right) \left(g^{-1}\left(\frac{g(u_1)}{m}\right); p \right) \quad (2.6) \\
& \leq \left(h\left(\frac{1}{2^\alpha}\right) + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \right) \\
& \quad \times \left(g\zeta_{\nu, \kappa, l, \bar{\mu}(2m)^\nu, \left(g^{-1}\left(\frac{g(u_1) + mg(u_2)}{2m}\right)\right)^{-\gamma} (f \circ g)(\gamma \circ g)} \right) \left(g^{-1}\left(\frac{g(u_1)}{m}\right); p \right) \\
& \leq \frac{(mg(u_2) - g(u_1))^\kappa}{(2m)^\kappa} \left[\left(h\left(\frac{1}{2^\alpha}\right) \frac{f(g(u_1))}{e^{\sigma g(u_1)}} + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} \right) \right. \\
& \quad \times \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma \left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2) \right) h\left(\frac{\omega^\alpha}{2^\alpha}\right) d\omega \\
& \quad \left. + m \left(h\left(\frac{1}{2^\alpha}\right) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f\left(\frac{g(u_1)}{m^2}\right)}{e^{\sigma \frac{g(u_1)}{m^2}}} \right) \right. \\
& \quad \times \left. \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma \left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2) \right) h\left(\frac{(2-\omega)^\alpha}{2^\alpha}\right) d\omega \right],
\end{aligned}$$

where $G(\sigma) = e^{\sigma g(u_2)}$ for $\sigma < 0$, $G(\sigma) = e^{\sigma g(u_1)}$ for $\sigma \geq 0$ and $\bar{\mu} = \frac{\mu}{(mg(u_2) - g(u_1))^\nu}$.

Proof. From exponentially $(\alpha, h - m)$ -convexity of f , one can obtain the following inequalities:

$$\begin{aligned}
f\left(\frac{g(u_1) + mg(u_2)}{2}\right) & \leq h\left(\frac{1}{2^\alpha}\right) \frac{f\left(\frac{\omega}{2}g(u_1) + m\frac{(2-\omega)}{2}g(u_2)\right)}{e^{\sigma\left(\frac{\omega}{2}g(u_1) + m\frac{(2-\omega)}{2}g(u_2)\right)}} \quad (2.7) \\
& \quad + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f\left(\frac{(2-\omega)}{2}\frac{g(u_1)}{m} + \frac{\omega}{2}g(u_2)\right)}{e^{\sigma\left(\frac{(2-\omega)}{2}\frac{g(u_1)}{m} + \frac{\omega}{2}g(u_2)\right)}}.
\end{aligned}$$

Then we obtain

$$\begin{aligned}
& h\left(\frac{1}{2^\alpha}\right) f\left(\frac{\omega}{2}g(u_1) + m\frac{(2-\omega)}{2}g(u_2)\right) + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) f\left(\frac{(2-\omega)}{2}\frac{g(u_1)}{m} + \frac{\omega}{2}g(u_2)\right) \quad (2.8) \\
& \leq \left(h\left(\frac{1}{2^\alpha}\right) \frac{f(g(u_1))}{e^{\sigma g(u_1)}} + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} \right) h\left(\frac{\omega^\alpha}{2^\alpha}\right) \\
& \quad + m \left(h\left(\frac{1}{2^\alpha}\right) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f\left(\frac{g(u_1)}{m^2}\right)}{e^{\sigma \frac{g(u_1)}{m^2}}} \right) h\left(\frac{(2-\omega)^\alpha}{2^\alpha}\right).
\end{aligned}$$

Multiplying (2.7) with $\omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right)$ on both sides and integrating over $[0, 1]$, we have

$$\begin{aligned} & f\left(\frac{g(u_1) + mg(u_2)}{2}\right) \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right) d\omega \quad (2.9) \\ & \leq h\left(\frac{1}{2^\alpha}\right) \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \frac{f\left(\frac{\omega}{2} g(u_1) + m \frac{(2-\omega)}{2} g(u_2)\right)}{e^{\sigma\left(\frac{\omega}{2} g(u_1) + m \frac{(2-\omega)}{2} g(u_2)\right)}} \\ & \quad \times \gamma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right) d\omega + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \\ & \quad \times \frac{f\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right)}{e^{\sigma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right)}} \gamma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right) d\omega. \end{aligned}$$

