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PROCEDURE FOR ASSESSING NORMALITY IN SMALL 

SIZE SAMPLES OF PHYSIOLOGICAL DATA  

Ileana BARAN1, Cristina SĂVĂSTRU2 

This paper reports an experimental study for physiological signals 

acquisition, using artery applanation tonometry method. The records acquired from 

a small size sample (20 subjects) were measured with Omron HEM 9000 AI device. 

Results are analysed at univariate level in order to identify, estimate the statistical 

model of data and validate the parameters inferred for each of the proposed 

theoretical distribution laws. 
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1. Introduction 

Cardiovascular diseases are known as the main cause of mortality, 

influenced by stress, age, heredity, cholesterol, physical inactivity and diabetes. 

To prevent the development of arterial stiffness, stroke or myocardial infarctions, 

is important to monitor the parameters (central systolic pressure, systolic - 

diastolic pressure, pulse pressure etc.) that triggers such diseases [1]. Among 

modern methods for determining these parameters is the arterial applanation 

tonometry conducted with specific instruments for arterial pulse measurements 

(SphygmoCor, Omron HEM 9000 AI, Watchpat, etc.). 

Inspired by intraocular tonometry, the arterial applanation tonometry is 

useful to analyze and capture the pulse wave in a noninvasive manner. Although 

most of the measurements are taken from the peripheral radial artery, the 

brachial–radial–ulnar artery system is also an eligible area because there is a rigid 

structure (the bones) near the blood vessel that facilitate the uniform compression 

and occlusion [2]. 

In this study, records of vital physiological parameters (blood pressure, 

augmentation index - AI, heart rate, etc.) where made with Omron HEM 9000AI 

device, for an experimental group of 20 subjects, aged between 21-58 years. 

Statistical analysis of acquired data is performed using a procedure tailored for 

small size samples.  
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2. Physiological signals acquisition 

The achieved data set, gives information about systolic pressure (SYS), 

diastolic pressure (DIA), pulse pressure (PP), central systolic blood pressure 

(cSBP), augmentation index (AI) and also about normal pulse values (PULSE). 

 

 

Fig. 1. Results generated by HEM Omron AI 9000 

The right side of Fig. 1 is a diagram that evaluates if the recorded results 

are within normal limits for the patient age.  

The first step for signal acquisition is adjusting the patient posture. Placing 

the tonometer on the wrist can sometimes be problematic. An angle of 30 degrees 

between the arm and the device, the existence of a rigid holder makes it easier for 

sensing the pulse [3]. 

One of the important advantages offered by HEM Omron 9000 AI is the 

simultaneous recording of the physiological variables listed above, opening 

therefore the way to multivariate techniques for the statistical analysis of the 

acquired data. 

3. Structure of the acquired data  

The experimental study targeted the population of healthy subjects without 

diagnosed cardiovascular diseases. The units included in the sample have been 

selected using a non-probability sampling technique namely the convenience 

sampling, made up of people who were easy to reach in the time frame of the 

experiment [4]. The main limitation of such a technique consists in the risk to 

obtain a sampling bias (i.e. the units selected from the population for inclusion in 

the sample does not reflect the population, and therefore, the sample could be 

unrepresentative of the population). The characteristics of the population that are 

of interest to this study are three anthropometric variables: the age (AGE), the 

height (H) and the weight (G) of the units.  

