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A GENERALIZATION OF DOWSON’S RESULT

Mariana ZAMFIR1, Cristina ŞERBĂNESCU2

In this paper we obtain S-spectral operators which appear as restrictions

and quotients of spectral operators. We generalize the result obtained by H.R. Dowson

about the fact that the restriction and quotient of a spectral operator at a closed subspace
of a complex Banach space are, in certain conditions, spectral operators. In this article

we found a condition in which the restriction and quotient are even S-spectral operators

thorough the separation and extraction of the restriction and quotient operators’ spectral
part. Finally, the results are extended from one operator to an operator system.
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1. Introduction

Throughout the paper, it is investigated the behavior of restriction and quotient of
a spectral operator (respectively, spectral operator systems) with respect to an invariant
closed subspace. These spectral decompositions are related to differential equations and to
differential equation systems ([18]) and can have various applications in quantum mechanics,
in bifurcation and fractal theories ([1]).

Let us consider X a complex Banach space, let B(X) be the algebra of all linear
bounded operators on X and let PX be the set of all projectors on X. If T ∈ B(X) and Y
is a closed subspace of X invariant to T , then T |Y is the restriction operator of T to Y and

Ṫ is the quotient operator induced by T on the quotient space Ẋ = X/Y ; for an operator
system a = (a1, a2, . . . , an) ⊂ B(X), a|Y = (a1|Y, a2|Y, . . . , an|Y ) ⊂ B(Y ) is the restriction

operator system of a to Y and ȧ = (ȧ1, ȧ2, . . . , ȧn) ⊂ B(Ẋ) is the quotient operator system

induced by a on the quotient space Ẋ. For T ∈ B(X), we denote by ρ(T ) the resolvent set
of T (in X) and by σ(T ) the spectrum of T (in X); for a = (a1, a2, . . . , an) ⊂ B(X), we
denote by σ(a,X) the spectrum of a (in X)[2, 3].

A closed subspace Y ⊂ X is called spectral maximal space of T ∈ B(X) if Y is
invariant to T and for any other closed subspace Z ⊂ X, also invariant to T , such that
σ(T |Z) ⊂ σ(T |Y ) we have Z ⊂ Y ([7], [8]).

We recall that T ∈ B(X) has the single-valued extension property if for any analytic
function f : D → X (D ⊂ C open set) with (λI − T )f(λ) = 0, we have f(λ) ≡ 0 ([11, 12]).

If T ∈ B(X) has the single-valued extension property and x ∈ X, we consider the set
ρT (x) of all elements λ0 ∈ C such that there is an X-valued analytic function λ → xT (λ)
defined in a neighborhood V of λ0 which verifies (λI − T )xT (λ) ≡ x on V . We take
σT (x) = {ρT (x) = C \ ρT (x) and XT (F ) =

{
x ∈ X;σT (x) ⊂ F

}
, where F ⊂ C is closed.

ρT (x) is the local resolvent set of x with respect to T and σT (x) is the local spectrum of x
with respect to T ([11, 15]).
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In [9] and [10], H.R. Dowson has shown that if T ∈ B(X) is a spectral operator and
Y is a closed subspace of X invariant to T , then the restriction operator T |Y is spectral if

and only if the quotient operator Ṫ is spectral if and only if Y is invariant to the spectral
measure E of T . Furthermore, if T is spectral and its spectrum σ(T ) is totally disconnected
(respectively, if T is spectral and the spectrum σ(T |Y ) of T |Y is totally disconnected), then

the restriction T |Y and the quotient Ṫ are spectral (respectively, the restriction T |Y is
spectral).

In this paper, we prove that these assertions occur if the intersection of the spectra
σ(T |Y ) and σ(Ṫ ) is totally disconnected, i.e. dimS = 0, where S = σ(T |Y ) ∩ σ(Ṫ ). We

will observe that dimS = 0, where S = σ(T |Y ) ∩ σ(Ṫ ), instead of dim(σ(T |Y )) = 0. We
consider that the important part of the paper is obtaining the following result: if T is
a spectral operator and Y an invariant subspace to T , then the restriction T |Y and the

quotient Ṫ are S-spectral operators, where S is a compact subset of σ(T ). In this way, we
obtain S-spectral operators, which are spectral operators only on a subset of the spectrum
σ(T |Y ) ([17, 23]).

2. Extension of Dowson’s result

Definition 2.1. ([4]) Let X be a Banach space and let BS be the family of all Borelian
sets B of the complex plane C with the property that B ∩ S = ∅ or B ⊃ S, where S is a
compact fixed set of C.

A map ES : BS → PX is said to be S-spectral measure if

1. ES(∅) = 0, ES(C) = I
2. ES(B1 ∩B2) = ES(B1)ES(B2), B1, B2 ∈ BS

3. ES

( ∞⋃
m=1

Bm

)
x =

∞∑
m=1

ES(Bm)x, Bm ∈ BS , Bp ∩Bm = ∅, p 6= m, x ∈ X.

4. sup
B∈BS

‖ES(B)‖ <∞.

An operator T ∈ B(X) is said to be S-spectral if there is an S-spectral measure ES

such that

5. TES(B) = ES(B)T , B ∈ BS

6. σ(T |ES(B)X) ⊂ B, B ∈ BS .

For S = ∅, we obtain a spectral measure and a spectral operator ([11, 20]).

Remark 2.1. An operator T is S-spectral if and only if it is written as a direct sum
T = T1 ⊕ T2, where T1 is spectral and σ(T2) ⊂ S.