Taking $g(x) = \frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)$ in (2.9) and multiplying (2.8) with $\omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right)$ on both sides and integrating over $[0, 1]$ we have

$$\begin{aligned} & h\left(\frac{1}{2^\alpha}\right) \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) f\left(\frac{\omega}{2} g(u_1) + m \frac{(2-\omega)}{2} g(u_2)\right) \quad (2.10) \\ & \quad \times \gamma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right) d\omega + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \\ & \quad \times f\left(\frac{\omega}{2} g(u_2) + \frac{(2-\omega)}{2} \frac{g(u_1)}{m}\right) \gamma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right) d\omega \\ & \leq \left(h\left(\frac{1}{2^\alpha}\right) \frac{f(g(u_1))}{e^{\sigma g(u_1)}} + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} \right) \\ & \quad \times \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right) h\left(\frac{\omega^\alpha}{2^\alpha}\right) d\omega \\ & \quad + m \left(h\left(\frac{1}{2^\alpha}\right) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} + mh\left(\frac{2^\alpha - 1}{2^\alpha}\right) \frac{f\left(\frac{g(u_1)}{m^2}\right)}{e^{\sigma \frac{g(u_1)}{m^2}}} \right) \\ & \quad \times \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right) h\left(\frac{(2-\omega)^\alpha}{2^\alpha}\right) d\omega. \end{aligned}$$

Taking $g(x) = \frac{\omega}{2} g(u_2) + \frac{(2-\omega)}{2} \frac{g(u_1)}{m}$ in (2.10), and using (1.12), $g(x) = g(u_1) + mg(u_2) - mg(x)$, the second inequality of (2.6) is obtained. \square

Using the previously results we establish a connections between our results and the results already obtained in related literature. Then, let us give the following remark.

Remark 2.2. *i) Taking $\sigma = p = 0$, $\alpha = 1$, $g(x) = x$ and $\gamma(g(x)) = 1$ in (2.6) we get [8, Theorem 3.10].*
ii) Taking $\sigma = p = \mu = 0$, $\alpha = 1$, $g(x) = x$ and $\gamma(g(x)) = 1$ in (2.6) we get [9, Theorem 2.1].
iii) Taking $\sigma = 0$, $\alpha = 1$, $g(x) = x$ and $\gamma(g(x)) = 1$ in (2.6) we get [13, Theorem 2.11].
iv) Taking $\sigma = p = \mu = 0$, $\alpha = m = 1$, $g(x) = x$ and $\gamma(g(x)) = 1$ in (2.6) we get [35, Theorem 4].

3. Fejér-Hadamard type inequalities for exponentially $(h-m)$ -convex functions

In this section we give two versions of the Fejér-Hadamard type inequality for exponentially $(h-m)$ -convex functions via generalized fractional integral operators.

Theorem 3.1. *Let $f, g : [u_1, mu_2] \subset [0, \infty) \rightarrow \mathbb{R}$, $0 < u_1 < mu_2$ be the functions satisfying assumptions:*

- i) f be positive, integrable and exponentially $(h-m)$ -convex function;
- ii) g be differentiable, strictly increasing and $g(x) = g(u_1) + mg(u_2) - mg(x)$.

Also, let $\gamma : [u_1, mu_2] \rightarrow \mathbb{R}$ be a non-negative and integrable function. Then for generalized fractional integral operators, the following inequalities hold:

$$\begin{aligned}
& f\left(\frac{g(u_1) + mg(u_2)}{2}\right) G(\sigma) \left({}_g\zeta_{\nu, \kappa, l, \bar{\mu}m^\nu, u_2}^{\eta, r, q, c} - \gamma \circ g \right) \left(g^{-1}\left(\frac{g(u_1)}{m}\right); p \right) \quad (3.1) \\
& \leq h\left(\frac{1}{2}\right) (1+m) \left({}_g\zeta_{\nu, \kappa, l, \bar{\mu}m^\nu, u_2}^{\eta, r, q, c} (f \circ g)(\gamma \circ g) \right) \left(g^{-1}\left(\frac{g(u_1)}{m}\right); p \right) \\
& \leq \frac{(mg(u_2) - g(u_1))^\kappa}{m^\kappa} h\left(\frac{1}{2}\right) \left[\left(\frac{f(g(u_1))}{e^{\sigma g(u_1)}} + m \frac{f(g(u_2))}{e^{\sigma g(u_2)}} \right) \right. \\
& \quad \times \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right) h(\omega) d\omega \\
& \quad \left. + m \left(\frac{f(g(u_2))}{e^{\sigma g(u_2)}} + m \frac{f\left(\frac{g(u_1)}{m^2}\right)}{e^{\sigma \frac{g(u_1)}{m^2}}} \right) \right. \\
& \quad \left. \times \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left((1-\omega)\frac{g(u_1)}{m} + \omega g(u_2)\right) h(1-\omega) d\omega \right],
\end{aligned}$$

