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CLASSIFYING EEG SIGNAL SEGMENTS USING MACHINE 

LEARNING 

Ana Magdalena ANGHEL1, Andrei ZAHARIA2 

In this paper we approach the classification of electroencephalogram (EEG) 

signals segments with the purpose of predicting movement. Labeling these segments 

is of utmost importance for patients that have motor functions impairments that affect 

their lifestyle. We aim to create the artificial intelligence (AI) base for an application 

that could help patients move a cursor on screen using their brain activity captured 

by a series on electrodes placed on the surface of their scalp. Machine learning (ML), 

even though largely considered a simple way to solve such problems, proved to be 

largely accurate. The main idea of the present work is using the electric potential 

difference between the brain’s hemispheres, as both global maxima and P300 features 

extracted from C3 and C4 channels, fed to a Random Forest Classifier, as a way to 

predict movement intentions. 
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1. Introduction 

Disabled people have always been a top priority for the progress of medical 

techniques. Along with the technological progress and implementation of 

computers in the patient’s medical circuit, they have also opened the door to 

technologies that could make living easier, or, in the best-case-scenarion, 

reintegrate them in the day-to-day life without being affected by the lack of certain 

abilities. The same could also be applied to the elderly. 

To achieve a greater degree of mobility or integration into society, the multi-

disciplanary field of brain-computer interfaces (BCI) was created with the purpose 

of leveraging the advancement of technology. 

In this paper [1], Yike et al., mention that more than 85% of present 

technologies used for this specific task are non-invasive which shows the interest 

of the research community to provide the most comfortable experience for the 

patients in need. 

The main methodology this paper approaches is based on event-related 

desynchronization (ERD) [2] between the C3 and C4 signals extracted from the 

electrodes with the same indicator that are placed using the 10-20 system. ERD is 

represented by the fact that motor imagery creates an imbalance between the left 
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and right hemispheres of the brain, thus making possible to observe the intention of 

movement. For this purpose, the alpha wave (8-12 Hz) was extracted. 

 

2. Related work 

Detecting the intention of movement is essential to support a large number 

of IT-based neuromotor rehabilitation or assistive solution, created within the last 

decade, as illustrated by papers such as [3] [4] [5] [6] [7]. 

A variety of methods have been developed, ranging from basic signal 

processing to advanced machine learning solutions, as classified in [6]. Most of the 

latest approaches favor neural networks to label the signals. Out of all the available 

work, we decided to focus on two highly relevant approaches, from a use case 

description point of view. 

Li et al. [2] decided to use a dataset containing electroencephalograms 

(EEGs) of patients who imagined the direction (left or right) they wanted to move 

an object. This dataset underwent filtering between 4-35Hz, followed by a 

Continuous Wavelet Transform (CWT). The resulting power intervals took the 

form of an image, so Li et al. decided to use CNNs to classify the EEG signals. 

Kim et al. [8] use electromyogram (EMG) signals acquired from the stumps 

of patients who have suffered upper limb amputations. Kim et al. [8] decided to use 

CNNs to classify the movements that the patient wants to perform. CNNs are 

largely used for performing operations on images, but by using Principal 

Component Analysis (PCA) and transferring the information obtained into a matrix 

format so that the most important components are in the center of the matrix, 

classification can be accomplished. 

The main limitation of both of the articles mentioned above is: both methods 

depend on transforming the signal either through the CWT or through PCA which 

inherently lose some aspects of the original signal thus limiting the generalizability 

and accuracy of the models. 

3. Database description 

Database contains subjects who performed various motor/imagery tasks 

while 64-channel EEGs were recorded using the BCI2000 system 

(http://www.bci2000.org) [9] [10]. Each subject performed the following 

experimental runs: 

Task 1: A target appears either on the left or the right side of the screen. The 

subject opens and closes the corresponding fist until the target disappears.  

Task 2: A target appears either on the left or the right side of the screen. The 

subject imagines opening and closing the corresponding fist until the target 

disappears.  
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Task 3: A target appears either at the top or the bottom of the screen. The 

subject opens and closes either both fists (if the target is above) or both legs (if the 

target is below) until the target disappears. 

