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ON THE FEASIBILITY OF CONSTRAINED GENERALIZED 
PREDICTIVE CONTROL 

Sorin OLARU1, Didier DUMUR2, Ioan DUMITRACHE3 

În acest articol se analizeazã legile de comandã predictivã în prezenţa 
constrângerilor asupra semnalelor de intrare, de ieşire şi a altor semnale interne 
care descriu starea sistemului. Constrângerile considerate sunt liniare, iar secvenţa 
de comandã este rezultatul unei probleme de optimizare pãtraticã. Problemele de 
fezabilitate sunt legate pe de o parte de consistenţa setului de constrângeri fizice, iar 
pe de altă parte, de adecvarea lor cu semnalul de referinţã care trebuie urmãrit. 
Propagarea fezabilitaţii de-a lungul funcţionarii sistemului este fundamentalã, 
prezentându-se, în acest sens, condiţiile necesare. 

This paper analyzes the generalized predictive control law under constraints 
on the input, output or other auxiliary signals that depend linearly on the system 
variables. These constraints are formulated as sets of linear equalities or 
inequalities; the control sequence is therefore elaborated based on parametric 
optimization problem. The feasibility issues are related on one hand to the well-
posedness condition and on the other hand to the compatibility with the set-point 
constraints. The prediction of the feasibility is of great interest from this point of 
view and necessary feasibility conditions are presented. 

 
Keywords: predictive control, feasibility, polyhedral representation 

1. Introduction 

The computer aided design of control laws must overcome important 
difficulties when dealing with constraints. These constraints may be forced by 
practical considerations as limitations on the input control signal amplitude or 
rate. Constraints may arise also from the desired closed-loop performances for the 
control law, a classical example being the output constraints. Generally, these 
types of constraints can be softened [1]. Other hidden constraints (from the end-
user point of view) are to be reinforced, the classical example being the end-point 
stability constraints. In the present study all the constraints are expressed as linear 
equality or inequality constraints that have to be further considered in the control 
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design procedure [2]. This set describes in fact a polyhedral domain for which a 
dual representation in terms of generators is available [3]. Analyzing the geometry 
and the evolutions of this polyhedron can characterize the viability of the control 
algorithm. An exhaustive analysis of the system of constraints may reveal useful 
properties such as the expression of the “switching surfaces” for the linear control 
laws and the corresponding affine formulations [4], [5].  

This paper deals with another important aspect related to the constraints 
analysis, the feasibility of the related optimization problem [6], a crucial aspect 
for the validation of the predictive control law [7], [8]. This is equivalent with an 
off-line prediction of infeasibility. Results towards feasibility and their 
implications in the case of general types of set-points were presented in [9]. 
Theoretical aspects related to some classes of necessary feasibility conditions are 
recalled here and an algorithm to check these conditions is presented here, based 
on off-line information.  

2. Generalized Predictive Control 

Generalized predictive control (GPC) is part of the long-range predictive 
control (LRPC) or model predictive control (MPC) family [10]. GPC is 
characterized by two major characteristics. It uses first a CARIMA plant model : 

)()()()()()()( 1111 −−−− Δ+−= qtqCdtuqBtyqA ξ                        (1) 

where u, y are the system input and output respectively, )(tξ  represents a centered 
Gaussian white noise, d the system time delay, A and B are polynomials in 

1−q (the backward shift operator) of degree an  and bn , and 11 1)( −− −=Δ qq . 
Then the cost function to be minimized is quadratic in the tracking error 

and control effort over a receding horizon 
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where )(ˆ jty +  is an optimum j-step-ahead predictor, 21, NN  are the minimum 
and maximum costing horizon, uN  the control horizon, λ  a control weighting 
factor and w the setpoint. 

Based on the model mentioned earlier and following the ideas of GPC [11] 
an optimal j-step ahead predictor can be constructed 
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where the jjj HGF ,,  polynomials are solutions of the Diophantine equations 
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The index (2) is rewritten for optimization purpose 

0
T

TT

5.0

)()(

J

J

uuu

uuuu

++=

=+−+−+=

kfkQk

kkwlkGwlkG λ
                                (5) 

with the vector form of (3) 
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In the unconstrained case, the optimum of J derived through analytical 
minimization is given by the relation fQk 1−−=u . By applying the first control 
action )1(uk  of this optimal sequence and restarting the procedure, a control law 
with improved performances under the RST form is performed [12]. 

3. Constrained GPC 

All these properties have to be reanalyzed when constraints are taken into 
consideration [13]. The design procedures most often have to consider specific 
types of constraints originated by amplitude limits in the control signal, slew rate 
limits of the actuator, limits on the output signal or equality constraints at the end 
of the prediction horizon for stability purposes. 

