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STUDY ON FRACTIONAL FEJÉR-HADAMARD TYPE INEQUALITIES

ASSOCIATED WITH GENERALIZED EXPONENTIALLY CONVEXITY

by Ghulam Farid1, Liliana Guran2, Xiaoli Qiang3 and Yu-Ming Chu4

In this paper fractional integral inequalities of Fejér-Hadamard type for a gen-

eralized notion of convexity are established. A new generalization of convexity named
exponentially (α, h−m)-convex function unifies exponentially (h−m)-convex, exponen-

tially (α −m)-convex and exponentially (s,m)-convex functions. By using the general-

ized fractional integral operators involving Mittag-Leffler function via a monotonically
increasing function we have obtained some fractional versions of Fejér-Hadamard in-

equality for the generalized convexity. The obtained results lead to many inequalities

of Fejér-Hadamard and Hadamard type for well-known fractional integral operators and
different kinds of convexities.
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1. Introduction and Preliminaries

The theory of inequalities give an important tool for leading symmetrical phenom-
ena in circumstances of real life. In the same time, the theory of convex functions have
important implications in various fields of pure and applied sciences. A close connection
exists between theory of convex functions, theory of inequalities and fractional calculus, the
last one being one of the most studied field of mathematics due his application in the real
world.

Many inequalities are proved for convex functions but, the most known from the
related literature, is Hermite-Hadamard inequality.

A function f : I → R on an interval of real line is said to be convex, if for all u1, u2 ∈ I
and ω ∈ [0, 1], the following inequality holds:

f(ωu1 + (1− ω)u2) ≤ ωf(u1) + (1− ω)f(u2). (1.1)

In 1883 and 1893 Hermite and Hadamard introduced, independently, the following
inequality:

Theorem 1.1. Let f : [u1, u2]→ R be a convex function such that u1 < u2. Then following
inequality holds:

f

(
u1 + u2

2

)
≤ 1

u2 − u1

∫ u2

u1

f(ω)dω ≤ f(u1) + f(u2)

2
. (1.2)
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The inequality (1.2) is well-known in related literature as the Hadamard inequality.
In 1906 Fejér gave the following generalization of Hadamard inequality:

Theorem 1.2. [14] Let f : [u1, u2] → R be a convex function such that u1 < u2. Also
let g : [u1, u2] → R be a positive, integrable and symmetric to u1+u2

2 . Then the following
inequality holds:

f

(
u1 + u2

2

)∫ u2

u1

g(ω)dω ≤
∫ u2

u1

f(ω)g(ω)dω ≤ f(u1) + f(u2)

2

∫ u2

u1

g(ω)dω. (1.3)

The inequality (1.3) is well-known as the Fejér-Hadamard inequality in literature.
In the last years, the classical concept of convex functions was extended in differ-

ent ways using innovative ideas. The Hadamard and the Fejér-Hadamard inequalities are
generalized in various ways (see, [6, 7, 8, 9, 10, 13, 16, 17, 18, 22, 23, 24, 33, 35]).

Convex function play an important role in mathematical inequalities. It’s extensions
and generalizations have been defined in different ways and are used to extend the associated
subjects. In this context the Hadamard inequality is analyzed extensively.

In this paper we present the Fejér-Hadamard inequalities for known generalized frac-
tional integral operators by using a new generalized convexity recently defined in [19]. Let
us recall this given notion as follows:

Definition 1.1. [19] Let J ⊆ R be an interval containing (0, 1) and let h : J → R be a
non-negative function. Then a function f : I → R on an interval of real line is said to be
exponentially (α, h−m)-convex, if for all u1, u2 ∈ I, ω ∈ (0, 1), α,m ∈ [0, 1] and σ ∈ R, the
following inequality holds:

f(ωu1 +m(1− ω)u2) ≤ h(ωα)
f(u1)

eσu1
+mh(1− ωα)

f(u2)

eσu2
. (1.4)

The above definition represents different classes of functions. For σ = 0, one gets the
class of (α, h−m)-convex functions and for other values of σ it may not represents (α, h−m)-
convex functions; for this we give the following example corresponding to σ = −1.