where $G(\sigma) = e^{\sigma g(u_2)}$ for $\sigma < 0$, $G(\sigma) = e^{\sigma g(u_1)}$ for $\sigma \geq 0$ and $\bar{\mu} = \frac{\mu}{(mg(u_2) - g(u_1))^\nu}$.

Proof. Taking $\alpha = 1$ in (2.1) we obtain (3.1). It also can be proved explicitly on the same lines of proof of Theorem 2.1. \square

The second version of the Fejér-Hadamard inequality is given as follows.

Theorem 3.2. *Under the assumptions of Theorem 3.1 the following inequalities hold:*

$$\begin{aligned}
& f\left(\frac{g(u_1) + mg(u_2)}{2}\right) G(\sigma) \left({}_g\zeta_{\nu, \kappa, l, \bar{\mu}(2m)^\nu, \left(g^{-1}\left(\frac{g(u_1) + mg(u_2)}{2m}\right)\right)^-}^{\eta, r, q, c} - \gamma \circ g \right) \left(g^{-1}\left(\frac{g(u_1)}{m}\right); p \right) \quad (3.2) \\
& \leq h\left(\frac{1}{2}\right) (1+m) \left({}_g\zeta_{\nu, \kappa, l, \bar{\mu}(2m)^\nu, \left(g^{-1}\left(\frac{g(u_1) + mg(u_2)}{2m}\right)\right)^-}^{\eta, r, q, c} (f \circ g)(\gamma \circ g) \right) \left(g^{-1}\left(\frac{g(u_1)}{m}\right); p \right) \\
& \leq \frac{(mg(u_2) - g(u_1))^\kappa}{(2m)^\kappa} h\left(\frac{1}{2}\right) \left[\left(\frac{f(g(u_1))}{e^{\sigma g(u_1)}} + m \frac{f(g(u_2))}{e^{\sigma g(u_2)}} \right) \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \right. \\
& \quad \times \gamma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right) h\left(\frac{\omega}{2}\right) d\omega + m \left(\frac{f(g(u_2))}{e^{\sigma g(u_2)}} + m \frac{f\left(\frac{g(u_1)}{m^2}\right)}{e^{\sigma \frac{g(u_1)}{m^2}}} \right) \\
& \quad \left. \times \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right) h\left(\frac{2-\omega}{2}\right) d\omega \right],
\end{aligned}$$

where $G(\sigma) = e^{\sigma g(u_2)}$ for $\sigma < 0$, $G(\sigma) = e^{\sigma g(u_1)}$ for $\sigma \geq 0$ and $\bar{\mu} = \frac{\mu}{(mg(u_2) - g(u_1))^\nu}$.

Proof. Replacing $\alpha = 1$ in (2.6) we obtain (3.2). It also can be proved explicitly on the same lines of proof of Theorem 2.2. \square

4. Fejér-Hadamard type inequalities for exponentially $(\alpha - m)$ -convex functions

In this section we give two versions of the Fejér-Hadamard inequality for exponentially $(\alpha - m)$ -convex functions via generalized fractional integral operators.

Theorem 4.1. *Let $f, g : [u_1, mu_2] \subset [0, \infty) \rightarrow \mathbb{R}$, $0 < u_1 < mu_2$ be the functions satisfying assumptions:*

- i) f be positive, integrable and exponentially $(\alpha - m)$ -convex function,
- ii) g be differentiable, strictly increasing and $g(x) = g(u_1) + mg(u_2) - mg(x)$.

