

CHILLED AMMONIA PROCESS EVALUATION FOR CO₂ SEPARATION

Nela SLAVU¹, Cristian DINCA², Adrian BADEA³

In this study, the chilled ammonia technology was analyzed for diminishing CO₂. Thus, the temperature in the absorption stage of the chilled ammonia method was varied, observing its influences on the CO₂ capture performance and on the thermal heat consumption for solvent regeneration. The number stages of the absorption column are another factor that has an impact on the CO₂ capture method performance. Also, the ratio between the flue gases amount and aqueous ammonia amount was varied for determining the optimal ratio of the technical point of view. It is observed that the optimal solvent temperature was 10 °C for which a minimum energy consumption was obtained.

Keywords: CO₂ capture, chilled ammonia, energy systems, heat duty

1. Introduction

In the context of climate changes, due to the increases of CO₂ concentration in the atmosphere, the Carbon Capture and Storage (CCS) attracts a special analysis. CCS is view as one of the promising ways for reducing CO₂ pollutant [1-3]. Correlate to the International Energy Agency (IEA), fossil fuel combustion provides over 80% of total energy demand worldwide, 29 % of primary energy consumption is represented by coal. Thus, the coal combustion process generates almost 44% of total global CO₂ emissions [4]. Therefore, the CO₂ capture technologies integration into coal-fired energy generation processes is necessary to assure the reduction of CO₂ emissions for minimizing the global warming rate [5, 6].

In this paper, we treated only the capture processes and for that, we assumed that the CO₂ stream respects the conditions for transporting and storing it. There are many capture technologies that were developed for CO₂ separation split into three families according to the place they are integrated: before and after the combustion processes [7,8]. The CO₂ capture using the chemical solutions before the combustion method is ready to be used in the power plants and it is

¹ PhD. Student, Energy Generation and Use Department, University POLITEHNICA of Bucharest, Romania, Academy of Romanian Scientists, e-mail: slavunela@yahoo.com

² Prof., Energy Generation and Use Department, University POLITEHNICA of Bucharest, Romania, Academy of Romanian Scientists, e-mail: crisflor75@yahoo.com

³ Prof., Energy Generation and Use Department, University POLITEHNICA of Bucharest, Academy of Romanian Scientists, Romania, e-mail: badea46@yahoo.fr

considered the most feasible technology for CO₂ separation from the big energy processes [8, 9]. Nevertheless, the main drawback of the CO₂ separation by using amines is the high thermal needs for solution regeneration, which represents over 60% of the whole energy requirements of the CO₂ separation process [10-12]. In the case of energy processes, the thermal energy needs for solvent regeneration reduces the overall power plant performance with 25-40% and consequently to an increase in electricity cost with 70-100% [13,14].

The CO₂ capture process is not only an option for power plants, also it can be integrated in different industrial processes like cement (CO₂ content in flue gases is > 30 mol %) or glass factories. The chilled ammonia process could be easily integrated in the existing power plants but from technical point of view there are 2 major concerns: one is related to the value of the CO₂ certificate and the second is referred to parameters of the flue gases/syngas (CO₂ concentration, temperature and pressure).

Therefore, for reducing the energy consumption associated with the CO₂ capture method, in this paper, the chilled ammonia method was analyzed. The scope of the paper was to determine the energy requested by the ammonia process and to compare it with that one obtained in the chemical absorption method using MEA (30 wt.%).

2. Description of the ammonia method

The aqueous ammonia (NH₃) is considered another possible solvent for CO₂ absorption [15,16]. Compared with monoethanolamine (MEA), the aqueous ammonia has many advantages [15]. The first advantage consists in its higher absorption capacity of CO₂, with a theoretical ratio of 1 mole NH₃/mole CO₂, compared with monoethanolamine which the ratio is 2 mole MEA/mole CO₂. The solvent regeneration in the method with NH₃ uses less heat than in the case of amine-based solvent [16,17]. In the case of NH₃, the thermal energy requirement is based on the CO₂ absorption enthalpy which is 60-80 kJ/mole, smaller than in the MEA case: 80-90 kJ/mole. Another reason for the lower thermal energy demand is that the NH₃ regeneration can be achieved at high pressures, which reduces the heat of water vaporization [17]. Another advantage of NH₃ is its behavior against thermal and oxidative degradation due to the simplicity of its composition and chemical structure between nitrogen and hydrogen. The NH₃ process can simultaneously capture different pollutants, acid gases such as SO_x and NO_x [18]. The CO₂ capture technology based NH₃ has an opportunity to reduce the complexity of the pilot installation by reducing more pollutants (SO_x and NO_x) from the exhaust gases. The main drawback of the NH₃ process consists in its loss during the absorption column considering the high volatility. Although the NH₃ process needs less thermal energy for regeneration than the benchmark

