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CLASSIFYING EEG SIGNAL SEGMENTS USING MACHINE
LEARNING

Ana Magdalena ANGHEL?, Andrei ZAHARIA?

In this paper we approach the classification of electroencephalogram (EEG)
signals segments with the purpose of predicting movement. Labeling these segments
is of utmost importance for patients that have motor functions impairments that affect
their lifestyle. We aim to create the artificial intelligence (Al) base for an application
that could help patients move a cursor on screen using their brain activity captured
by a series on electrodes placed on the surface of their scalp. Machine learning (ML),
even though largely considered a simple way to solve such problems, proved to be
largely accurate. The main idea of the present work is using the electric potential
difference between the brain’s hemispheres, as both global maxima and P300 features
extracted from C3 and C4 channels, fed to a Random Forest Classifier, as a way to
predict movement intentions.
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1. Introduction

Disabled people have always been a top priority for the progress of medical
techniques. Along with the technological progress and implementation of
computers in the patient’s medical circuit, they have also opened the door to
technologies that could make living easier, or, in the best-case-scenarion,
reintegrate them in the day-to-day life without being affected by the lack of certain
abilities. The same could also be applied to the elderly.

To achieve a greater degree of mobility or integration into society, the multi-
disciplanary field of brain-computer interfaces (BCI) was created with the purpose
of leveraging the advancement of technology.

In this paper [1], Yike et al., mention that more than 85% of present
technologies used for this specific task are non-invasive which shows the interest
of the research community to provide the most comfortable experience for the
patients in need.

The main methodology this paper approaches is based on event-related
desynchronization (ERD) [2] between the C3 and C4 signals extracted from the
electrodes with the same indicator that are placed using the 10-20 system. ERD is
represented by the fact that motor imagery creates an imbalance between the left
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and right hemispheres of the brain, thus making possible to observe the intention of
movement. For this purpose, the alpha wave (8-12 Hz) was extracted.

2. Related work

Detecting the intention of movement is essential to support a large number
of IT-based neuromotor rehabilitation or assistive solution, created within the last
decade, as illustrated by papers such as [3] [4] [5] [6] [7]-

A variety of methods have been developed, ranging from basic signal
processing to advanced machine learning solutions, as classified in [6]. Most of the
latest approaches favor neural networks to label the signals. Out of all the available
work, we decided to focus on two highly relevant approaches, from a use case
description point of view.

Li et al. [2] decided to use a dataset containing electroencephalograms
(EEGS) of patients who imagined the direction (left or right) they wanted to move
an object. This dataset underwent filtering between 4-35Hz, followed by a
Continuous Wavelet Transform (CWT). The resulting power intervals took the
form of an image, so Li et al. decided to use CNNs to classify the EEG signals.

Kim et al. [8] use electromyogram (EMG) signals acquired from the stumps
of patients who have suffered upper limb amputations. Kim et al. [8] decided to use
CNNs to classify the movements that the patient wants to perform. CNNs are
largely used for performing operations on images, but by using Principal
Component Analysis (PCA) and transferring the information obtained into a matrix
format so that the most important components are in the center of the matrix,
classification can be accomplished.

The main limitation of both of the articles mentioned above is: both methods
depend on transforming the signal either through the CWT or through PCA which
inherently lose some aspects of the original signal thus limiting the generalizability
and accuracy of the models.

3. Database description

Database contains subjects who performed various motor/imagery tasks
while 64-channel EEGs were recorded wusing the BCI2000 system
(http://www.bci2000.org) [9] [10]. Each subject performed the following
experimental runs:

Task 1: A target appears either on the left or the right side of the screen. The
subject opens and closes the corresponding fist until the target disappears.

Task 2: A target appears either on the left or the right side of the screen. The
subject imagines opening and closing the corresponding fist until the target
disappears.
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Task 3: A target appears either at the top or the bottom of the screen. The
subject opens and closes either both fists (if the target is above) or both legs (if the
target is below) until the target disappears.

