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EVALUATING THE PERFORMANCE AND CLASSIFYING 
THE INTERVAL DATA IN DATA ENVELOPMENT 

ANALYSIS 

Sohrab KORDROSTAMI1 

Standard data envelopment analysis (DEA) supposes that measure status 
from point of view input or output is known. Nevertheless, in some situations, 
determining the status of a performance measure is not easy. Measures with 
unknown status of input /output are called flexible measures. Moreover, traditional 
DEA models do not deal with imprecise data and assume that all input and output 
are exactly known. This paper proposes methods to evaluate efficiency and to 
classify data where the inputs and outputs of decision making units (DMUs) are 
known to lie within bounded interval and where flexible measures exist. A sample of 
bank branches is used to illustrate the application of the proposed models. 
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1. Introduction 

Data envelopment Analysis (abbreviated as DEA and originated by 
Charnes et al. [1]) has been known as an effective tool for measuring the relative 
efficiency of peer decision making units (DMUs) with multiple inputs and 
outputs. We see that the conventional application of DEA assumes that each 
measure should be assigned an explicit designation specifying whether it is an 
input or output. Assessing the status of a performance measure is not clear in 
some situations, so Cook and Zhu [2] presented a mixed integer linear 
programming problem (MILP) to handle such flexible measures. Toloo [3] 
claimed that the Cook and Zhu's [2] model may produce incorrect efficiency 
scores due to a computational problem as a result of introducing a large positive 
number to the model. Amirteimoori et al. [4] mentioned that the revised model of 
Toloo is a special case of that of Cook and Zhu and that this revised model is 
infeasible in many real cases. Additionally, Amirteimoori et al. [5] proposed an 
alternative model to calculate the technical efficiency of DMUs with flexible 
measures. These all made Toloo [6] to consider alternative solutions for 
classifying inputs and outputs in data envelopment analysis. 

Contrary to the claim of the original DEA models [1] that inputs and 
outputs are measured by exact values on a ratio scale we see that in some 
applications inputs and outputs are unknown decision variables such as bounded 
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data, ordinal data, and ratio bounded data. Authors such as Despotis and Smirlis 
[7], Joe Zhu [8], and Wang et al. [9] provided papers on the theoretical 
development of DEA with interval data. 

This paper considers a situation that variables are interval data while some 
measures can play either the role of input or output. Here in the study models with 
interval data are introduced that treat and identify the status of flexible measures. 
To illustrate the application of suggested models in real world let us reflect a 
study of evaluating bank's branches' efficiency to attract investments. In this case 
a factor such as 'deposits' can be assumed as a flexible and interval measure. It is 
clear that it can be assumed as an interval measure similar to Jahanshahloo et al. 
[10]; moreover, according to Cook and Zhu [2] it is a source of revenue for the 
branch thus it is regarded as an output. It should be considered here that, 
arguments have been made claiming that staff time expended in processing 
customers who are making deposits or opening deposit accounts, could be used as 
an advantage to sell more profitable products to the customers, this factor can be 
supposed as an input. Presentation of models with flexible and interval data is 
essential and beneficial because there are many situations in real world like the 
described one above. 

This paper is organized as follows. Section 2 provides a method to 
evaluate efficiency and to determine the status of flexible measures in presence of 
interval data. Section 3 describes an alternative method for the same purpose of 
section 2. In the section 4, a numerical example is used for clarification. 
Conclusions are finally made in section 5. 

2. A new method to determine the status of flexible measures in 
presence of interval data 

Assume that there are n  DMUs producing the same set of outputs by 
consuming the same set of inputs. Unit j is denoted by jDMU ( 1, 2,..., )j n= , 
whose ith  input and rth  output are denoted by ( 1,..., )ijx i m=  and 