case (ethanolamine utilization), the total heat demand associated with the whole NH₃ method makes its implementation inaccessible at commercial scale [19].

The CO₂ absorption process based aqueous ammonia implies physical and chemical phenomena. The reactions that take place in the absorption and desorption column are presented in Table 1.

Table 1
Chemical reactions of the chilled method [15]

<i>Reaction in the absorption column</i>	
Carbamate formation	$2\text{NH}_3 + \text{CO}_2 \leftrightarrow \text{NH}_2\text{COONH}_4$
Bicarbonate formation from carbamate hydrolysis	$\text{NH}_2\text{COONH}_4 + \text{H}_2\text{O} \leftrightarrow \text{NH}_4\text{HCO}_3 + \text{NH}_3$
Reaction NH ₃ with H ₂ O	$\text{NH}_3 + \text{H}_2\text{O} \leftrightarrow \text{NH}_4\text{OH}$
Carbonate formation	$\text{NH}_4\text{HCO}_3 + \text{NH}_4\text{OH} \leftrightarrow (\text{NH}_4)_2\text{CO}_3 + \text{H}_2\text{O}$
Bicarbonate formation by CO ₂ absorption by (NH ₄) ₂ CO ₃	$(\text{NH}_4)_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2 \leftrightarrow 2\text{NH}_4\text{HCO}_3$
Solids formation	$\text{NH}_2\text{COONH}_4(\text{aq}) \leftrightarrow \text{NH}_2\text{COONH}_4(\text{s})$ $\text{NH}_4\text{HCO}_3(\text{aq}) \leftrightarrow \text{NH}_4\text{HCO}_3(\text{s})$ $(\text{NH}_4)_2\text{CO}_3(\text{aq}) \leftrightarrow (\text{NH}_4)_2\text{CO}_3(\text{s})$
The general reaction of CO ₂ separation with ammonia	$\text{NH}_3 + \text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{NH}_4\text{HCO}_3 + \text{NH}_2\text{COONH}_4$
Mechanism of zwitterion reaction	$\text{NH}_3 + \text{CO}_2 \xrightarrow{k_1} \text{NH}_3^-\text{COO}^+$ $\text{NH}_3^-\text{COO}^+ + \text{CO}_2 \xrightarrow{k_{-1}} \text{NH}_3 + \text{CO}_2$ $\text{NH}_3^-\text{COO}^+ + \text{B} \xrightarrow{k_2} \text{NH}_2\text{COO}^- + \text{BH}^+$ $\text{NH}_2\text{COO}^- + \text{BH}^+ \xrightarrow{k_{-2}} \text{NH}_3^-\text{COO}^+ + \text{B}$
Reaction rate between CO ₂ and NH ₃	$r_{\text{NH}_3-\text{CO}_2} = \frac{[\text{CO}_2][\text{NH}_3]}{(1/k_1) + (k_{-1}/k_1)(1/\sum k_8[\text{B}])}$
Reaction rate between CO ₂ and OH ⁻	$r_{\text{OH}^--\text{CO}_2} = k_3[\text{OH}][\text{CO}_2]$
General reaction rate at CO ₂ absorption by NH ₃	$r_{\text{general}} = r_{\text{NH}_3-\text{CO}_2} + r_{\text{OH}^--\text{CO}_2}$
<i>Reaction in the desorption column</i>	
$2\text{NH}_4 + 2\text{HCO}_3^- \leftrightarrow 2\text{NH}_4^+ + \text{CO}_3^{2-} + \text{CO}_2 + \text{H}_2\text{O} \quad \Delta H = 26.88 \text{ kJ/mol}$	
$\text{NH}_4^+ + \text{HCO}_3^- \leftrightarrow \text{NH}_3 + \text{CO}_2 + \text{H}_2\text{O} \quad \Delta H = 64.26 \text{ kJ/mol}$	
$\text{NH}_4^+ + \text{NH}_2\text{COO}^- \leftrightarrow 2\text{NH}_3 + \text{CO}_2 \quad \Delta H = 72.32 \text{ kJ/mol}$	
$2\text{NH}_4^+ + \text{CO}_3^{2-} \leftrightarrow 2\text{NH}_3 + \text{CO}_2 + \text{H}_2\text{O} \quad \Delta H = 101.22 \text{ kJ/mol}$	