Example 1.1. The function f(x) = x exp (−x) is exponentially (1, Id − 1)-convex function
but not (1, Id − 1)-convex function. More precisely the function f is exponentially convex
function on [0,∞) but not a convex function on this domain.

By taking α = 1 in (1.4), we get the following definition of exponentially (h −m)-
convex functions.

Definition 1.2. [30] Let J ⊆ R be an interval containing (0, 1) and let h : J → R be a
non-negative function. Then a function f : I → R on an interval of real line is said to be
exponentially (h − m)-convex, if for all u1, u2 ∈ I, ω ∈ (0, 1), m ∈ [0, 1] and σ ∈ R, the
following inequality holds:

f(ωu1 +m(1− ω)u2) ≤ h(ω)
f(u1)

eσu1
+mh(1− ω)

f(u2)

eσu2
. (1.5)

By taking h(ω) = ω in (1.4), then we get the following definition of exponentially
(α−m)-convex functions:

Definition 1.3. [30] A function f : I → R on an interval of real line is said to be exponen-
tially (α−m)-convex, if for all u1, u2 ∈ I, ω ∈ (0, 1), α,m ∈ [0, 1] and σ ∈ R, the following
inequality holds:

f(ωu1 +m(1− ω)u2) ≤ ωα f(u1)

eσu1
+m(1− ωα)

f(u2)

eσu2
. (1.6)



Study on fractional Fejér-Hadamard type inequalities associated with generalized exponentially convexity 161

Remark 1.1. i) Taking α = 1 and h(ω) = ωs in (1.4) we obtain exponentially (s − m)-
convex function defined by Qiang et al. in [29].
ii) Taking α = m = 1 and h(ω) = ωs in (1.4) we obtain exponentially s-convex function
defined by Mehreen and Anwar in [25].
iii) Taking α = m = 1 and h(ω) = ω in (1.4) we obtain exponentially convex function
defined by Awan et al. in [2].
iv) Taking σ = 0 in (1.4) we obtain (α, h −m)-convex function defined by Farid et al. in
[11].
v) Taking σ = α = 0 and α = 1 in (1.4) we obtain (h − m)-convex function defined by
Ozdemir et al. in [27].
vi) Taking σ = 0 and h(ω) = ω in (1.4) we obtain (α − m)-convex function defined by
Mihesan in [26].
vii) Taking σ = 0, α = 1 and h(ω) = ωs in (1.4) we obtain (s−m)-convex function defined
by Efthekhari in [3].
viii) Taking σ = 0, α = m = 1 and h(ω) = ωs in (1.4) we obtain s-convex function defined
by Hudzik and Maligranda in [15].
ix) Taking σ = 0, α = 1 and h(ω) = ω in (1.4) we obtain m-convex function defined by
Toader in [36].
x) Taking σ = 0 and α = m = 1 in (1.4) we obtain h-convex function defined by Varosanec
in [38].
xi) Taking σ = 0, α = m = 1 and h(ω) = ω in (1.4) we obtain convex function.

Fractional integral operators also play important role in the field of mathematical
analysis. A large number of integral inequalities exist in literature due to fractional integral
operators. For details see [4, 12, 20, 21, 37] and references therein. Recently, in [1], Andrić
et al. defined the generalized fractional integral operators containing an extended Mittag-
Leffler function as follows.

Definition 1.4. Let µ, ν, κ, l, η, c ∈ C, <(ν),<(κ),<(l) > 0, <(c) > <(η) > 0 with p ≥ 0,
r > 0 and 0 < q ≤ r + <(ν). Let f ∈ L1[u1, u2] and x ∈ [u1, u2]. Then the generalized
fractional integral operators ζη,r,q,cν,κ,l,µ,u1

+f and ζη,r,q,cν,κ,l,µ,u2
−f are defined by:(

ζη,r,q,cν,κ,l,µ,u1
+f
)

(x; p) =

∫ x

u1

(x− ω)κ−1Eη,r,q,cν,κ,l (µ(x− ω)ν ; p)f(ω)dω, (1.7)(
ζη,r,q,cν,κ,l,µ,u2

−f
)

(x; p) =

∫ u2

x

(ω − x)κ−1Eη,r,q,cν,κ,l (µ(ω − x)ν ; p)f(ω)dω, (1.8)

where Eη,r,q,cν,κ,l (ω; p) is the generalized Mittag-Leffler function defined as follows:

Eη,r,q,cν,κ,l (ω; p) =

∞∑
n=0

βp(σ + nq, c− σ)

β(σ, c− σ)

(c)nq
Γ(νn+ κ)

ωn

(l)nr
.