Generally the formal mathematical description is 
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These constraints on the control action and outputs can be restated in a 
form depending only on control updates. Further, this description could be 
translated in a matrix form like in [2] 
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where 112 +−= NNN , ),( rqM  is a matrix of dimension rqx  whose entries are 
one on the first column and zero for the others, L  is a uu NN x  lower triangular 
matrix whose entries are one. cG  and cl  describe the dynamics and the free 
response of the constrained system, both found as in (3), (5). 

When minimizing the index J in (2) with respect to the constraints, the 
methods presented in the relaxed case cannot be applied since they do not provide 
a solution when the global optimum violates the constraints 

4. Constrained domain evolution 

The description of the feasibility domain for a system under all types of 
constraints can be obtained in a compact form from (7) 
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with 
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where the epsilon machine will represent the bounds for equality constraints, wn  
is the required number of past known values that are necessary to properly 
evaluate the future setpoint evolution. 

A possible way of modeling (11) considers the dual representation of the 
inequalities in (7) 

{ } { } spacePlinyyconexxhullconvP rv .,,,,. 11 ++= ……        (12) 
where conv.hullX denotes the set of all convex combinations of points in X, 
coneY denotes nonnegative combinations of unidirectional rays and lin.spaceP 
represents a linear combination of bi-directional rays. It can be rewritten as 

ii
v

i
ii

l

i
ii

r

i
ii

v

i
ii zyxP

μγλλ

μγλ

∀≥=≤≤

++=

∑

∑∑∑

=

===

,0,1,10
1

111           (13) 

Usually the polyhedral domain related with practical CGPC laws are in 
fact polytopes. These domains in a compact form can be analysed by their 
evolution, providing the dynamics of the constrained variables vector. This is the 
purpose of the next part. 

From (5) one has 
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where E is a matrix which allows the description of the vector 
)(* tEθwl =− when 
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One can find the description for the vector uk  by minimizing this index J 

under the constraints 
)(* tu θKΦbkA −≤           (16) 

where K is a matrix allowing the description of the affine part of the inequalities 
as a linear dependence on the context parameters )(* tθ . The close form of the 
optimal control sequence for the CGPC is 
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with 0A  the matrix constructed by the subset of lines in A  for whom the 
inequality constraints are saturated. 

 
As a conclusion, the elaborated control law is affine in the parameter 

vector )(tθ . However, the difficulties arise from the fact that the matrix 
))((00 tθAA = is not allowing an explicit dependence on the vector of parameters. 

Remark: A parameterized polyhedron like the one in (16) 
{ })(* tP uu θKΦbkAk −≤=  

has a dual representation where only the vertices are affected by the parameters 
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5. Necessary conditions by means of extreme point feasibility 

Considering the polyhedral domain as described earlier, with the dual 
representation by the vertices, it can be interesting to look at the evolution of these 
vertices at each sampling time. 

Proposition 1: The optimal control sequence corresponding to all extreme 
combinations of context parameters must lead to a point inside the projection of 
the initial polyhedral domain for a feasible CGPC law. 

Sketch of proof: As explained earlier, the constraints on the CGPC law 
define a polyhedral domain 
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By considering the involved system variables as parameters, this 
parameterized polyhedron can be extended to a fixed one of higher dimension. 
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The existence of these vertices does not guaranty the fact that the CGPC 
law will have the opportunity to reach each of them. Multiple vertices may 
correspond to the same context parameters. Thus, a useful manipulation may be 
the orthogonal projection of this domain on the subspace of the context 
parameters (as in Fig. 1). 

 
Fig. 1. The polyhedral domain and its projection on the context parameters subspace 

ku 

θ1 

θn 
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This operation can be done explicitly by multiplying each vertex iθ  by a 
matrix [ ]je  where j are the indices of the context parameters in the vector θ . The 

resulting set is *P , the convex combination of the points 
[ ]{ }ijeP θ==ℑ ***)( θθ       (19) 

Once the projection available, a redundancy check must be operated in 
order to obtain the minimal set of generators. 

The resulting domain *P  can provide by its vertices the extremal points 
for the context parameters that can further be used for figuring the whole domain. 
Solving the parameterized quadratic problem related to CGPC, one can retrieve a 
hyper surface inside the original polyhedral domain D . 