The ammonia method was patented in 2006 by Eli Gal [20]. Firstly, the purpose of this method is to separate the CO₂ at a low temperature. It is mentioned an interval of temperature values from 0°C to 20°C, and usually from 0°C to

10°C. Therefore, flue gases cooling is required before entering into the CO₂ absorption method. The CO₂ capture performance of the chilled ammonia process depends on the flue gases temperature and on the aqueous ammonia temperature. The flue gases could be cooled using water in a closed circuit. The water flow required for cooling flue gases (10 °C) is 200 kg/h. In this case the water temperature outlet of the heat exchangers is 57 °C. For reducing the water temperature from 57 to 5 °C a refrigeration fluid (e.g. r410a.mix) is required. Thus, a mechanical compression in a single stage allow to reduce the water temperature with an efficiency of 4.7. The power of the piston compressor is 2.44 kW. However, the energy required for flue gases cooling wasn't take into consideration in this study. After cooling, the exhaust gases enter in the absorption unit, and as for chemical absorption method using amines, the CO₂ absorption takes place at atmospheric pressure. After CO₂ absorption, the clean flue gases leaves the column on the top and the CO₂ rich solution on the bottom. In the desorption column, the rich solution is regenerated at about 110°C, the CO₂ lean solution is recirculated and cooled before enters in the absorption column. The pure CO₂ leaves desorption column at the top. The diagram of the chilled ammonia process is shown in Fig. 1.

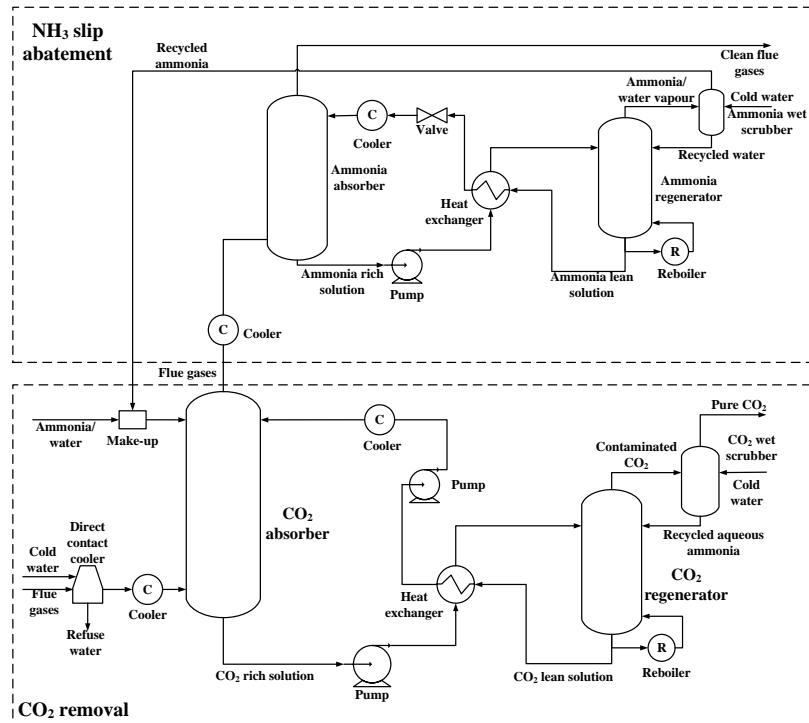


Fig. 1. Schematic diagram of the ammonia method [22]

To maintain a specifically CO₂ capture performance it requires a fresh amount of aqueous ammonia because in the absorption and the desorption methods there are losses. The schematic diagram of the chilled method is divided into two parts: CO₂ removal and NH₃ slip abatement. In this study, we analyzed only the CO₂ removal part. The aim of the NH₃ slip abatement part is to recover the ammonia evaporated in the absorption method.