The physiological variables recorded using HEM Omron AI 9000 {SYS, 

DIA, cSBP, PULS, AI} have been associated to the anthropometric variables of 

each unit. Both physiological and anthropometric variables are direct observable 
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variables (variables that can be observed and measured) [5] and together they 

form a random vector with 8 entries. The sample under study consists of 20 

realizations of the observed random vector, as a single record has been performed 

for each of the 20 subjects of the experiment. Consequently, the data form a 

sample of n = 20 points in a space with p = 8 dimensions.  
Table 1 

Sample size structure 

dimensions 

observations 

1 2 3 4 5 6 7 8 
AGE H G cSBP SYS DIA AI PULS 

1 y11 y12 y13 y14 y15 y16 y17 y18 

… … … … … … … … … 

k yk1 yk2 yk3 yk4 yk5 yk6 yk7 yk8 

… … … … … … … … … 

n yn1 yn2 yn3 yn4 yn5 yn6 yn7 yn8 

 

The structure of the sample is made explicit in the table above. All the 

random variables are numerical and continuous, which implies the continuity of 

the random vector. All the entries of the random vector taken together have a 

multivariate distribution described by the joint probability density function. When 

isolated, each of the entries of the random vector has a univariate probability 

distribution that can be described by its own probability density function. This is 

called marginal probability density function, in order to distinguish it from the 

joint probability density function associated to the random vector. A more formal 

definition follows. 

Let Y1,…, Yp be p continuous random variables forming a “p x 1” random 

vector. Then, the probability density function for each of the Yi random variables 

with i = 1,…, p denoted by fYi
(y) is called marginal probability density function 

and can be obtained from the joint probability density function by integrating with 

respect to all variables except Yi  

   111111 ......,...,,......)( dydydydyyyyyfyf iippiiYYi 











  (1) 

Many of the statistical procedures [6] performed on multivariate data are 

based on the assumption that the data follow a multivariate normal distribution 

(MVN) but, assessing multivariate normality is difficult in high dimension. A 

rational approach consists in analyzing the univariate marginal probability density 

functions followed by a bivariate analysis because if Y ~ MVN, all the marginal 

and conditionals density functions are normal (MVN stands for Multivariate 

Normal Distribution). Consequently, the first step in any statistical analysis of 

multivariate data is to check if the marginal probability density functions defined 

in (1) are normal for each entry of the random vector, and if not, which deviations 

from normality can be identified. If for large enough sample sizes (> 30 or 40) the 



164                                                  Ileana Baran, Cristina Săvăstru 

violation of the normality assumption should not cause major problems (i.e. 

parametric procedures can be however used), for small samples such as the 

present one, verification of the normality assumption should be mandatory 

otherwise it would be difficult to draw accurate and reliable conclusions about 

reality [7], [8].  

There are several approaches to check for normality but, for the purposes 

of this paper, two approaches have been selected: a graphic-analytical method 

based on the empirical cumulative distribution function and the use of 

goodness of fit tests.  

4. Fitting a Univariate Distribution Using QQ Plots 

When sample sizes are small, simply creating a histogram from the 

available data cannot be qualified as an objective method to judge the assumption 

of normality, because highlighting the shape of the theoretical distribution 

function using the sample histogram is difficult, mainly because the shape of the 

histogram can change significantly by simply changing the width of the class 

intervals [9]. For small sample sizes the quantile-quantile plots (QQ plots) may be 

used to assess more objectively whether data comes from a normal distribution.  

For the univariate random variable Yk (k = 1, 2 ,…p) the available sample is 

formed by n observations {yk1,…,ykj,…, ykn} which rearranged in ascending order 

will produce the raw of sample order statistics yk(1) <…< yk(i) <…< yk(n) , where yk(i)  

is called the ith order statistic [10]. Special cases includes the minimum 

yk(1) = min {ykj}j = 1…n and the maximum yk(n) = max {ykj} j = 1…n. When the sample 

quantiles are distinct (which, in general will be true for a continuous variable), 

exactly i observations will be smaller than or equal to yk(i). 

The sample quantiles are plotted as a function of the corresponding normal 

order statistic medians which are defined as: 
 

 ii UNx 1                                                     (2) 
 

where Ui are the uniform order statistic medians, defined in [11] and N-1 is the 

percent point function of the normal distribution i.e. the inverse of the normal 

distribution function. It should be mentioned that when the sample quantiles are 

represented as a function of theoretical quantiles computed using a given 

distribution (normal distribution in this case), the QQ plot becomes a Probability 

Plot (PP plot), as it will be referred hereafter. 