In [5] Farid defined the following unified integral operators:

Definition 1.5. Let f, g : [u1, u2] → R, 0 < u1 < u2 be the functions such that f be a
positive and integrable and g be a differentiable and strictly increasing. Also, let γ

x be an
increasing function on [u1,∞) and µ, κ, l, η, c ∈ C, <(κ),<(l) > 0, <(c) > <(η) > 0 with
p ≥ 0, ν, r > 0 and 0 < q ≤ r + ν. Then for x ∈ [u1, u2] the integral operators gζ

γ,η,r,q,c
ν,κ,l,u1

+f

and gζ
γ,η,r,q,c
ν,κ,l,u2

−f are defined by:(
gζ
γ,η,r,q,c
ν,κ,l,u1

+f
)

(x; p) =

∫ x

u1

γ(g(x)− g(ω))

g(x)− g(ω)
Eη,r,q,cν,κ,l (µ(g(x)− g(ω))ν ; p)f(ω)d(g(ω)), (1.9)

(
gζ
γ,η,r,q,c
ν,κ,l,u2

−f
)

(x; p) =

∫ u2

x

γ(g(ω)− g(x))

g(ω)− g(x)
Eη,r,q,cν,κ,l (µ(g(ω)− g(x))ν ; p)f(ω)d(g(ω)). (1.10)
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Replacing γ(x) = xκ in (1.9) and (1.10), we get the following generalized fractional
integral operators containing Mittag-Leffler function:

Definition 1.6. Let f, g : [u1, u2]→ R, 0 < u1 < u2 be the functions such that f be a positive
and integrable and g be a differentiable and strictly increasing. Also let µ, κ, l, η, c ∈ C,
<(κ),<(l) > 0, <(c) > <(η) > 0 with p ≥ 0, ν, r > 0 and 0 < q ≤ r + ν. Then for
x ∈ [u1, u2] the integral operators gζ

η,r,q,c
ν,κ,l,µ,u1

+f and gζ
η,r,q,c
ν,κ,l,µ,u2

−f are defined by:(
gζ
η,r,q,c
ν,κ,l,µ,u1

+f
)

(x; p) =

∫ x

u1

(g(x)−g(ω))κ−1Eη,r,q,cν,κ,l (µ(g(x)−g(ω))ν ; p)f(ω)d(g(ω)), (1.11)

(
gζ
η,r,q,c
ν,κ,l,µ,u2

−f
)

(x; p) =

∫ u2

x

(g(ω)− g(x))κ−1Eη,r,q,cν,κ,l (µ(g(ω)− g(x))ν ; p)f(ω)d(g(ω)).

(1.12)

Remark 1.2. Integral operators (1.11) and (1.12) are the generalizations of some well-
known fractional integral operators:
(i) Taking g(x) = x we obtain the fractional integral operators (1.7) and (1.8).
(ii) Taking g(x) = x and p = 0 we obtain the fractional integral operators defined by Salim
and Faraj in [32].
(iii) Taking g(x) = x and l = r = 1 we obtain the fractional integral operators defined by
Rahman et al. in [31].
(iv) Taking g(x) = x, p = 0 and l = r = 1 we obtain the fractional integral operators defined
by Srivastava-Tomovski in [34].
(v) Taking g(x) = x, p = 0 and l = r = q = 1 we obtain the fractional integral operators
defined by Prabhakar in [28].
(vi) Taking g(x) = x and µ = p = 0 we obtain the Riemann-Liouville fractional integral
operators.

The aim of this paper is to establish the fractional integral inequalities of Fejér-
Hadamard type for exponentially (α, h−m)-convex functions, exponentially (h−m)-convex
functions and exponentially (α − m)-convex functions. We gave these inequalities utiliz-
ing the generalized fractional integral operators (1.11) and (1.12) containing Mittag-Leffler
function via a monotone increasing function. These inequalities lead to produce the Fejér-
Hadamard type inequalities for various kinds of convexities and well-known fractional inte-
gral operators given in Remark 1.1 and Remark 1.2 respectively.