The CO₂ capture process based on NH₃ was simulated in Aspen HYSYS. The flue gases to be treated are provided from a lignite power plant. The mass composition of the lignite and the composition of the exhaust gases are presented in Table 2. The data used in the simulation are shown in Table 3.

Table 2
Lignite and exhaust gases composition, (wt. %)

Mass composition of coal							
C, [%]	H, [%]	S, [%]	O, [%]	N, [%]	W, [%]	A, [%]	LHV, [kJ/kg]
23	1	1	1.6	1.5	35.5	36.4	7913
Mass composition of exhaust gases							
Dry flue gases				Wet flue gases			
CO ₂ , [%]	12.3			10.4			
SO ₂ , [%]	0.2			0.17			
N ₂ , [%]	80			70			
O ₂ , [%]	7.5			6.6			
H ₂ O, [%]	-			12.93			

Table 3
Main data for CO₂ capture process simulation

Parameter	Value	U.M
Flue gases flow	100	kg/h
Flue gases temperature	10	°C
Flue gases pressure	300	kPa
Aqueous ammonia flow	55...100	kg/h
Ammonia concentration	20	%
Aqueous ammonia temperature	-10...10	°C
Aqueous ammonia pressure	300	kPa
Stages number of absorber	5...11	-
Stages number of stripper	6	-
CO ₂ rich solvent temperature at heat exchanger outlet	50...80	°C
CO ₂ lean loading solvent	0.26	mol _{CO₂} /mol _{NH₃}

3. Results and discussion

In this assessment, the CO₂ capture method based on ammonia according to different parameters was analyzed. The CO₂ capture performance depends on the ratio between aqueous ammonia amount and flue gases amount, thus the CO₂ capture performance increased with L/G measure. In Fig. 2 is presented the variation of CO₂ capture performance correlate to the L/G ratio, it is noticed that

for an L/G ratio of 1 mol_{solvent}/mol_{flue_gases} a CO₂ capture performance of 100% was obtained due to the higher amount of solvent available for the same flue gases flow. For smaller L/G, the CO₂ capture performance could be improved by changing the absorption column in order to increase the surface between the liquid and gas interface. However, an increase of the absorber column height generates an increase of the investment cost. In Fig. 3, the influence of the surface in the column on the energy consumption and the lean loading solvent is presented. In this assessment, the energy consumption was determined as the sum of the heat energy and electricity required for cooling the CO₂ lean solvent before of the absorption column. Considering the CO₂ capture process performance constant, a higher surface in the absorber column led to reducing the energy consumption due to the smaller amount of solvent flow. For comparing the thermal energy consumption, it is assumed that the lean solvent has approximately the same CO₂ concentration. To keep constant the CO₂ concentration in the regenerated solvent, the thermal energy was varied. The lean loading solvent is considered approximately 0.26 mol_{CO₂}/mol_{NH₃} [21]. A smaller value of the CO₂ concentration in the regenerated solvent allows to increase the heat consumption while a higher value permits to increase the amount of the solvent flow for maintaining the same CO₂ capture process performance.

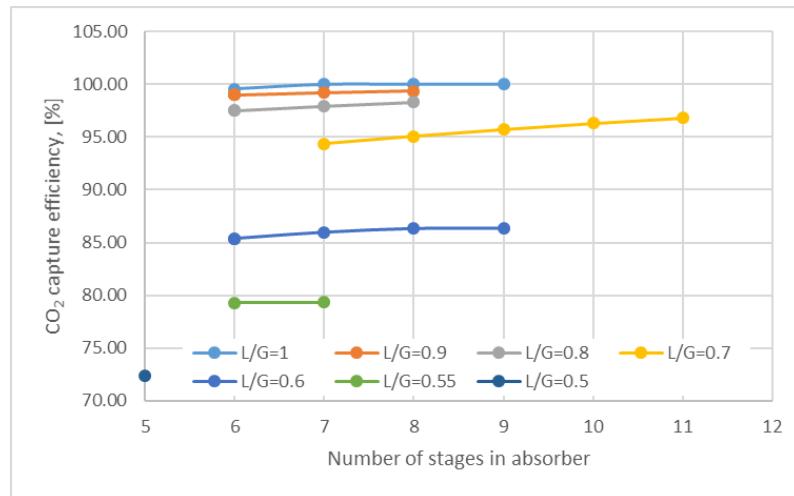


Fig. 2. CO₂ capture performance according to the absorber surface and L/G measure