 
Fig. 2. The optimal solution of CGPC for each possible context parameters combination 

The elaboration of this shape enables to solve all the analysis problems as it 
defines the whole behavior of the CGPC law. As far as the evolution of the 
context parameters domain is concerned, the image of the points on the CGPC 
shape must be found by the linear transformation (15). If this domain is denoted 
as *

+P , the necessary and sufficient conditions for feasibility are resumed by 
** +⊃ PP               (20) 

Due to limitations in the knowledge on the topology of the CGPC shape, this 
will resume on necessary conditions based on the extremal points. These 
necessary conditions may be expressed as in Fig. 3 by a set of inequalities 

*)1(* +∈+ Ptθ              (21) 
which resumes the proposition. 
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Fig. 3. The evolution of the extremal points of context parameters domain 

For a complete analysis of the CGPC law, all the points inside the 
polyhedral domain *

+P  have to be checked in order to confirm the feasibility. This 
is not an obvious task as long as the optimal control sequence is affine in the 
context parameters, and the affine part even if linear in the parameter vector is 
changing the linear dependence in concordance with the active set of constraints. 
It is clear that the number of active constraints is maximal for the vertices and is 
subsequently decreasing for the points on the frontier where subsets of these sets 
of constraints are active. Following the same line as the proof, an algorithm based 
on tools of polyhedral computations and quadratic optimization can be designed 
in order to validate these necessary conditions. Such an algorithm can be resumed 
by the following steps. 

Algorithm 1 
- Compute the vertices of the polyhedral set by dual representation of the 

constraints 
- Project the polytope on the parameters subspace 
- Remove the redundant points 
- Compute the close form of the control law in all the vertices of the 

constrained domain. (Compulsatory as it is not always equal with the value in the 
original polyhedron) 

- For each such law, construct the evolution matrix and compute the 
corresponding next step parameters )1( +tθ  

- Check if each such point )1( +tθ  is inside the projected polyhedron found 
at step 2. If it is not the case, that means that there exists at least one point in the 
constrained domain which, if reached, will lead to infeasibility. 

6. Exemple 

Consider in the following a second order linear system as the one reported in 
(Olaru and Dumur, 2003), with non-minimum phase characteristics 

θ1 
θn 

ku 
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)()75.025.025.0()()25.01( 2121 tuqqtyqq −−−− +−−=+−            (22) 
The step response of this system is given in Fig. 4. 

 
Fig. 4. Open loop step response 

For CGPC law with 11 =N , 42 =N , 2=uN , the system proves to have an 
infeasible behavior for step setpoints and constraints on the output of magnitude 

11 ≤≤− y , based on snow-ball attitude [14] (Fig. 5). 

 
Fig. 5. CGPC closed loop behavior 

Proceeding as explained in Algorithm 1, the constrained domain can be 
described as 

 { }yyD uu 1lkG1k ≤+≤=       (23) 
where l is like in (3) and 
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The elaboration of the extended polyhedron requires the definition of 
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{ }0ΓΓΓθFΓ ≥≤≤−= maxminmaxmin ,)(tP         (25) 
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As the context parameters include the past outputs, three implicit constraints 
have been added as an upper part of F in order to avoid the analysis of non-
reachable regions. The result is a square matrix of constraints describing a 
polytope with a dual representation containing 128 vertices. The projection on the 
subspace of the first five variables leads to a domain *P  that can be reduced  by 
removing redundant pairs to the convex hull of 64 vertices like in Fig. 6. 

 
θ1= [-148 -148  148  335 -193  ]/148 
θ2= [ 148  148 -148  677 -303  ]/148 
θ3=[ 148 -148 -148  793 -767  ]/148 
… 
θ64= [-148  148  148 -793  767  ]/148 

Fig. 6. Convex hull for P* computed by POLYLIB 

The corresponding quadratic problems have to be solved in order to find the 
optimal control law in each such extreme context. The next step aims at 
computing the image of the resulting extended vectors 64..1θ  by the linear 
transformation 
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Checking their membership inside D ends the algorithm. In the studied case, 
there are 32 vertices which are positioned outside the feasible context polyhedron 

*P . This means that there are at least 32 combinations of past inputs and outputs 
for which there is no feasible control sequence able to retain the system inside the 
constraints 
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11 ≤≤− y  
Thus as the necessary conditions are not fulfilled, the CGPC is infeasible. 

6. Conclusion 

This paper presented two possible approaches for off-line analysis of the 
feasibility of constrained generalized predictive control strategies. The advantages 
of this analysis consist in a set-point validation at the stage of parameter tuning for 
the predictive control laws. Subsequently, the adaptation of prediction horizon 
and/or the introduction of slack variables can be considered for feasibility 
reinforcement at the control design stage. 
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