In Section 2, we prove two versions of the Fejér-Hadamard type inequalities for gen-
eralized fractional integral operators (1.11) and (1.12) via exponentially (α, h−m)-convex
functions. Also their consequences are given in remarks. In Section 3 we give the Fejér-
Hadamard type inequalities for exponentially (h − m)-convex functions. In Section 4, we
give these inequalities for exponentially (α−m)-convex functions.

2. Fejér-Hadamard type inequalities for exponentially (α, h − m)-convex
functions

First we give the following Fejér-Hadamard inequality for exponentially (α, h−m)-
convex functions via generalized fractional integral operators.

Theorem 2.1. Let f, g : [u1,mu2] ⊂ [0,∞)→ R, 0 < u1 < mu2 be the functions satisfying
the assumptions:
i) f be positive, integrable and exponentially (α, h−m)-convex function,
ii) g be differentiable, strictly increasing and g(x) = g(u1) +mg(u2)−mg(x).

Also, let γ : [u1,mu2] → R be a non-negative and integrable function. Then for
generalized fractional integral operators, the following inequalities hold:
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f

(
g(u1) +mg(u2)

2

)
G(σ)

(
gζ
η,r,q,c
ν,κ,l,µ̄mν ,u2

−γ ◦ g
)(

g−1

(
g(u1)

m

)
; p

)
≤
(
h

(
1

2α

)
+mh

(
2α − 1

2α

))(
gζ
η,r,q,c
ν,κ,l,µ̄mν ,u2

−(f ◦ g)(γ ◦ g)
)(
g−1

(
g(u1)

m

)
; p

)
(2.1)

≤ (mg(u2)− g(u1))
κ

mκ

[(
h

(
1

2α

)
f(g(u1))

eσg(u1)
+mh

(
2α − 1

2α

)
f(g(u2))

eσg(u2)

)
×
∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(1− ω)

g(u1)

m
+ ωg(u2)

)
h(ωα)dω

+ m

h( 1

2α

)
f(g(u2))

eσg(u2)
+mh

(
2α − 1

2α

) f
(
g(u1)
m2

)
eσ

g(u1)

m2


×
∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(1− ω)

g(u1)

m
+ ωg(u2)

)
h(1− ωα)dω

]
,

where G(σ) = eσg(u2) for σ < 0, G(σ) = eσg(u1) for σ ≥ 0 and µ̄ = µ
(mg(u2)−g(u1))ν .

Proof. Since f is exponentially (α, h−m)-convex function, we have the following inequalities:

f

(
g(u1) +mg(u2)

2

)
≤ h

(
1

2α

)
f(ωg(u1) +m(1− ω)g(u2))

eσ(ωg(u1)+m(1−ω)g(u2))
(2.2)

+mh

(
2α − 1

2α

) f
(

(1− ω) g(u1)
m + ωg(u2)

)
e
σ
(

(1−ω)
g(u1)
m +ωg(u2)

) .

Then, we have

h

(
1

2α

)
f(ωg(u1) +m(1− ω)g(u2)) +mh

(
2α − 1

2α

)
f

(
(1− ω)

g(u1)

m
+ ωg(u2)

)
(2.3)

≤
(
h

(
1

2α

)
f(g(u1))

eσg(u1)
+mh

(
2α − 1

2α

)
f(g(u2))

eσg(u2)

)
h(ωα)

+m

h( 1

2α

)
f(g(u2))

eσg(u2)
+mh

(
2α − 1

2α

) f
(
g(u1)
m2

)
eσ

g(u1)

m2

h(1− ωα).

Multiplying (2.2) with ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ
(

(1− ω) g(u1)
m + ωg(u2)

)
on both sides

and integrating over [0, 1], we get the following inequality:

f

(
g(u1) +mg(u2)

2

)∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(1− ω)

g(u1)

m
+ ωg(u2)

)
dω (2.4)

≤ h
(

1

2α

)∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)
f(ωg(u1) +m(1− ω)g(u2))

eσ(ωg(u1)+m(1−ω)g(u2))

× γ
(

(1− ω)
g(u1)

m
+ ωg(u2)

)
dω +mh

(
2α − 1

2α

)∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)

×
f
(

(1− ω) g(u1)
m + ωg(u2)

)
e
σ
(

(1−ω)
g(u1)
m +ωg(u2)

) γ

(
(1− ω)

g(u1)

m
+ ωg(u2)

)
dω.
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For g(x) = (1 − ω) g(u1)
m + ωg(u2) in (2.4) and using (1.12) and (ii) (g(x) = g(u1) +

mg(u2)−mg(x)) then we get the first inequality of (2.1).