Task 4: A target appears either at the top or the bottom of the screen. The
subject imagines opening and closing either both fists (if the target is above) or both
legs (if the target is below) until the target disappears.

The experimental runs were:

1. Baseline, eyes open
2 Baseline, eyes closed
3 Task 1 (open and close left or right fist)
4. Task 2 (imagine opening and closing left or right fist)
5. Task 3 (open and close both fists or both legs)
6 Task 4 (imagine opening and closing both fists or both legs)
7
8
9

Task 1

Task 2

. Task 3
10. Task 4
11. Task 1
12. Task 2
13. Task 3
14. Task 4

Fig. 3.1. Standard positioning of the EEG extraction electrodes with the electrodes of interest
highlighted [9] [11]
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Each annotation includes one of three codes (TO, T1, or T2):

e TO corresponds to resting
e T1 corresponds to the onset of movement (real or imagined) of:

- the left fist (inruns 3, 4, 7, 8, 11, and 12)
- both fists (inruns 5, 6, 9, 10, 13, and 14)

e T2 corresponds to the onset of movement (real or imagined) of:

- theright fist (inruns 3, 4, 7, 8, 11, and 12)
both legs (in runs 5, 6, 9, 10, 13, and 14)

4. Implementation and results

In order to create the model, the following methodology was created:

Defining filtering functions: A band-pass Butterworth filter is used to isolate
the signal between 8-12Hz frequencies (alpha wave) which contains most of
the information related to the intention and execution of movement.

For each patient, associated files are opened. Each file represents a task
performed by the subject. As specified in the database description, the average
energy of task 1, which represents the subject's baseline brain activity when
their eyes are open, is calculated. This task was chosen because the subject
moves their limbs in response to a visual stimulus.

For each task, from the channels of interest (C3 and C4), lengths of segments
called epochs are extracted, which have an annotation attributed at the end,
representing the actual data for creating the confusion matrix at the end of
prediction. Also, both signals of interest are filtered using the described
Butterworth filter, a signal representing the energy for each sample is created,
and the percentage difference from the average energy of the patient's baseline
brain activity and the signal is calculated.

The maximum from the two signals is extracted and retained. The logic behind
extracting the maximum is that: when a movement is made with the right hand,
the left hemisphere of the brain will be activated which will result in a peak on
the C3 signal, and likewise for the movement of the right hand.

The data is stored and the difference between the extracted maximums is
calculated. Prediction of the annotation is made based on the difference by
setting a threshold value which represents the maximum permissible difference
between the two maximums for which a resting state can be predicted.

The prediction is computed using a Random Forest Classifier from the sklearn
library that is an ensemble technique which creates multiple decision trees from
which the vote of the majority is then outputted as the prediction, thus being a
solid method for classifying. In this use case specifically, it was chosen as the
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main method to be studied, because by averaging multiple decision trees, the
Random Forest algorithm mitigates the risk of overfitting, which is a common
issue and Random Forest handles data of this complexity well, often
performing feature selection implicitly during the training process. A limitation
of this model is training multiple decision trees can be computationally
intensive and time-consuming, especially with large datasets.

Table 1

Confusion matrix resulted from the initial classification
Predicted TO Predicted T1 Predicted T2
True TO 11404 3672 4599
True T1 6027 1596 2233
True T2 5981 1826 2011

The results obtained are not satisfactory but can be improved by separately
addressing the tasks for which T1 and T2 represent different movements. The first
change made to the implementation was the re-annotation of the segments so that a
label does not have two meanings. Thus, T1 in tasks 5, 6, 9, 10, 13, 14 becomes T3
and T2 becomes T4. Using the same implementation, the following results were

obtained:

Table 2.