The CO₂ rich solvent temperature at the inlet in the stripper unit has a sensible impact on the chilled ammonia method energy consumption. The heat exchanger optimization (see Fig. 4) has a huge benefit for minimizing the thermal energy consumption, taking into account that the lean solvent temperature at the absorption column inlet is low (-10...10°C). According to the solvents temperature at the exit of the stripper column and absorption column respectively,

the maximum temperature of the solvent at the heat exchanger outlet was 80°C. In the present study, the heat energy consumption was reduced from 4.5 to 3.1 GJ/tCO₂.



Fig. 3. Heat energy according to the absorber surface

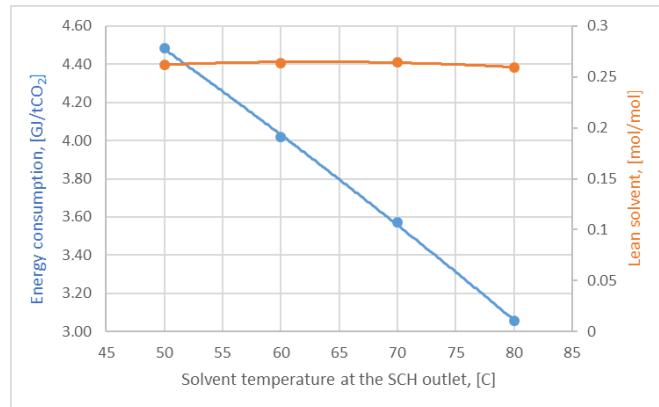


Fig. 4. Energy consumption according to the solvent temperature at the HEx outlet

The aqueous ammonia temperature in the absorption method influences both the CO₂ capture performance and the energy consumption of the method. We analyzed three cases considering three temperatures for the aqueous ammonia: -10, 0 and 10°C. In Fig. 5 and 6 there are presented the results obtained for CO₂ capture performance and energy consumption. For higher L/G (>1), the CO₂ capture process performance tends to 100% irrespective the lean solvent temperature due to the high amount of solvent compared with the amount of flue gases. For L/G ratio smaller than 1 the CO₂ capture process performance decreases, faster for the solvents with a higher temperature at the inlet in the absorber column.

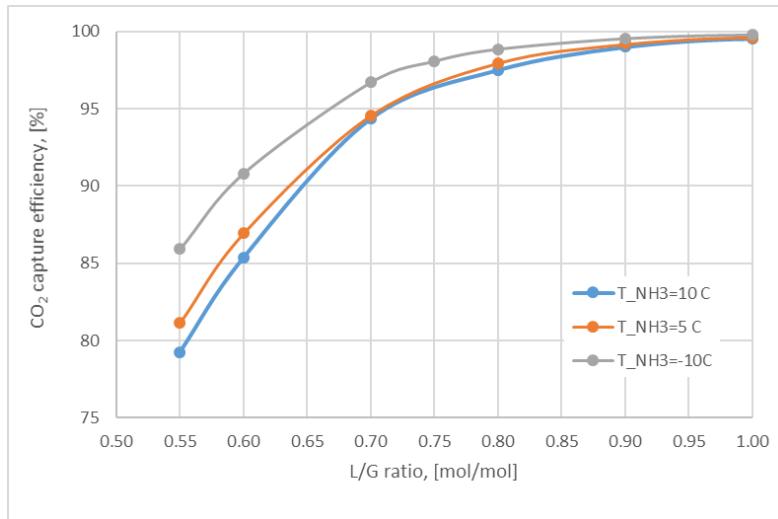
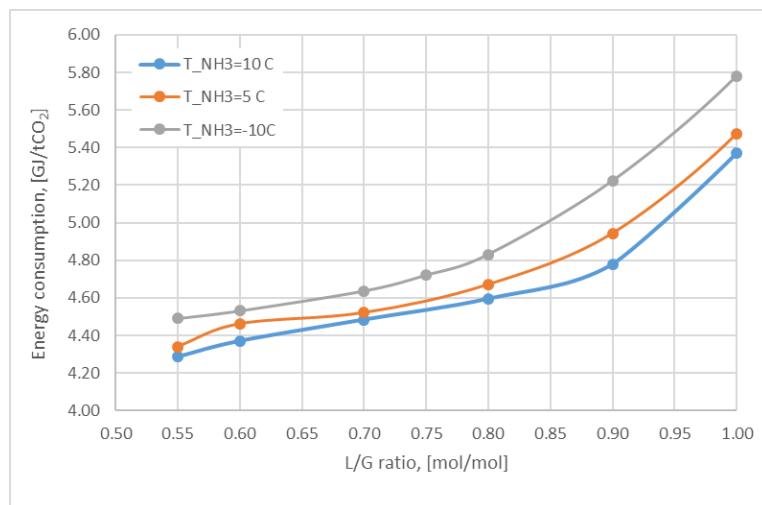