Also, let $\gamma : [u_1, mu_2] \rightarrow \mathbb{R}$ be a non-negative and integrable function. Then for generalized fractional integral operators, the following inequalities hold:

$$\begin{aligned}
& f\left(\frac{g(u_1) + mg(u_2)}{2}\right) G(\sigma) \left({}_g\zeta_{\nu, \kappa, l, \bar{\mu}m^\nu, u_2}^{\eta, r, q, c} - \gamma \circ g \right) \left(g^{-1}\left(\frac{g(u_1)}{m}\right); p \right) \quad (4.1) \\
& \leq \frac{1}{2^\alpha} (1 + m(2^\alpha - 1)) \left({}_g\zeta_{\nu, \kappa, l, \bar{\mu}m^\nu, u_2}^{\eta, r, q, c} (f \circ g)(\gamma \circ g) \right) \left(g^{-1}\left(\frac{g(u_1)}{m}\right); p \right) \\
& \leq \frac{(mg(u_2) - g(u_1))^\kappa}{m^\kappa} \frac{1}{2^\alpha} \left[\left(\frac{f(g(u_1))}{e^{\sigma g(u_1)}} + m(2^\alpha - 1) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} \right) \right. \\
& \quad \times \int_0^1 \omega^{\kappa+\alpha-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma \left((1 - \omega) \frac{g(u_1)}{m} + \omega g(u_2) \right) d\omega \\
& \quad + m \left(\frac{f(g(u_2))}{e^{\sigma g(u_2)}} + m(2^\alpha - 1) \frac{f\left(\frac{g(u_1)}{m^2}\right)}{e^{\sigma \frac{g(u_1)}{m^2}}} \right) \\
& \quad \left. \times \int_0^1 \omega^{\kappa-1} (1 - \omega^\alpha) E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \gamma \left((1 - \omega) \frac{g(u_1)}{m} + \omega g(u_2) \right) d\omega \right],
\end{aligned}$$

where $G(\sigma) = e^{\sigma g(u_2)}$ for $\sigma < 0$, $G(\sigma) = e^{\sigma g(u_1)}$ for $\sigma \geq 0$ and $\bar{\mu} = \frac{\mu}{(mg(u_2) - g(u_1))^\nu}$.

Proof. Replacing $h(\omega) = \omega$ in (2.1) we obtain (4.1). It also can be proved explicitly on the same lines of proof of Theorem 2.1. \square

Theorem 4.2. *Let $f, g : [u_1, mu_2] \subset [0, \infty) \rightarrow \mathbb{R}$, $0 < u_1 < mu_2$ be the functions satisfying assumptions:*

- i) f be positive, integrable and exponentially $(\alpha - m)$ -convex function,
- ii) g be differentiable, strictly increasing and $g(x) = g(u_1) + mg(u_2) - mg(x)$.

Also, let $\gamma : [u_1, mu_2] \rightarrow \mathbb{R}$ be a non-negative and integrable function. Then for generalized fractional integral operators, the following inequalities hold:

$$\begin{aligned}
& f\left(\frac{g(u_1) + mg(u_2)}{2}\right) G(\sigma) \left({}_g\zeta_{\nu, \kappa, l, \bar{\mu}(2m)^\nu, \left(g^{-1}\left(\frac{g(u_1) + mg(u_2)}{2m}\right)\right)^-}^{\eta, r, q, c} - \gamma \circ g \right) \left(g^{-1}\left(\frac{g(u_1)}{m}\right); p \right) \quad (4.2) \\
& \leq \frac{1}{2^\alpha} (1 + m(2^\alpha - 1)) \left({}_g\zeta_{\nu, \kappa, l, \bar{\mu}(2m)^\nu, \left(g^{-1}\left(\frac{g(u_1) + mg(u_2)}{2m}\right)\right)^-}^{\eta, r, q, c} (f \circ g)(\gamma \circ g) \right) \left(g^{-1}\left(\frac{g(u_1)}{m}\right); p \right) \\
& \leq \frac{(mg(u_2) - g(u_1))^\kappa}{(2m)^\kappa} \frac{1}{2^\alpha} \left[\left(\frac{f(g(u_1))}{e^{\sigma g(u_1)}} + m(2^\alpha - 1) \frac{f(g(u_2))}{e^{\sigma g(u_2)}} \right) \int_0^1 \omega^{\kappa-1} E_{\nu, \kappa, l}^{\eta, r, q, c}(\mu\omega^\nu; p) \right. \\
& \quad \times \gamma \left(\frac{(2 - \omega) g(u_1)}{2} + \frac{\omega}{2} g(u_2) \right) \left(\frac{\omega}{2} \right)^\alpha d\omega + m \left(\frac{f(g(u_2))}{e^{\sigma g(u_2)}} + m(2^\alpha - 1) \frac{f\left(\frac{g(u_1)}{m^2}\right)}{e^{\sigma \frac{g(u_1)}{m^2}}} \right)
\end{aligned}$$