Multiplying (2.3) with ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ
(

(1− ω) g(u1)
m + ωg(u2)

)
on both sides

and integrating over [0, 1], we have

h

(
1

2α

)∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)f(ωg(u1) +m(1− ω)g(u2)) (2.5)

× γ
(

(1− ω)
g(u1)

m
+ ωg(u2)

)
dω +mh

(
2α − 1

2α

)∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)

× f
(

(1− ω)
g(u1)

m
+ ωg(u2)

)
γ

(
(1− ω)

g(u1)

m
+ ωg(u2)

)
dω

≤
(
h

(
1

2α

)
f(g(u1))

eσg(u1)
+mh

(
2α − 1

2α

)
f(g(u2))

eσg(u2)

)
×
∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(1− ω)

g(u1)

m
+ ωg(u2)

)
h(ωα)dω

+m

h( 1

2α

)
f(g(u2))

eσg(u2)
+mh

(
2α − 1

2α

) f
(
g(u1)
m2

)
eσ

g(u1)

m2


×
∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(1− ω)

g(u1)

m
+ ωg(u2)

)
h(1− ωα)dω.

Replacing g(x) = (1− ω) g(u1)
m + ωg(u2) in (2.5) and using (1.12), by (ii), we get the

second inequality of (2.1). �

Remark 2.1. i) Taking σ = p = 0, α = m = 1, g(x) = x, γ(g(x)) = 1 and h(ω) = ω in
(2.1) we get [6, Theorem 2.1].
ii) Taking σ = p = 0, α = 1, g(x) = x, γ(g(x)) = 1 and h(ω) = ω in (2.1) we get [7,
Theorem 3].
iii) Taking σ = p = µ = 0, α = 1, g(x) = x, γ(g(x)) = 1 and h(ω) = ω in (2.1) we get [8,
Theorem 2.1].
iv) Taking σ = 0, α = 1, g(x) = x and γ(g(x)) = 1 in (2.1) we get [17, Theorem 2.1].
v) Taking σ = 0, α = m = 1, g(x) = x, γ(g(x)) = 1 and h(ω) = ω in (2.1) we get [18,
Theorem 2.1].
vi) Taking σ = 0, α = 1, g(x) = x and h(ω) = ω in (2.1) we get [18, Theorem 3.2].
vii) Taking σ = p = µ = 0, α = m = 1, g(x) = x, γ(g(x)) = 1 and h(ω) = ω in (2.1) we get
[33, Theorem 2].

Further let us we give another version of the Fejér-Hadamard inequality.
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Theorem 2.2. Under the assumptions of Theorem 2.1, the following inequalities hold:

f

(
g(u1) +mg(u2)

2

)
G(σ)

(
gζ
η,r,q,c

ν,κ,l,µ̄(2m)ν ,
(
g−1

(
g(u1)+mg(u2)

2m

))−γ ◦ g

)(
g−1

(
g(u1)

m

)
; p

)
(2.6)

≤
(
h

(
1

2α

)
+mh

(
2α − 1

2α

))
×

(
gζ
η,r,q,c

ν,κ,l,µ̄(2m)ν ,
(
g−1

(
g(u1)+mg(u2)

2m

))−(f ◦ g)(γ ◦ g)

)(
g−1

(
g(u1)

m

)
; p

)

≤ (mg(u2)− g(u1))κ

(2m)κ

[(
h

(
1

2α

)
f(g(u1))

eσg(u1)
+mh

(
2α − 1

2α

)
f(g(u2))

eσg(u2)

)
×
∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)
h

(
ωα

2α

)
dω

+m

h( 1

2α

)
f(g(u2))

eσg(u2)
+mh

(
2α − 1

2α

) f
(
g(u1)
m2

)
eσ

g(u1)

m2


×
∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)
h

(
(2− ω)α

2α

)
dω

]
,

where G(σ) = eσg(u2) for σ < 0, G(σ) = eσg(u1) for σ ≥ 0 and µ̄ = µ
(mg(u2)−g(u1))ν .