The uniform order statistic medians can be approximated by: 
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If the hypothesis of normality holds, the points {xi, yk(i)} in the PP plot will 

fall along a straight line, because a PP plot compares the actual positions of the 

observed quantiles to their corresponding positions in the theoretical population. 

Departures from this straight line indicate departures from the specified statistical 

model in this case the normal distribution.  

The advantages of working with PP plots are: 

a) a quick check of the agreement between the proposed theoretical model 

(the normal distribution in this case) and the sample distribution,  

b) it allows an easy detection of outliers and extreme values (sample values 

which are not within the normal behavior of the analyzed variable), 

c) in case of lack of fit with the theoretical model, the PP plot highlights the 

nature of the deviations (for example different skewness, shorter or longer 

than expected tails). 

A straight line can be fit to the points and added as a reference line. The 

intercept and slope of the fitted line are in fact estimators for the location and 

scale parameters of the normal distribution in a least square approach. The 

correlation coefficient associated with the linear fit to the data in the probability 

plot PP plot, i.e. the Probability Plot Correlation Coefficient (PPCC) [12] can be 

considered as a measure of the goodness of fit with the statistical model. 

Reference [11] offers a table of critical values that can be used as a formal test of 

the hypothesis that the sample comes from a normal distribution. 

To find which statistical model provides the best fit for the data, different 

theoretical distribution functions can be used to generate PP plots; the probability 

plot with the highest correlation coefficient will be the best choice since it 

generates the straightest probability plot. 

When applying the least square method, the independent variable or the 

regressor is the theoretical quantile from (2) while the dependent variable is the 

sample order statistic yk(i). The regression line is the model function: 
 

 iiiik rxbbxfy  10)( );( b  (4) 

where b = (b1, b0) is the vector of parameters, and ri is a random variable named 

residual which captures all other factors influencing the dependent variable yk(i) 

other than the regressor xi. The parameters estimated from the available data 

applying the least square method (LSM) contains all the information needed to 

identify the parameters of the normal distribution function used as statistical 

model. The correspondence between the vector of parameters b in (4) and the 
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parameters of the normal distribution is the following: b1 or the slope of the 

regression line represents in this case the scale parameter  (or standard deviation) 

of the normal distribution while b0 the intercept of the regression line represents 

the location parameter (or theoretical mean)  of the normal distribution.  

PP plots have been drawn for all the random variables under study. The 

results are summarized in fig. 2. The figure includes also a table with the least 

squares estimates of the normal model’s parameters (location and scale) together 

with the value of the sample PPCC. The visual analysis of the PP plots has not 

revealed the presence of extreme values or outliers, consequently, all available 

observations were kept. The point with G > 90 kg which seems to be an outlier 

was accepted after being checked using Grubb’s test for outliers [14]. 

 

 
Fig. 2. – Probability plots for the the random variables  
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The stronger sample linear correlation corresponds to the variable DIA, 

which also exhibits the best agreement with the normal distribution in the PP plot. 

The variables with a weaker correlation such as SYS and cSBP have also PP 

plots, which suggest that the data distribution has a longer left tail than would be 

expected under the theoretical distribution (i. e. normal) being considered. In 

conclusion, the interpretation of the PP plots shows that the variables have not 

outliers or extreme values and the null hypothesis that the data came from 

populations with a normal distribution cannot be rejected, even for the variables 

cSBP and SYS without an objective measure of the departure from normality. 

4. Goodness of fit tests 

As already was stated, an objective approach to check the normal 

distribution of data is to apply a goodness-of-fit test which, in general, refers to 

measuring how well do the observed data correspond to the fitted (assumed) 

model. Given a sample y1, y2, …, yn of observations on a random variable, a 

goodness of fit test operates with the following hypothesis:  

 yFYH :0 , the null hypothesis - the model F(y) fits 

versus 

 yFYHA : , the alternative hypothesis - the model F(y) does not fit  

where F(y) is the assumed model. 

