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ON THE FEASIBILITY OF CONSTRAINED GENERALIZED
PREDICTIVE CONTROL

Sorin OLARU', Didier DUMUR?, Ioan DUMITRACHE?

In acest articol se analizeazd legile de comandd predictivd in prezenta
constrdngerilor asupra semnalelor de intrare, de iesire si a altor semnale interne
care descriu starea sistemului. Constrangerile considerate sunt liniare, iar secventa
de comandd este rezultatul unei probleme de optimizare patraticda. Problemele de
fezabilitate sunt legate pe de o parte de consistenta setului de constrdngeri fizice, iar
pe de alta parte, de adecvarea lor cu semnalul de referintd care trebuie urmarit.
Propagarea fezabilitatii de-a Ilungul functionarii sistemului este fundamentald,
prezentindu-se, in acest sens, conditiile necesare.

This paper analyzes the generalized predictive control law under constraints
on the input, output or other auxiliary signals that depend linearly on the system
variables. These constraints are formulated as sets of linear equalities or
inequalities; the control sequence is therefore elaborated based on parametric
optimization problem. The feasibility issues are related on one hand to the well-
posedness condition and on the other hand to the compatibility with the set-point
constraints. The prediction of the feasibility is of great interest from this point of
view and necessary feasibility conditions are presented.

Keywords: predictive control, feasibility, polyhedral representation
1. Introduction

The computer aided design of control laws must overcome important
difficulties when dealing with constraints. These constraints may be forced by
practical considerations as limitations on the input control signal amplitude or
rate. Constraints may arise also from the desired closed-loop performances for the
control law, a classical example being the output constraints. Generally, these
types of constraints can be softened [1]. Other hidden constraints (from the end-
user point of view) are to be reinforced, the classical example being the end-point
stability constraints. In the present study all the constraints are expressed as linear
equality or inequality constraints that have to be further considered in the control
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design procedure [2]. This set describes in fact a polyhedral domain for which a
dual representation in terms of generators is available [3]. Analyzing the geometry
and the evolutions of this polyhedron can characterize the viability of the control
algorithm. An exhaustive analysis of the system of constraints may reveal useful
properties such as the expression of the “switching surfaces” for the linear control
laws and the corresponding affine formulations [4], [5].

This paper deals with another important aspect related to the constraints
analysis, the feasibility of the related optimization problem [6], a crucial aspect
for the validation of the predictive control law [7], [8]. This is equivalent with an
off-line prediction of infeasibility. Results towards feasibility and their
implications in the case of general types of set-points were presented in [9].
Theoretical aspects related to some classes of necessary feasibility conditions are
recalled here and an algorithm to check these conditions is presented here, based
on off-line information.

2. Generalized Predictive Control

Generalized predictive control (GPC) is part of the long-range predictive
control (LRPC) or model predictive control (MPC) family [10]. GPC is
characterized by two major characteristics. It uses first a CARIMA plant model :

A(g™y(6)=Bg u(t-d)+ClgHED/Mg™) (1)
where u, y are the system input and output respectively, &(¢) represents a centered

Gaussian white noise, d the system time delay, 4 and B are polynomials in

q_l (the backward shift operator) of degree n, and ny, and A(q_l) =1- q_l.

Then the cost function to be minimized is quadratic in the tracking error
and control effort over a receding horizon

N2 Nu
A . 2 . 2
J= 2 e+ p-wier HE+23 [Au(e+ j-1) @
J=N J=1
where j(¢z+ j) is an optimum j-step-ahead predictor, N;, N, are the minimum
and maximum costing horizon, N,, the control horizon, 4 a control weighting

factor and w the setpoint.
Based on the model mentioned earlier and following the ideas of GPC [11]
an optimal j-step ahead predictor can be constructed
W+ )= Fi(q )y +H (g )Aut=D+G (g )Au(t+j=1) 3)

[=free response forced response

where the F;,G ;, H ; polynomials are solutions of the Diophantine equations
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The index (2) is rewritten for optimization purpose
J=(Gk, +1-w) T (Gk, +1-w)+ 1k, 'k, = )