Proof. From exponentially (α, h−m)-convexity of f , one can obtain the following inequali-
ties:

f

(
g(u1) +mg(u2)

2

)
≤ h

(
1

2α

) f
(
ω
2 g(u1) +m (2−ω)

2 g(u2)
)

eσ(ω2 g(u1)+m
(2−ω)

2 g(u2))
(2.7)

+mh

(
2α − 1

2α

) f
(

(2−ω)
2

g(u1)
m + ω

2 g(u2)
)

e
σ
(

(2−ω)
2

g(u1)
m +ω

2 g(u2)
) .

Then we obtain

h

(
1

2α

)
f

(
ω

2
g(u1) +m

(2− ω)

2
g(u2)

)
+mh

(
2α − 1

2α

)
f

(
(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)
(2.8)

≤
(
h

(
1

2α

)
f(g(u1))

eσg(u1)
+mh

(
2α − 1

2α

)
f(g(u2))

eσg(u2)

)
h

(
ωα

2α

)

+m

h( 1

2α

)
f(g(u2))

eσg(u2)
+mh

(
2α − 1

2α

) f
(
g(u1)
m2

)
eσ

g(u1)

m2

h

(
(2− ω)α

2α

)
.
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Multiplying (2.7) with ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ
(

(2−ω)
2

g(u1)
m + ω

2 g(u2)
)

on both sides

and integrating over [0, 1], we have

f

(
g(u1) +mg(u2)

2

)∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)
dω (2.9)

≤ h
(

1

2α

)∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)
f
(
ω
2 g(u1) +m (2−ω)

2 g(u2)
)

eσ(ω2 g(u1)+m
(2−ω)

2 g(u2))

× γ
(

(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)
dω +mh

(
2α − 1

2α

)∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)

×
f
(

(2−ω)
2

g(u1)
m + ω

2 g(u2)
)

e
σ
(

(2−ω)
2

g(u1)
m +ω

2 g(u2)
) γ

(
(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)
dω.

Taking g(x) = (2−ω)
2

g(u1)
m +ω

2 g(u2) in (2.9) and multiplying (2.8) with ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ
(

(2−ω)
2

g(u1)
m + ω

2 g(u2)
)

on both sides and integrating over [0, 1] we have

h

(
1

2α

)∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)f

(
ω

2
g(u1) +m

(2− ω)

2
g(u2)

)
(2.10)

× γ
(

(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)
dω +mh

(
2α − 1

2α

)∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)

× f
(
ω

2
g(u2) +

(2− ω)

2

g(u1)

m

)
γ

(
(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)
dω

≤
(
h

(
1

2α

)
f(g(u1))

eσg(u1)
+mh

(
2α − 1

2α

)
f(g(u2))

eσg(u2)

)
×
∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)
h

(
ωα

2α

)
dω

+m

h( 1

2α

)
f(g(u2))

eσg(u2)
+mh

(
2α − 1

2α

) f
(
g(u1)
m2

)
eσ

g(u1)

m2


×
∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)
h

(
(2− ω)α

2α

)
dω.

Taking g(x) = ω
2 g(u2) + (2−ω)

2
g(u1)
m in (2.10), and using (1.12),

g(x) = g(u1) +mg(u2)−mg(x), the second inequality of (2.6) is obtained. �

Using the previously results we establish a connections between our results and the
results already obtained in related literature. Then, let us give the following remark.

Remark 2.2. i) Taking σ = p = 0, α = 1, g(x) = x and γ(g(x)) = 1 in (2.6) we get [8,
Theorem 3.10].
ii) Taking σ = p = µ = 0, α = 1, g(x) = x and γ(g(x)) = 1 in (2.6) we get [9, Theorem
2.1].
iii) Taking σ = 0, α = 1, g(x) = x and γ(g(x)) = 1 in (2.6) we get [13, Theorem 2.11].
iv) Taking σ = p = µ = 0, α = m = 1, g(x) = x and γ(g(x)) = 1 in (2.6) we get [35,
Theorem 4].
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3. Fejér-Hadamard type inequalities for exponentially (h−m)-convex func-
tions

In this section we give two versions of the Fejér-Hadamard type inequality for
exponentially (h−m)-convex functions via generalized fractional integral operators.