Confusion matrix resulted from classifying using features extracted from the global maxima
of each channel’s segments (C3 and C4)

Predicted TO | Predicted T1 | Predicted T2 | Predicted T3 | Predicted T4
True TO 18502 296 274 317 286
True T1 725 3992 58 90 86
True T2 732 85 3929 58 90
True T3 752 73 68 3955 57
True T4 650 65 67 90 4052

Table 3.
Per class and global results using global maxima

T0 T1 T2 T3 T4 Global
Accuracy 94.03% 80.63% 80.28% 80.63% 82.29% 87.5%
F1 Score 90.17% 84.37% 84.58% 84.01% 85.35% 85.7%

A second change made to the implementation is the implementation of the P300
concept. P300 represents the first positive voltage wave (P) that appears
approximately 300 ms after the patient is subjected to a stimulus (300) [12]. Using
the same implementation, the following results were obtained:
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Table 4.

Confusion matrix resulted from classifying using features extracted from the P300 of each
channel’s segments (C3 and C4)

Predicted | Predicted | Predicted T2 | Predicted T3 | Predicted
TO T1 T4
True TO 17965 279 276 288 267
True T1 690 3902 68 65 76
True T2 712 63 3820 82 67
True T3 634 60 71 3905 81
True T4 681 68 64 83 3882
Table 5.
Per class and global results using P300 results
TO T1 T2 T3 T4 Global
Acccuracy 94.18% 81.27% 80.52% 82.19% 81.24% 87.74%
F1 Score 90.37% 85.07% 84.48% 85.13% 84.84% 85.98%
Table 6.

Confusion matrix resulted from classifying using features extracted both from the P300 and
global maxima of each channel’s segments (C3 and C4)

Predicted TO | Predicted T1 | Predicted T2 | Predicted T3 | Predicted T4
True TO 18738 77 67 107 86
True T1 865 3856 22 28 30
True T2 885 18 3790 23 28
True T3 811 28 30 3862 20
True T4 865 17 30 43 3823

Table 7.
Per class and global results using global maxima and P300 results

TO T1 T2 T3 T4 Global
Accuracy 98.23% 80.31% 79.89% 81.28% 80.01% 89.30%
F1 Score 90.87% 87.66% 87.29% 87.63% 87.23% 88.14%

5. Discussion

The results of this study show improved classification performance for EEG
signal segments compared to other methodologies discussed. While Li et al. [2]
used CNNs to classify motor imagery EEG signals based on continuous wavelet
transformation, their classification accuracy was limited by the dataset and
architecture choices. Kim et al. [8] also employed CNNs, relying on principal
component analysis (PCA) to classify electromyogram signals in matrix form.
Their network structure, however, was tailored to a specific dataset, and their
accuracies were constrained by the variability of the signals collected from different
participants.
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Table 8
Comparison between the proposed methodology and the results obtained by the articles
presented in the Related Work section

Method CWT-SCNN [2] | PCA-CNN [8] | Max RFC | P300 RFC | Max + P300 RFC

Global 83.2% 61.4% 87.5% 87.74% 89.3%
Accuracy

As presented in Table 8, our methodology, which involves utilizing both
global maxima and P300 features extracted from C3 and C4 channels, surpasses the
performance of both Li et al. [2] and Kim et al. [8] The confusion matrices
generated show significant improvements in classifying signals from different
motor tasks. The combined feature set effectively captures variations in motor
imagery signals, allowing for more accurate predictions of movement intentions.

6. Conclusion

The ML-based classification model proposed here offers a more accurate
means of analyzing EEG signals to predict movement. Despite being relatively
simple in design compared to those in the related work, our approach produced
better results due to its tailored feature extraction process, which includes
combining global maxima and P300 features. However, the data's inherent
imbalance remains a challenge, as evidenced by the confusion matrix, where the TO
class (rest state) dominates. Future improvements could involve refining the dataset
to minimize this imbalance and enhance the model's robustness. Ultimately, this
model holds potential as the basis for an assistive application that helps patients
control computer cursors using their brain signals.
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