=05k, TQk, +fk, +J,
with the vector form of (3)
y =Gk, +1=Gk, +ify pgsr () +ihAu 0 (2)

with:
Au(t) ] u(t-1)
k, = ;“past(l)z
Au(t+ N, —1) | u(t —np)
w0 ] y(t+Ny) w(t + Ny)
ypast(t)z ;5’= W=
y(t=ng) | (t+N3) w(t+N)
Hy (1) - Hy (n, 1) Fy (D) - Fy, (ng)
ih=| : dif=| :
Hy,() = Hy (p=D]  |[Fy, () Fy (1)
en,  en1 0
G:
gN,-1
&N, gNQ—Nu-H_

In the uncorIstrained case, the optimum of J derived through analytical
minimization is given by the relation k, = —Q_lf . By applying the first control
action k(1) of this optimal sequence and restarting the procedure, a control law
with improved performances under the RST form is performed [12].

3. Constrained GPC

All these properties have to be reanalyzed when constraints are taken into
consideration [13]. The design procedures most often have to consider specific
types of constraints originated by amplitude limits in the control signal, slew rate
limits of the actuator, limits on the output signal or equality constraints at the end
of the prediction horizon for stability purposes.

Generally the formal mathematical description is
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—Aupin Su(t+k)—u(t+k—1) < Aupy
—Umin SUt+k)<up,y, O0<k<N,-1
~Vmin SYE+HE) < Ymax, NI <k<N,
Y+ Ny +k)y=wt+Njy), k=1.m

(6)

These constraints on the control action and outputs can be restated in a
form depending only on control updates. Further, this description could be
translated in a matrix form like in [2]

—M(N,,,1) Aupyin <Ik, <M(N,,.D) Aupax
~M(N,, Hu<Lk, <M(N, Du,
U=—umip —u(t-1), u =Umax —u(t—1) (7)
~M(N,]) Yimin <G Ky +1<M(N]) ymax
G k, +1, =M(m,])w(t+N)

where N =N, —N; +1, M(q,r) is a matrix of dimension gxr whose entries are
one on the first column and zero for the others, L is a N,xN, lower triangular
matrix whose entries are one. G, and 1. describe the dynamics and the free

response of the constrained system, both found as in (3), (5).

When minimizing the index J in (2) with respect to the constraints, the
methods presented in the relaxed case cannot be applied since they do not provide
a solution when the global optimum violates the constraints

4. Constrained domain evolution

The description of the feasibility domain for a system under all types of
constraints can be obtained in a compact form from (7)

F9t<rmaX'F0 11
-F ()_ l—‘min ’ g ( )
-

with
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M(N,,,1) Aupyin M(N,,,1) Autpax
o M(N,,,Dtmin _ M(Ny,Dumax
T MOV Dy || MV.D Ya
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if Aih G |0 0

if, Aih, G, |0 -M(mn,)

0) = [Y past () Wpass @) Ky () | W) we(®
where the epsilon machine will represent the bounds for equality constraints, »n,,

is the required number of past known values that are necessary to properly
evaluate the future setpoint evolution.
A possible way of modeling (11) considers the dual representation of the
inequalities in (7)
P= conv.hull{xl I }+ cone{yl yeees V) }+ lin.spaceP (12)

where conv.hullX denotes the set of all convex combinations of points in X,
coneY denotes nonnegative combinations of unidirectional rays and lin.spaceP
represents a linear combination of bi-directional rays. It can be rewritten as

% r /
P= X+ 7ivi+ D Hizi
i=1 i=1 i=1 (13)

v
Ogil Sl, Zil :1,}/1' >0 ,V/JZ'
i=l1
Usually the polyhedral domain related with practical CGPC laws are in
fact polytopes. These domains in a compact form can be analysed by their
evolution, providing the dynamics of the constrained variables vector. This is the
purpose of the next part.
From (5) one has

J =kuT(GTG+u)<u +2k, TG(l-w)=

(14)
=k, |GTG+41 [k, +2k,TGE®™ ()
H

where E is a matrix which allows the description of the vector
1-w =E0*(r)when
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ypast (t + 1)