( 1,..., )rjy r s= , respectively. Contrary to the original DEA model, it is  supposed 
that the levels of inputs and outputs are unknown; it is only known that the input-
output values are in certain bounded intervals, i.e. [ , ]L U

ij ij ijx x x∈  and 

[ , ]L U
rj rj rjy y y∈ , where upper and lower bounds of the intervals are given as fixed 

numbers and it is assumed  that 0L
ijx > and 0L

rjy > .   
   Let efficiency of jDMU  be equivalent to 
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   Now assume that there exist L  flexible measures ( 1,..., )ljw l L= , whose 

input/ output status is unidentified. For each measure l , like Cook and Zhu's [2] 
model, we introduce the binary variables {0,1}ld ∈ , where 1ld = designates that 
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measure l is an output, and 0ld =  designates it as an input. Suppose lγ  be the 
weight for each measure l . 

jθ  can be rewritten as: 
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The following fractional programming models are presented to measure 
the upper and lower bounds of the efficiency of oDMU : 
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These models can be transformed to linear programs by using the Charnes 
and Cooper transformation [11], substituting ( 1, 2,..., )l l ld l Lδ γ= = , and 
imposing the following constrains: 
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M is a large positive number. Therefore, models (3) and (4) can be 
reformulated to the following mixed integer linear programs: 
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favorite conditions, while L

oθ is the lower bound of the best relative efficiency. It 
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3. An alternative method to determine the status of flexible measures 
in the presence of interval data 

In this section we use the dual form of Wang et al. [9] models, which are 
known as Wang envelopment models and are given by:                           
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Similar to the section 2, we assume that there exist L flexible measures 
( 1,..., ).ljw l L=   

Certainly, flexible measures are either inputs or outputs. Therefore, the 
following constraints (9) and (10) are added to models (7) and (8), respectively. 
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The above models result in the best upper and lower bound efficiency for 
each DMU and identify input/output status of flexible measures. In addition, like 
previous section we utilize the majority rule to establish the status of flexible 
measures. It is evident that models (5) and (6) do not have equal optimal objective 
values to models (11) and (12). Because models (5) and (6) assign a status for 
flexible measures that maximum amounts of objective functions can be obtained 
whilst, determining the status of flexible measures when objective functions take 
the minimum amounts is the purpose of models (11) and (12). Furthermore, if 

* 0ld = , then 
* 1ld =  and * 0ld =  when * 1ld = . This means whenever a flexible 

measure is identified as an input in models (11) and (12) then it is designed as an 
output in models (5) and (6) and vice versa. 

Definition In each of methods, oDMU  is efficient if the best upper bound 
efficiency (i.e. models (5) in the first method and model (11) in the second 

method) be 1 (
*

1U
oθ = ); otherwise, if

*
1U

oθ < , it is inefficient. 

4. Examples 

To illustrate the above ideas, consider the data set of bank branches in 
Iran. In this study personnel and computer terminals are assumed as input 
variables and loan is an output variable while deposit is supposed as a flexible 
measure. The data of 10 bank branches can be seen in Table 1. 

The second column denotes optimal solutions when deposit is supposed as 
an input variable and the third column shows optimal values when it is considered 
as an output variable in Tables 2 and 3. In addition, the efficiency of models (5) 
and (6), when deposit is assumed as a flexible measure, are shown in the fourth 
column of Tables 2 and 3, respectively. Also optimal d  is displayed in the fifth 
column of Tables 2 and 3.  
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Table 1 
Data of the bank branches 

Loans Deposits Computer terminals Personnel #DMU 
[50,70] [600,800] [11.61,13.61] [9,11] 1 
[30,50] [500,700] [10.29,12.29] [8,10] 2 
[40,60] [200,400] [6.66,8.66] [7,9] 3 
[20,40] [400,600] [7.81,9.81] [7.5,9.5] 4 

[460,480] [550,750][8.88,10.88][8.5,10.5] 5 
[850,870] [850,1050] [9.33,11.33] [4,6] 6 
[840,860] [750,950] [14.10,16.10] [6,8] 7 
[400,420] [600,800][8.74,10.74][6.5,8.5] 8 
[810,830] [350,550] [10.31,12.31] [7.5,9.5] 9 
[620,640] [800,1000] [11.28,13.28] [8,10] 10 

 
The result of model (5) and (6) are showed in Table 2 and 3, respectively. 
 