Theorem 3.1. Let f, g : [u1,mu2] ⊂ [0,∞)→ R, 0 < u1 < mu2 be the functions satisfying
assumptions:
i) f be positive, integrable and exponentially (h−m)-convex function:
ii) g be differentiable, strictly increasing and g(x) = g(u1) +mg(u2)−mg(x).

Also, let γ : [u1,mu2] → R be a non-negative and integrable function. Then for
generalized fractional integral operators, the following inequalities hold:

f

(
g(u1) +mg(u2)

2

)
G(σ)

(
gζ
η,r,q,c
ν,κ,l,µ̄mν ,u2

−γ ◦ g
)(

g−1

(
g(u1)

m

)
; p

)
(3.1)

≤ h
(

1

2

)
(1 +m)

(
gζ
η,r,q,c
ν,κ,l,µ̄mν ,u2

−(f ◦ g)(γ ◦ g)
)(

g−1

(
g(u1)

m

)
; p

)
≤ (mg(u2)− g(u1))

κ

mκ
h

(
1

2

)[(
f(g(u1))

eσg(u1)
+m

f(g(u2))

eσg(u2)

)
×
∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(1− ω)

g(u1)

m
+ ωg(u2)

)
h(ω)dω

+m

f(g(u2))

eσg(u2)
+m

f
(
g(u1)
m2

)
eσ

g(u1)

m2


×
∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(1− ω)

g(u1)

m
+ ωg(u2)

)
h(1− ω)dω

]
,

where G(σ) = eσg(u2) for σ < 0, G(σ) = eσg(u1) for σ ≥ 0 and µ̄ = µ
(mg(u2)−g(u1))ν .

Proof. Taking α = 1 in (2.1) we obtain (3.1). It also can be proved explicitly on the same
lines of proof of Theorem 2.1. �

The second version of the Fejér-Hadamard inequality is given as follows.

Theorem 3.2. Under the assumptions of Theorem 3.1 the following inequalities hold:

f

(
g(u1) +mg(u2)

2

)
G(σ)

(
gζ
η,r,q,c

ν,κ,l,µ̄(2m)ν ,
(
g−1

(
g(u1)+mg(u2)

2m

))−γ ◦ g

)(
g−1

(
g(u1)

m

)
; p

)
(3.2)

≤ h

(
1

2

)
(1 +m)

(
gζ
η,r,q,c

ν,κ,l,µ̄(2m)ν ,
(
g−1

(
g(u1)+mg(u2)

2m

))−(f ◦ g)(γ ◦ g)

)(
g−1

(
g(u1)

m

)
; p

)
≤ (mg(u2)− g(u1))

κ

(2m)κ
h

(
1

2

)[(
f(g(u1))

eσg(u1)
+m

f(g(u2))

eσg(u2)

)∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)

×γ
(
(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)
h
(ω
2

)
dω +m

f(g(u2))

eσg(u2)
+m

f
(
g(u1)

m2

)
e
σ
g(u1)

m2


×
∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)
h

(
2− ω

2

)
dω

]
,

where G(σ) = eσg(u2) for σ < 0, G(σ) = eσg(u1) for σ ≥ 0 and µ̄ = µ
(mg(u2)−g(u1))ν .

Proof. Replacing α = 1 in (2.6) we obtain (3.2). It also can be proved explicitly on the
same lines of proof of Theorem 2.2. �
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4. Fejér-Hadamard type inequalities for exponentially (α−m)-convex func-
tions

In this section we give two versions of the Fejér-Hadamard inequality for exponen-
tially (α−m)-convex functions via generalized fractional integral operators.

Theorem 4.1. Let f, g : [u1,mu2] ⊂ [0,∞)→ R, 0 < u1 < mu2 be the functions satisfying
assumptions:
i) f be positive, integrable and exponentially (α−m)-convex function,
ii) g be differentiable, strictly increasing and g(x) = g(u1) +mg(u2)−mg(x).