* W past (t+1) *
0 (t+1)= :v(t+1) =® 0(t) =
wo(t+1)
D, (if) D, (i) D3 (G) 0 o 7 ¥rer )
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0 0 0 M; 0 "
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One can find the description for the vector k,, by minimizing this index J
under the constraints
Ak, <b-K® 0(t) (16)
where K is a matrix allowing the description of the affine part of the inequalities
as a linear dependence on the context parameters 9*(1). The close form of the
optimal control sequence for the CGPC is

K * = H—IXT Ao AN -l -l *
W= 0(AocH  Ao) A¢gH —H " |GE® 0(¢)
NIV *
+H Ao (AoH " Ao) (b -K® O(t))

_ B Rl Ayul N R N b | -1 *
=||H Ao(AoH Ao) AoH -H  |GE®
NI RIS NIV TN
—-H Ao(AocH A¢g) K® [0(¢)+H Ao(AocH Ao) b

with A the matrix constructed by the subset of lines in A for whom the
inequality constraints are saturated.

As a conclusion, the elaborated control law is affine in the parameter
vector 0(¢). However, the difficulties arise from the fact that the matrix

Ao = Ko(ﬂ(t)) is not allowing an explicit dependence on the vector of parameters.
Remark: A parameterized polyhedron like the one in (16)

P= {ku|Xku <b —ch*e(t)}

has a dual representation where only the vertices are affected by the parameters
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5. Necessary conditions by means of extreme point feasibility

Considering the polyhedral domain as described earlier, with the dual
representation by the vertices, it can be interesting to look at the evolution of these
vertices at each sampling time.

Proposition 1: The optimal control sequence corresponding to all extreme
combinations of context parameters must lead to a point inside the projection of
the initial polyhedral domain for a feasible CGPC law.

Sketch of proof: As explained earlier, the constraints on the CGPC law
define a polyhedral domain

\4 \4

D:{ku|ku = Ak ; (0%, 4; 20, D4 :1} (17)
i=l i=l

By considering the involved system variables as parameters, this

parameterized polyhedron can be extended to a fixed one of higher dimension.

\4 \4
P={9|9=Z/1iei;/1,.zo,z,1i=1} (18)
i=l i=l

The existence of these vertices does not guaranty the fact that the CGPC
law will have the opportunity to reach each of them. Multiple vertices may
correspond to the same context parameters. Thus, a useful manipulation may be
the orthogonal projection of this domain on the subspace of the context
parameters (as in Fig. 1).

Fig. 1. The polyhedral domain and its projection on the context parameters subspace
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This operation can be done explicitly by multiplying each vertex 6; by a

matrix [e jJ where j are the indices of the context parameters in the vector 0. The

resulting set is P , the convex combination of the points
S(P*) = {e*‘ 0 =[ej]9,-} (19)
Once the projection available, a redundancy check must be operated in
order to obtain the minimal set of generators.

The resulting domain P" can provide by its vertices the extremal points
for the context parameters that can further be used for figuring the whole domain.
Solving the parameterized quadratic problem related to CGPC, one can retrieve a
hyper surface inside the original polyhedral domain D .

Fig. 2. The optimal solution of CGPC for each possible context parameters combination

The elaboration of this shape enables to solve all the analysis problems as it
defines the whole behavior of the CGPC law. As far as the evolution of the
context parameters domain is concerned, the image of the points on the CGPC
shape must be found by the linear transformation (15). If this domain is denoted

as P: , the necessary and sufficient conditions for feasibility are resumed by
P> P, (20)
Due to limitations in the knowledge on the topology of the CGPC shape, this

will resume on necessary conditions based on the extremal points. These
necessary conditions may be expressed as in Fig. 3 by a set of inequalities

9*(t+1)eP: (21)
which resumes the proposition.
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Fig. 3. The evolution of the extrémal points of context parameters domain

For a complete analysis of the CGPC law, all the points inside the

polyhedral domain P: have to be checked in order to confirm the feasibility. This

is not an obvious task as long as the optimal control sequence is affine in the
context parameters, and the affine part even if linear in the parameter vector is
changing the linear dependence in concordance with the active set of constraints.
It is clear that the number of active constraints is maximal for the vertices and is
subsequently decreasing for the points on the frontier where subsets of these sets
of constraints are active. Following the same line as the proof, an algorithm based
on tools of polyhedral computations and quadratic optimization can be designed
in order to validate these necessary conditions. Such an algorithm can be resumed
by the following steps.