4.1 Shapiro – Wilk (SW) test for normality 

The test, introduced in [15] for small samples, is based on the distribution 

of the following statistic: 
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where yk(i) , i = 1…n are the order statistics associated to the sample ykj , j = 1…n 

from the random variable Yk , ain are suitably chosen constant coefficients, and 
ky  

is the mean of the sample. It may be noted that if one is indeed sampling from a 

normal population then the numerator and the denominator of W are both, up to a 

constant, estimating the same quantity, namely 2, i. e. the variance of the 

population. On the contrary, for non-normal populations, these quantities would 

not in general estimate the same thing. The W statistic can also be interpreted as 

the square of the correlation coefficient between the coefficients ain and the terms 

yk(i) having the same rank in the order statistics raw; consequently, W will take 

values between 0 and 1. For small values of the W statistic the null hypothesis is 
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rejected while for values approaching 1 the null hypothesis is accepted. The 

outcome of the SW test performed for the variables under study is given in table 

2. The second and the third column display the sample mean and the sample 

standard deviation which are the maximum likelihood estimators for the mean and 

scale parameter of the normal distribution function F(y) assumed as statistical 

model. 

As it can be seen from the results summarized in table 2, the null 

hypothesis is accepted with a significance level going up to  = 0.10 except for 

two variables, namely systolic (SYS) and central systolic (cSBP) pressure. For 

this two variables, the sample value of the statistic W is placed in the critical 

region of the test, so that the validation of the normal model requires further 

analysis, especially as the shapes of the PP plots and the PPCC values closer to 

the critical value, have already signalled possible deviations from normality. 

 
Table 2 

Shapiro Wilk test - results 

Variable Mean SD W 
W20;0.01 

= 0.868 

W20;0.05  

= 0.905 

W20;0.10 

= 0.920 

AGE 38.95 11.546 0.940 H0 accepted H0 accepted H0 accepted 

H 165.80 9.283 0.979 H0 accepted H0 accepted H0 accepted 

G 65.90 11.493 0.941 H0 accepted H0 accepted H0 accepted 

SYS 122.65 19.562 0.910 H0 accepted H0 accepted H0 rejected 

cSBP 125.15 20.376 0.919 H0 accepted H0 accepted H0 rejected 

DIA 73.35 9.388 0.984 H0 accepted H0 accepted H0 accepted 

AI 76.60 12.779 0.960 H0 accepted H0 accepted H0 accepted 

PULS 81.55 10.904 0.979 H0 accepted H0 accepted H0 accepted 

 

4.2 The Filliben test of normality 

To refine the analysis concerning the validity of the normal model, a 

second goodness of fit test has been applied, the PPCC test for normality 

introduced in [11] and referred as the Filliben test for normality. The approach 

make use of a new test statistic for the composite hypothesis of normality (i. e. 

location and scale of the distribution both unspecified and therefore replaced by 

estimates of this two parameters), namely the probability plot correlation 

coefficient PPCC, which had been already introduced in relation with the PP plots. 

The test statistics is computed using relation (6), where yk(i) is the i-th order 

statistic for the sample on the random variable. Yk and xi, computed with (2) is a 

measure of location loc(Xi) of the i-th order statistic from a standardized normal 

distribution. The Filliben test uses as a measure of location the order statistic 

medians for reasons which are argued in [11]:  



Procedure for assessing normality in small size samples of physiological data           169 

    

    
  

















n

i
i

n

i
ikk

n

i
i

n

i
ik

i

n

i
ik

x
n

xy
n

y

xxyy

xxyy

r

11

1

2

1

2

1 1
,

1
,           (6) 

 

If the hypothesis H0 is true, the theoretical distribution function of the r 

statistic (i. e. the probability to have r < rp) depends upon the sample size n. This 

particular distribution function has been taken over from [11] and given in table 3. 