Also, let γ : [u1,mu2] → R be a non-negative and integrable function. Then for
generalized fractional integral operators, the following inequalities hold:

f

(
g(u1) +mg(u2)

2

)
G(σ)

(
gζ
η,r,q,c
ν,κ,l,µ̄mν ,u2

−γ ◦ g
)(

g−1

(
g(u1)

m

)
; p

)
(4.1)

≤ 1

2α
(1 +m (2α − 1))

(
gζ
η,r,q,c
ν,κ,l,µ̄mν ,u2

−(f ◦ g)(γ ◦ g)
)(

g−1

(
g(u1)

m

)
; p

)
≤ (mg(u2)− g(u1))

κ

mκ

1

2α

[(
f(g(u1))

eσg(u1)
+m (2α − 1)

f(g(u2))

eσg(u2)

)
×
∫ 1

0

ωκ+α−1Eη,r,q,cν,κ,l (µων ; p) γ

(
(1− ω)

g(u1)

m
+ ωg(u2)

)
dω

+m

f(g(u2))

eσg(u2)
+m (2α − 1)

f
(
g(u1)
m2

)
eσ

g(u1)

m2


×
∫ 1

0

ωκ−1(1− ωα)Eη,r,q,cν,κ,l (µων ; p)γ

(
(1− ω)

g(u1)

m
+ ωg(u2)

)
dω

]
,

where G(σ) = eσg(u2) for σ < 0, G(σ) = eσg(u1) for σ ≥ 0 and µ̄ = µ
(mg(u2)−g(u1))ν .

Proof. Replacing h(ω) = ω in (2.1) we obtain (4.1). It also can be proved explicitly on the
same lines of proof of Theorem 2.1. �

Theorem 4.2. Let f, g : [u1,mu2] ⊂ [0,∞)→ R, 0 < u1 < mu2 be the functions satisfying
assumptions:
i) f be positive, integrable and exponentially (α−m)-convex function,
ii) g be differentiable, strictly increasing and g(x) = g(u1) +mg(u2)−mg(x).

Also, let γ : [u1,mu2] → R be a non-negative and integrable function. Then for
generalized fractional integral operators, the following inequalities hold:

f

(
g(u1) +mg(u2)

2

)
G(σ)

(
gζ
η,r,q,c

ν,κ,l,µ̄(2m)ν ,
(
g−1

(
g(u1)+mg(u2)

2m

))−γ ◦ g

)(
g−1

(
g(u1)

m

)
; p

)
(4.2)

≤ 1

2α
(1+m (2α − 1))

(
gζ
η,r,q,c

ν,κ,l,µ̄(2m)ν ,
(
g−1

(
g(u1)+mg(u2)

2m

))−(f ◦ g)(γ ◦ g)

)(
g−1

(
g(u1)

m

)
; p

)
≤ (mg(u2)− g(u1))κ

(2m)κ
1

2α

[(
f(g(u1))

eσg(u1)
+m (2α − 1)

f(g(u2))

eσg(u2)

)∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)

×γ
(

(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)(ω
2

)α
dω+m

f(g(u2))

eσg(u2)
+m (2α − 1)

f
(
g(u1)
m2

)
eσ

g(u1)

m2


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×
∫ 1

0

ωκ−1Eη,r,q,cν,κ,l (µων ; p)γ

(
(2− ω)

2

g(u1)

m
+
ω

2
g(u2)

)(
(2− ω)α

2α

)
dω

]
,

where G(σ) = eσg(u2) for σ < 0, G(σ) = eσg(u1) for σ ≥ 0 and µ̄ = µ
(mg(u2)−g(u1))ν .

Proof. Replacing h(ω) = ω in (2.6) we obtain (4.2). It also can be proved explicitly on the
same lines of proof of Theorem 2.2. �

Conclusions

In this paper we have established the generalized fractional integral inequalities of
Fejér-Hadamard type for a generalized exponentially convexity. The results are obtained
for exponentially (α, h −m)-convex functions, exponentially (h −m)-convex functions and
exponentially (α − m)-convex functions which are further deducible for several kinds of
known convex functions written in Remark 1.1. Also, they hold for well-known fractional
integral operators containing Mittag-Leffler functions in their kernels written in Remark 1.2.
The readers can deduce a plenty of fractional integral inequalities of their choice.
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