$$\times \int_0^1 \omega^{\kappa-1} E_{\nu,\kappa,l}^{\eta,r,q,c}(\mu\omega^\nu; p) \gamma\left(\frac{(2-\omega)}{2} \frac{g(u_1)}{m} + \frac{\omega}{2} g(u_2)\right) \left(\frac{(2-\omega)^\alpha}{2^\alpha}\right) d\omega \Big],$$

where $G(\sigma) = e^{\sigma g(u_2)}$ for $\sigma < 0$, $G(\sigma) = e^{\sigma g(u_1)}$ for $\sigma \geq 0$ and $\bar{\mu} = \frac{\mu}{(mg(u_2)-g(u_1))^\nu}$.

Proof. Replacing $h(\omega) = \omega$ in (2.6) we obtain (4.2). It also can be proved explicitly on the same lines of proof of Theorem 2.2. \square

Conclusions

In this paper we have established the generalized fractional integral inequalities of Fejér-Hadamard type for a generalized exponentially convexity. The results are obtained for exponentially $(\alpha, h-m)$ -convex functions, exponentially $(h-m)$ -convex functions and exponentially $(\alpha-m)$ -convex functions which are further deducible for several kinds of known convex functions written in Remark 1.1. Also, they hold for well-known fractional integral operators containing Mittag-Leffler functions in their kernels written in Remark 1.2. The readers can deduce a plenty of fractional integral inequalities of their choice.

Declarations

Availability of supporting data

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485).

REFERENCES

- [1] M. Andrić, G. Farid and J. Pečarić, *A further extension of Mittag-Leffler function*, Fract. Calc. Appl. Anal., 21(5) (2018), 1377-1395.
- [2] M. U. Awan, M. A. Noor and K. I. Noor, *Hermite-Hadamard inequalities for exponentially convex functions*, Appl. Math. Inf. Sci., 12(2) (2018), 405-409.
- [3] N. Eftekhari, *Some remarks on $(s-m)$ -convexity in the second sense*, J. Math. Ineq., 8(3) (2014), 489-495.
- [4] G. Farid, *Some Riemann-Liouville fractional integral inequalities for convex functions*, J. Anal., 2018 (2018), 1-8.
- [5] G. Farid, *A unified integral operator and further its consequences*, Open J. Math. Anal., 4(1) (2020), 1-7.
- [6] G. Farid, *Hadamard and Fejér-Hadamard inequalities for generalized fractional integral involving special functions*, Konuralp J. Math., 4(1) (2016), 108-113.
- [7] G. Farid, *A Treatment of the Hadamard inequality due to m -convexity via generalized fractional integral*, J. Fract. Calc. Appl., 9(1) (2018), 8-14.
- [8] G. Farid and G. Abbas, *Generalizations of some fractional integral inequalities for m -convex functions via generalized Mittag-Leffler function*, Studia Univ. Babes-Bolyai, Math., 63(1) (2018), 23-35.
- [9] G. Farid, A. U. Rehman and B. Tariq, *On Hadamard-type inequalities for m -convex functions via Riemann-Liouville fractional integrals*, Studia Univ. Babes-Bolyai, Math., 62(2) (2017), 141-150.
- [10] G. Farid, A. U. Rehman, S. Mehmood, *Hadamard and Fejér-Hadamard type integral inequalities for harmonically convex functions via an extended generalized Mittag-Leffler function*, J. Math. Comput. Sci., 8(5) (2018), 630-643.
- [11] G. Farid, A. U. Rehman and Q. U. Ain, *k -fractional integral inequalities of Hadamard type for $(h-m)$ -convex functions*, Comput. Methods. Differ. Equ., 8(1) (2020), 119-140.

[12] G. Farid, W. Nazeer, M. S. Saleem, S. Mehmood and S. M. Kang, *Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications*, Mathematics, 6(11) (2018), 248.

[13] G. Farid, K. A. Khan, N. Latif, A. U. Rehman and S. Mehmood, *General fractional integral inequalities for convex and m -convex functions via an extended generalized Mittag-Leffler function*, J. Inequal. Appl., 2018 (2018), 243.

[14] L. Fejér, *Über die Fourierreihen II*, Math Naturwiss Anz Ungar Akad Wiss, 24 (1906), 369-390.

[15] H. Hudzik and L. Maligranda, *Some remarks on s -convex functions*, Aequ. Math. 48 (1994), 100-111.