Fig. 5. CO₂ capture performance correlate with L/G and temperature of NH₃

Fig. 6. Energy consumption correlate with L/G

As regarding the energy consumption (see Fig. 6), a lower value for the solvent temperature at the inlet absorber column led to increases the energy consumption due to the heat needs for cooling the solvent before the absorption column. In this context, an optimization of the heat exchanger is required for establishing the solvent temperature at the outlet of the HEx. Thus, two cases were analyzed: considering 50 and 80°C. For the first case, a lower electricity is required for cooling the NH₃ solution before the absorption column while in the second case a lower energy consumption is needed for heating the solution before the stripper unit. In Figure 6, the energy consumption evaluation is presented for

the solvent temperature at the outlet from HEx of 50°C. Figure 4 is noticed that the energy consumption is reduced from 4.4 to 3.1 when the solvent temperature at the outlet from HEx is increased from 50 to 80°C.

4. Conclusions

The chilled ammonia process for CO₂ separation can be an alternative solution for chemical absorption process based on alkanolamines. The aqueous ammonia is characterized by a higher value for acid gases absorption and lower values for heat and electricity consumption according with the ethanolamine method. The streams temperature in the process influences both the CO₂ capture performance and the electricity and heat used. In addition, the column surface and the temperature of the CO₂ solvent at the heat exchanger outlet have an impact both on the CO₂ capture performance and energy consumption. Consequently, more researches should be done to find the optimal solution for CO₂ capture post-combustion and its integration at large-scale, also an economic analysis is required.

In this study we have used the software Aspen Hysys for process simulation. Thus, we simulated only the chilled ammonia process and not the its integration in an energy process. We have chosen not to study the energy integration of the chilled ammonia due to the fact that this process could be used both in the post- and pre- combustion processes where the syngas pressure could have the required values. For this reason, we do not take into consideration the electricity required for flue gases compression. In terms of energy balance for our case, the energy consumption for compression represents 15% (16 MJ/h) from the all energy required by the all equipment in the chilled ammonia process: cooling (39 MJ/h) and solvent regeneration (50 MJ/h).

Acknowledgement

The study has been funded by the Academy of Romanian Scientists.

R E F E R E N C E S

- [1]. *M.E. Boot-Handford, E. Matthew, et al.*, “Carbon capture and storage update”, in *Energy & Environmental Science*, **vol. 7**, no. 1, 2014, pp. 130-189.
- [2]. *P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreibera and T. E. Müller*, “Worldwide innovations in the development of carbon capture technologies and the utilization of CO₂”, in *Energy & Environmental Science*, **vol. 5**, no. 6, 2012, pp. 7281-7305.
- [3]. *C. Dinca*, “Critical parametric study of circulating fluidized bed combustion with CO₂ chemical absorption process using different aqueous alkanolamines”, in *Journal of Cleaner Production*, **vol. 112**, Jan. 2016, pp. 1136-1149.
- [4]. *** IEA – Energy and climate change, world energy outlook special report, 2014.