Task 4: A target appears either at the top or the bottom of the screen. The 

subject imagines opening and closing either both fists (if the target is above) or both 

legs (if the target is below) until the target disappears. 

The experimental runs were: 

1. Baseline, eyes open 

2. Baseline, eyes closed 

3. Task 1 (open and close left or right fist) 

4. Task 2 (imagine opening and closing left or right fist) 

5. Task 3 (open and close both fists or both legs) 

6. Task 4 (imagine opening and closing both fists or both legs) 

7. Task 1 

8. Task 2 

9. Task 3 

10. Task 4 

11. Task 1 

12. Task 2 

13. Task 3 

14. Task 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Standard positioning of the EEG extraction electrodes with the electrodes of interest 

highlighted [9] [11] 
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Each annotation includes one of three codes (T0, T1, or T2): 

• T0 corresponds to resting 

• T1 corresponds to the onset of movement (real or imagined) of: 

- the left fist (in runs 3, 4, 7, 8, 11, and 12) 

- both fists (in runs 5, 6, 9, 10, 13, and 14) 

• T2 corresponds to the onset of movement (real or imagined) of: 

- the right fist (in runs 3, 4, 7, 8, 11, and 12) 

both legs (in runs 5, 6, 9, 10, 13, and 14) 
 

4. Implementation and results 

In order to create the model, the following methodology was created: 

1. Defining filtering functions: A band-pass Butterworth filter is used to isolate 

the signal between 8-12Hz frequencies (alpha wave) which contains most of 

the information related to the intention and execution of movement. 

2. For each patient, associated files are opened. Each file represents a task 

performed by the subject. As specified in the database description, the average 

energy of task 1, which represents the subject's baseline brain activity when 

their eyes are open, is calculated. This task was chosen because the subject 

moves their limbs in response to a visual stimulus. 

3. For each task, from the channels of interest (C3 and C4), lengths of segments 

called epochs are extracted, which have an annotation attributed at the end, 

representing the actual data for creating the confusion matrix at the end of 

prediction. Also, both signals of interest are filtered using the described 

Butterworth filter, a signal representing the energy for each sample is created, 

and the percentage difference from the average energy of the patient's baseline 

brain activity and the signal is calculated. 

4. The maximum from the two signals is extracted and retained. The logic behind 

extracting the maximum is that: when a movement is made with the right hand, 

the left hemisphere of the brain will be activated which will result in a peak on 

the C3 signal, and likewise for the movement of the right hand. 

5. The data is stored and the difference between the extracted maximums is 

calculated. Prediction of the annotation is made based on the difference by 

setting a threshold value which represents the maximum permissible difference 

between the two maximums for which a resting state can be predicted. 

6. The prediction is computed using a Random Forest Classifier from the sklearn 

library that is an ensemble technique which creates multiple decision trees from 

which the vote of the majority is then outputted as the prediction, thus being a 

solid method for classifying. In this use case specifically, it was chosen as the 
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main method to be studied, because by averaging multiple decision trees, the 

Random Forest algorithm mitigates the risk of overfitting, which is a common 

issue and Random Forest handles data of this complexity well, often 

performing feature selection implicitly during the training process. A limitation 

of this model is training multiple decision trees can be computationally 

intensive and time-consuming, especially with large datasets. 

Table 1 

Confusion matrix resulted from the initial classification 

 Predicted T0 Predicted T1 Predicted T2 

True T0 11404 3672 4599 

True T1 6027 1596 2233 

True T2 5981 1826 2011 

 

The results obtained are not satisfactory but can be improved by separately 

addressing the tasks for which T1 and T2 represent different movements. The first 

change made to the implementation was the re-annotation of the segments so that a 

label does not have two meanings. Thus, T1 in tasks 5, 6, 9, 10, 13, 14 becomes T3 

and T2 becomes T4. Using the same implementation, the following results were 

obtained: 

Table 2. 
Confusion matrix resulted from classifying using features extracted from the global maxima 

of each channel’s segments (C3 and C4) 

 Predicted T0 Predicted T1 Predicted T2 Predicted T3 Predicted T4 

True T0 18502 296 274 317 286 

True T1 725 3992 58 90 86 

True T2 732 85 3929 58 90 

True T3 752 73 68 3955 57 

True T4 650 65 67 90 4052 

 

Table 3. 