Table 2 
Results of models (1) and (5) 

d  Flexible Output Input #DMU 
1 0.61228 0.61228 0.071388 1 
1 0.60447 0.60447 0.058006 2 
1 0.533677 0.533677 0.126506 3 
1 0.682641 0.682641 0.060716 4 
1 0.7504830.7504830.62314 5 

0 or 1 1 1 1 6 
0 0.889547 0.659004 0.889547 7 
1 0.8133380.8133380.544585 8 
0 1 0.86334 1 9 
1 0.787741 0.787741 0.639312 10 

 
       Table 3 

Results of models (2) and (6) 
d  Flexible Output Input #DMU 
1 0.391729 0.391729 0.042698 1 
1 0.361502 0.361502 0.028505 2 
1 0.205213 0.205213 0.055494 3 
1 0.362313 0.362313 0.02355 4 
0 0.47879 0.45341 0.47879 5 

0 or 1 0.804547 0.804547 0.804547 6 
0 0.668346 0.55952 0.668346 7 
1 0.496409 0.496409 0.415934 8 
0 0.793758 0.70565 0.793758 9 
1 0.535284 0.535284 0.520336 10 

 
As it can be seen in the fourth column of Table 2, deposit is identified as 

output in 7 DMUs while 2 DMUs consider it as input. Nevertheless, only 1 DMU 
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designs deposit as input or output variable without any influence on the amount of 
efficiency.  

Having a glance at Table 3 reveals that only 1 DMU treats deposit as 
either input or output while, 6 out of 9 remaining DMUs design deposits as 
output. By utilizing the majority choice among results of Tables 2 and 3, it is clear 
that the majority of DMUs identify deposit as an output. 

Now we use the data set in Table 1 for evaluating of efficiency of models 
(11) and (12). The second and third columns of Tables 4 and 5 show optimal 
values whenever deposit is assumed as input and output, respectively. The fourth 
column of Tables 4 and 5 indicates the efficiency of models (11) and (12) 
respectively where deposit is supposed as a flexible measure. The optimal d  is 
depicted in the fifth column of Tables 4 and 5.  

Table 4 
Table 4 Results of models (7) and (11) 

d  Flexible Output Input #DMU 
0 0.0714 0.6123 0.0714 1 
0 0.0580.60450.058 2 
0 0.1265 0.5337 0.1265 3 
0 0.0607 0.6826 0.0607 4 
0 0.62310.75050.6231 5 

0 or 1 1 1 1 6 
1 0.659 0.659 0.8895 7 
0 0.54460.81330.5446 8 
1 0.8633 0.8633 1 9 
0 0.6393 0.7877 0.6393 10 

 
Table 5 

Table 5 Results of models (8) and (12) 
d  Flexible Output Input #DMU 
0 0.0427 0.3917 0.0427 1 
0 0.0285 0.3615 0.0285 2 
0 0.05550.20520.0555 3 
0 0.0235 0.3623 0.0235 4 
1 0.4534 0.4534 0.4788 5 

0 or 1 0.8045 0.8045 0.8045 6 
1 0.5595 0.5595 0.6683 7 
0 0.4159 0.4964 0.4159 8 
1 0.7057 0.7057 0.7938 9 
0 0.5203 0.5353 0.5203 10 

 
As it can be seen DMUs that design deposits as input in Tables 2 and 3 

treat deposits as output in Tables 4 and 5 and vice versa. In addition, DMU 6 
treats the flexible measure as input or output in Tables 2, 3, 4, and 5. It is obvious 
that the most DMUs determine the flexible measure as input in Tables 4 and 5. 
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Thus according to the majority rule, the flexible measure is identified as input in 
models (11) and (12).   

5. Conclusions 

In this paper based on envelopment and multiplier forms, models have 
been proposed to evaluate the relative performance of DMUs in presence of 
interval data where there are measures with unknown status of input/ output. 
Moreover, a majority role has been used to determine the status of flexible 
measures. Through a numerical example, the applicability of the proposed models 
has been demonstrated. Nevertheless, changing efficiency scores by altering M is 
a drawback which is seen in the proposed models in the current paper, also all 
introduced models to identify the status of flexible measure confront it (i.e. Cook 
and Zhu, Toloo, and Amirteimoori et al. models). Therefore, selecting the best 
and the most suitable M is a significant issue.      
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