[16] I. Işcan, *Hermite Hadamard Fejér type inequalities for convex functions via fractional integrals*, Stud. Univ. Babeş-Bolyai Math., 60(3) (2015), 355-366.

[17] S. M. Kang, G. Farid, W. Nazeer and S. Mehmood, *$(h-m)$ -convex functions and associated fractional Hadamard and Fejér-Hadamard inequalities via an extended generalized Mittag-Leffler function*, J. Inequal. Appl., 2019 (2019), 78.

[18] S. M. Kang, G. Farid, W. Nazeer and B. Tariq, *Hadamard and Fejér-Hadamard inequalities for extended generalized fractional integrals involving special functions*, J. Inequal. Appl., 2018 (2018), 119.

[19] X. Yang, G. Farid, K. Mahreen, M. Zahra, C. Dong, *On an integral and consequent fractional integral operators via generalized convexity*, AIMS Math., to appear.

[20] S. Mehmood and G. Farid, *m -convex functions associated with bounds of k -fractional integrals*, Adv. Inequal. Appl., 2020 (2020), 20.

[21] S. Mehmood and G. Farid, *Fractional integrals inequalities for exponentially m -convex functions*, Open J. Math. Sci., 2020(4) (2020), 78-85.

[22] S. Mehmood, G. Farid, K. A. Khan and M. Yussouf, *New Hadamard and Fejér-Hadamard fractional inequalities for exponentially m -convex function*, Eng. Appl. Sci. Lett., 3(1) (2020), 45-55.

[23] S. Mehmood, G. Farid, K. A. Khan and M. Yussouf, *New fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially $(h-m)$ -convex function*, Eng. Appl. Sci. Lett., 3(2) (2020), 9-18.

[24] S. Mehmood and G. Farid *Fractional Hadamard and Fejér-Hadamard inequalities for exponentially m -convex function*, Stud. Univ. Babeş-Bolyai Math., to appear.

[25] N. Mehreen and M. Anwar, *Hermite-Hadamard type inequalities for exponentially p -convex functions and exponentially s -convex functions in the second sense with applications*, J. Inequal. Appl., 2019 (2019), 92.

[26] V. G. Miheşan, *A generalization of the convexity*, Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca, Romania, 1993.

[27] M. E. Özdemir, A. O. Akdemri and E. Set, *On $(h-m)$ -convexity and Hadamard-type inequalities*, Transylv. J. Math. Mech., 8(1) (2016), 51-58.

[28] T. R. Prabhakar, *A singular integral equation with a generalized Mittag-Leffler function in the kernel*, Yokohama Math. J., 19 (1971), 7-15.

[29] X. Qiang, G. Farid, J. Pečarić and S. B. Akbar, *Generalized fractional integral inequalities for exponentially $(s-m)$ -convex functions*, J. Inequal. Appl., 2020 (2020), 70 pp.

[30] H. Qi, M. Yussouf, S. Mehmood, Y-M Chu and G. Farid, *Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity*, AIMS Math., 5(6) (2020), 6030-6042.

[31] G. Rahman, D. Baleanu, M. A. Qurashi, S. D. Purohit, S. M. Mubeen and M. Arshad, *The extended Mittag-Leffler function via fractional calculus*, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253.

[32] T. O. Salim and A. W. Faraj, *A generalization of Mittag-Leffler function and integral operator associated with integral calculus*, J. Frac. Calc. Appl., 3(5) (2012), 1-13.

[33] M. Z. Sarikaya, E. Set, H. Yaldiz and N. Basak, *Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities*, J. Math. Comput. Model., 57(9) (2013), 2403-2407.

[34] H. M. Srivastava and Z. Tomovski, *Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel*, Appl. Math. Comput., 211(1) (2009), 198-210.

[35] M. Z. Sarikaya and H. Yildirim, *On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals*, Miskolc Math. Notes, 17(2) (2016), 1049-1059.

[36] G. H. Toader, *Some generaliztions of convexity*, Proc. Colloq. Approx. Optim, Cluj Napoca(Romania), (1984), 329-338.

[37] S. Ullah, G. Farid, K. A. Khan, A. Waheed and S. Mehmood, *Generalized fractional inequalities for quasi-convex functions*, Adv. Difference Equ., 2019 (2019), 15.

[38] S. Varosanec, *On h -convexity*, J. Math. Anal. Appl., 326(1) (2007), 303-311.