Per class and global results using global maxima 

 

A second change made to the implementation is the implementation of the P300 

concept. P300 represents the first positive voltage wave (P) that appears 

approximately 300 ms after the patient is subjected to a stimulus (300) [12]. Using 

the same implementation, the following results were obtained: 
 

 

 

 T0 T1 T2 T3 T4 Global 

Accuracy 94.03% 80.63% 80.28% 80.63% 82.29% 87.5% 

F1 Score 90.17% 84.37% 84.58% 84.01% 85.35% 85.7% 
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Table 4.  

Confusion matrix resulted from classifying using features extracted from the P300 of each 

channel’s segments (C3 and C4) 

 Predicted 

T0 

Predicted 

T1 

Predicted T2 Predicted T3 Predicted 

T4 

True T0 17965 279 276 288 267 

True T1  690 3902 68 65 76 

True T2  712 63 3820 82 67 

True T3  634 60 71 3905 81 

True T4  681 68 64 83 3882 

 

Table 5. 

Per class and global results using P300 results 

 T0 T1 T2 T3 T4 Global 

Acccuracy 94.18% 81.27% 80.52% 82.19% 81.24% 87.74% 

F1 Score 90.37% 85.07% 84.48% 85.13% 84.84% 85.98% 

 

Table 6.  

Confusion matrix resulted from classifying using features extracted both from the P300 and 

global maxima of each channel’s segments (C3 and C4) 

 Predicted T0 Predicted T1 Predicted T2 Predicted T3 Predicted T4 

True T0 18738 77 67 107 86 

True T1 865 3856 22 28 30 

True T2 885 18 3790 23 28 

True T3 811 28 30 3862 20 

True T4 865 17 30 43 3823 

 

Table 7.  

Per class and global results using global maxima and P300 results 

 T0 T1 T2 T3 T4 Global 

Accuracy 98.23% 80.31% 79.89% 81.28% 80.01% 89.30% 

F1 Score 90.87% 87.66% 87.29% 87.63% 87.23% 88.14% 

5. Discussion 

 

The results of this study show improved classification performance for EEG 

signal segments compared to other methodologies discussed. While Li et al. [2] 

used CNNs to classify motor imagery EEG signals based on continuous wavelet 

transformation, their classification accuracy was limited by the dataset and 

architecture choices. Kim et al. [8] also employed CNNs, relying on principal 

component analysis (PCA) to classify electromyogram signals in matrix form. 

Their network structure, however, was tailored to a specific dataset, and their 

accuracies were constrained by the variability of the signals collected from different 

participants. 
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Table 8 

Comparison between the proposed methodology and the results obtained by the articles 

presented in the Related Work section 

Method CWT-SCNN [2] PCA-CNN [8] Max RFC P300 RFC Max + P300 RFC 

Global 

Accuracy 

83.2% 61.4% 87.5% 87.74% 89.3% 

 

As presented in Table 8, our methodology, which involves utilizing both 

global maxima and P300 features extracted from C3 and C4 channels, surpasses the 

performance of both Li et al. [2] and Kim et al. [8] The confusion matrices 

generated show significant improvements in classifying signals from different 

motor tasks. The combined feature set effectively captures variations in motor 

imagery signals, allowing for more accurate predictions of movement intentions. 

 

6. Conclusion 

 

The ML-based classification model proposed here offers a more accurate 

means of analyzing EEG signals to predict movement. Despite being relatively 

simple in design compared to those in the related work, our approach produced 

better results due to its tailored feature extraction process, which includes 

combining global maxima and P300 features. However, the data's inherent 

imbalance remains a challenge, as evidenced by the confusion matrix, where the T0 

class (rest state) dominates. Future improvements could involve refining the dataset 

to minimize this imbalance and enhance the model's robustness. Ultimately, this 

model holds potential as the basis for an assistive application that helps patients 

control computer cursors using their brain signals. 
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