- [5]. A. Badea, I. Voda and C. Dinca, “Comparative analysis of coal, natural gas and nuclear fuel life cycles by chains of electrical energy production”, in University Politehnica of Bucharest Scientific Bulletin Series C, **vol. 72**, no. 2, 2010, pp. 221-238.
- [6]. C. Dinca, A. Badea, L. Stoica and A. Pascu, “Absorber design for the improvement of the performance of post-combustion CO₂ capture”, in Journal of the Energy Institute, **vol. 88**, no. 3, Aug. 2015, pp. 304-313.
- [7]. G.T. Rochelle, “Amine scrubbing for CO₂ capture”, in Science, **vol. 325**, no. 5948, Sept 2009, pp. 1652-1654.
- [8]. C. Dinca, N. Slavu and A. Badea, ‘Benchmarking of the pre/post-combustion chemical absorption for the CO₂ capture”, in Journal of the Energy Institute, **vol. 9**, no. 3, June 2018, pp. 445-456.
- [9]. D. Aaron and C. Tsouris, “Separation of CO₂ from flue gas: a review”, in Separation Science and Technology, **vol. 40**, no. 1-3, 2005, Published online Nov 2011, pp. 321-348.
- [10]. A. Pascu, L. Stoica, C. Dinca and A. Badea, “The package type influence on the performance of the CO₂ capture process by chemical absorption”, in University Politehnica of Bucharest Scientific Bulletin Series C, **vol. 78**, no. 1, 2016, pp. 259-270.
- [11]. H. Herzog, J. Meldon and A. Hatton, Advanced post-combustion CO₂ capture, Prepared for the Clean Air Task Force under a grant from the Doris Duke Foundation, Apr. 2009, pp. 1-39.
- [12]. C. Dinca, N. Slavu and A. Badea, “CO₂ adsorption process simulation in ASPEN Hysys”, in International Conference on ENERGY and ENVIRONMENT (CIEM), IEEE, Dec. 2017, pp. 505-509.
- [13]. J. Black, Cost and performance baseline for fossil energy plants volume 1: Bituminous coal and natural gas to electricity, Final report (2nd edition), National Energy Technology Laboratory Report no.: DOE201013972010, 2010.
- [14]. N. Slavu and C. Dinca, “Economical aspects of the CCS technology integration in the conventional power plant”, in Proceedings of the International Conference on Business Excellence, **vol. 11**, no. 1, Aug. 2017, pp. 168-180.
- [15]. V. Darde, W.J Van Well, P.L. Fosboel, E.H. Stenby and K. Thomsen, “Experimental measurement and modeling of the rate of absorption of carbon dioxide by aqueous ammonia”, in International Journal of Greenhouse Gas Control, **vol. 5**, no. 5, Sep. 2011, pp. 1149-1162.
- [16]. C. Dinca, N. Slavu, C.C. Cormos, and A. Badea, “CO₂ capture from syngas generated by a biomass gasification power plant with chemical absorption process”, in Energy, **vol. 149**, 2018, pp. 925-936.
- [17]. F. Shakerian, K. H. Kim, J. E. Szulejko and J. W. Park, “A comparative review between amines and ammonia as sorptive media for post-combustion CO₂ capture”, in Applied Energy, **vol. 148**, June 2015, pp. 10-22.
- [18]. C. R. McLarnon and J. L. Duncan, “Testing of ammonia-based CO₂ capture with multi-pollutant control technology”, in Energy Procedia, **vol. 1**, 2009, pp. 1027-1034.
- [19]. B. Zhao, Y. Su, W. Tao, L. Li and Y. Peng, “Post-combustion CO₂ capture by aqueous ammonia: a state-of-the-art review”, in International Journal of Greenhouse Gas Control, **vol. 9**, July 2012, pp. 355-371.
- [20]. E. Gal, Ultra cleaning combustion gas including the removal of CO₂, World Intellectual Property, Patent WO 2006022885, 2006.
- [21]. D. P. Hanak, C. Biliyok and V. Manovic, “Rate-based model development, validation and analysis of chilled ammonia process as an alternative CO₂ capture technology for coal-fired power plants”, in International Journal of Greenhouse Gas Control, **vol. 34**, Mar. 2015, pp. 52-62.