Algorithm 1

- Compute the vertices of the polyhedral set by dual representation of the
constraints

- Project the polytope on the parameters subspace

- Remove the redundant points

- Compute the close form of the control law in all the vertices of the
constrained domain. (Compulsatory as it is not always equal with the value in the
original polyhedron)

- For each such law, construct the evolution matrix and compute the
corresponding next step parameters (¢ +1)

- Check if each such point 0(¢+1) is inside the projected polyhedron found

at step 2. If it is not the case, that means that there exists at least one point in the
constrained domain which, if reached, will lead to infeasibility.

6. Exemple

Consider in the following a second order linear system as the one reported in
(Olaru and Dumur, 2003), with non-minimum phase characteristics
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(1-¢7'+0.25¢ ) p(1) = (=0.25-0.25¢ " +0.75¢ > Yu(r) (22)
The step response of this system is given in Fig. 4.

Step Response

Ampltude

L L
15 20 25

Fig. 4. Open loop step response

For CGPC law with Ny =1, N, =4, N, =2, the system proves to have an

infeasible behavior for step setpoints and constraints on the output of magnitude
—1< y <1, based on snow-ball attitude [14] (Fig. 5).
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Fig. 5. CGPC closed loop behavior

Proceeding as explained in Algorithm 1, the constrained domain can be
described as

D={k,|ly<Gk, +1<1y] (23)
where 1 is like in (3) and
-0.25 0
-0.75 -0.25
G= (24)
-0.40 -0.80
0 -0.40

The elaboration of the extended polyhedron requires the definition of
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P = {_ Finin SF 0(0) <Tax Tiins Fimax 2 0} (25)
with
I, =1"y=151,"=1"y=1"
2 —-1.25 025 -025 075 -0.25 0
275 =225 0.5 0.25 1.5 -0.75 -0.25
3.2 -3 0.7 0.8 2 -04 -0.8

36 -34 -08 -12 -24 0 0.4

00) =]y e () w0 K,

As the context parameters include the past outputs, three implicit constraints
have been added as an upper part of F in order to avoid the analysis of non-
reachable regions. The result is a square matrix of constraints describing a
polytope with a dual representation containing 128 vertices. The projection on the

subspace of the first five variables leads to a domain P” that can be reduced by
removing redundant pairs to the convex hull of 64 vertices like in Fig. 6.

01=[-148 -148 148 335-193 1/148
02=[ 148 148 -148 677 -303 ]/148
03=[ 148 -148 -148 793 -767 1/148

064=[-148 148 148 -793 767 /148
Fig. 6. Convex hull for P* computed by POLYLIB

The corresponding quadratic problems have to be solved in order to find the
optimal control law in each such extreme context. The next step aims at
computing the image of the resulting extended vectors 0; g4 by the linear

transformation
2 —125 025 =025 075 =025 0
1 0 0 0 0 0 Of ¥,
0*+1)=|0 1 0 0 0 0 0| Au,,, (@)
0 0 0 0 1 0 0 k,@®
0 0 0 1 0 0 0

Checking th_eir membership inside D ends the algorithm_. In the studied case,
there are 32 vertices which are positioned outside the feasible context polyhedron

P". This means that there are at least 32 combinations of past inputs and outputs
for which there is no feasible control sequence able to retain the system inside the
constraints
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-1<y<1
Thus as the necessary conditions are not fulfilled, the CGPC is infeasible.

6. Conclusion

This paper presented two possible approaches for off-line analysis of the
feasibility of constrained generalized predictive control strategies. The advantages
of this analysis consist in a set-point validation at the stage of parameter tuning for
the predictive control laws. Subsequently, the adaptation of prediction horizon
and/or the introduction of slack variables can be considered for feasibility
reinforcement at the control design stage.
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