 
Table 3 

Theoretical distribution function of the r statistic for n = 20 observations 

p = Pr (r < rp) 

rp 0.452 0.912 0.925 0.939 0.950 0.960 0.972 

p 0.000 0.005 0.010 0.025 0.050 0.100 0.250 

rp 0.981 0.987 0.991 0.992 0.994 0.995 0.995 

p 0.500 0.750 0.900 0.950 0.975 0.990 0.995 

 

The test results for the Omron data set are summarized in table 4. The 

sample mean value reported in the second column of the table and the sample 

standard deviation (SD) reported in the third column are point estimates of the 

location and scale parameters of the populations under study. 

 
Table 4 

Results for the Filliben Test 

Variable Mean SD 
Sample 

PPCC 
rn=20;=0.05 rn=20;=0.10 Observation 

AGE 38.95 11.721 0.9789 0.950 0.960 

PPCC  rn, 

H0 is accepted 

H 165.80 9.530 0.9887 0.950 0.960 

G 65.90 11.601 0.9721 0.950 0.960 

DIA 73.35 9.679 0.9933 0.950 0.960 

AI 76.60 13.061 0.9852 0.950 0.960 

PULS 81.55 11.201 0.9894 0.950 0.960 

SYS 122.65 19.562 0.9605 0.950 0.960 

cSBP 125.15 20.376 0.9652 0.950 0.960 

 

The decision is to accept the hypothesis H0 at a significance level  = 0.10 

for all the random variables tested, even for the variables SYS and cSBP which 

failed to pass the SW test for the  = 0.10 significance level. The acceptance of 

the hypothesis H0 is justified, because for alternative asymmetrical function to the 

normal distribution, characterized by sample asymmetry coefficients between 0.6 



170                                                  Ileana Baran, Cristina Săvăstru 

and 1.0, the power of the Filliben test is higher than the power of SW test, as has 

been demonstrated in reference [11]. For the variables SYS and cSBP, the Pearson 

asymmetry coefficients are 0.725 respectively 0.689, and consequently, the 

decision to accept H0 is covered by the power of the Filliben test. 

5. Conclusion 

Subjects who participated in this experiment form a relatively 

representative group for the population of interest in terms of anthropometric 

characteristics (age, weight, height). Next to the anthropometric variables, five 

physiological variables (cSBP, SYS, DIA, AI and PULSE), considered as 

cardiovascular indicators, have been observed and simultaneously recorded using 

an Omron HEM 9000AI device. The advantage of simultaneity offered by the 

device, creates the opportunity to apply to the sample formed by the records, 

different multivariate analysis techniques.  

The main contribution of the paper consists in the solutions proposed for 

performing the univariate analysis of data (the first necessary step of any 

multivariate approach) based on the empirical cumulative distribution function 

and not on the empirical density function. Although frequently used in other areas, 

techniques based on the empirical cumulative function are not common in 

biostatistics even though they present a number of advantages outlined in the 

paper. This approach allows the assessment, with a good confidence level, of the 

normality of small correlated data samples, a goal difficult to achieve by other 

means. 

The normality of the marginal univariate distributions was checked using 

probability plots (PP) combined with the Filliben goodness of fit test (based on 

the probability plot correlation coefficient, PPCC), as an alternative to the more 

commonly used Shapiro-Wilk test. The proposed procedure can be used for small 

size samples and can discriminate between the normal model and other alternative 

asymmetric models. The use of PP plots facilitates the identification of extreme 

values and outliers, if any, and reveals the presence and causes of deviations from 

the normal distribution. 

Further research will perform the bivariate analysis of the same data, to 

see if partial correlations can be considered as normal, followed by a factor 

analysis or a principal components analysis. These techniques are directed 

towards clarifying the nature and the structure of the correlations between the 

random variables under study (i.e. the entries of the random vector formed by the 

anthropometric and physiological variables put together). 
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