Proof. Indeed, if T is S-spectral and ES is its S-spectral measure, then it is a simple exercise
to show that the map E : B→ PX (where B = B∅), defined by E(B) = ES(B∩{S), B ∈ B,
is a spectral measure for T1 = T |ES({S)X, hence T = T1 ⊕ T2, where T2 = T |ES(S)X and
σ(T2) = σ(T |ES(S)X) ⊂ S.

Conversely, if T1 ∈ B(X1) is spectral and T2 ∈ B(X2) is nonspectral, with σ(T2) +
σ(T1), by putting S = σ(T2), X = X1 ⊕X2 and T = T1 ⊕ T2, we obtain that the map ES :
BS → PX defined by the equalities ES(B) = E(B)⊕0, if B∩S = ∅ and ES(B) = E(B)⊕I2,
if B ⊃ S, B ∈ BS , is an S-spectral measure of T , where E is the spectral measure of T1

and I2 is the identity operator in X2. �

Definition 2.2. ([16]) A subset of complex plane is said to have dimension 0 or to be totally
disconnected if the connected component of each point is the set consisting of the point itself;
in other words, if any subset of it is both open and closed in its relative topology (the trace
of the topology of S)
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Lemma 2.1. Let X be a Banach space and let X1, X2 be two linear closed subspaces of X
such that X1 ∩X2 = {0} and X1 +X2 are closed. If Yi ⊂ Xi (i = 1, 2) are two linear closed
subspaces, then Y1 + Y2 is also closed.
Moreover, if a = (a1, a2, . . . , an) ⊂ B(X) is a decomposable (spectral) system and Z1, Z2

are two closed subspaces of X invariant to a such that σ(a, Z1)∩σ(a, Z2) = ∅, then Z1 +Z2

is closed.

Proof. Indeed, if yn ∈ Y1 + Y2, yn → y ∈ X, then yn = y1
n + y2

n, yin ∈ Yi ⊂ Xi (i = 1, 2).
Since X1 +X2 is closed, by the closed graph theorem it follows that yin → yi ∈ Yi (i = 1, 2),
hence y = y1 + y2 ∈ Y1 + Y2, i.e. Y1 + Y2 is closed.

We have Z1 ⊂ Xa(σ(a, Z1)), Z2 ⊂ Xa(σ(a, Z2)), Xa(σ(a, Z1)) ∩ Xa(σ(a, Z2)) ⊂
Xa(σ(a, Z1) ∩ σ(a, Z2)) = Xa(∅) = {0} and from Proposition 2.2.8, [14], it results that

Xa(σ(a, Z1))⊕Xa(σ(a, Z2)) = Xa(σ(a, Z1) ∪ σ(a, Z2))

is closed; consequently, according to the previous result, we have that Z1 +Z2 is closed. �

Remark 2.2. a) Let T ∈ B(X) be decomposable and let Y1, Y2 ⊂ X be two closed invariant

subspaces to T such that σ(T |Y1) ∩ σ(T |Y2) = ∅. If we denote by Ẋ = X/Y1 the quotient

space and by ϕ : X → Ẋ the canonical map, then Y1 + Y2 is closed, Y2 can be identified
with ϕ(Y2) = Ẏ2, since Y2 and Ẏ2 are (topologically) isomorphic, hence T |Y2 and Ṫ |Ẏ2 are

similar and σ(T |Y2) = σ(Ṫ |Ẏ2).
b) In a similar way, let a = (a1, a2, . . . , an) ⊂ B(X) be decomposable and let Z1, Z2 ⊂ X
be two closed invariant subspaces to a such that σ(a, Z1) ∩ σ(a, Z2) = ∅. If we make the

notations Ẋ = X/Z1 and ϕ : X → Ẋ the canonical map, it follows that Z1 + Z2 is closed,

Z2 can be identified with ϕ(Z2) = Ż2, since Z2 and Ż2 are (topologically) isomorphic, again

a|Z2 and ȧ|Ż2 are similar, with σ(a, Z2) = σ(ȧ, Ż2).

Lemma 2.2. Let T ∈ B(X), let Y be a closed subspace invariant to T and let Ṫ be the

operator induced by T in the quotient space Ẋ = X/Y . If T and Ṫ have the single-valued
extension property, then

XT (σ(T |Y ) \ σ(Ṫ )) ⊂ Y.
In a similar way, if a = (a1, a2, . . . , an) ⊂ B(X), Y is a closed subspace invariant to a and

ȧ = (ȧ1, ȧ2, . . . , ȧn) ⊂ B(Ẋ) is the system induced by a on Ẋ = X/Y with Sa = Sȧ = ∅ (Sa,
Sȧ are the analytic spectral residuums of a, respectively of ȧ, [22]) then

X[a](σ(a, Y ) \ σ(ȧ, Ẋ)) ⊂ Y.

Proof. If x ∈ XT (σ(T |Y ) \ σ(Ṫ )), we have σT (x) ⊂ σ(T |Y ) \ σ(Ṫ ) and

σṪ (ẋ) ⊂ σT (x) ∩ σ(Ṫ ) ⊂ (σ(T |Y ) \ σ(Ṫ )) ∩ σ(Ṫ ) = ∅,

hence ẋ = 0̇ and consequently x ∈ Y (because ST = SṪ = ∅ implies that γT (x) = σT (x),
γṪ (ẋ) = σṪ (ẋ) and σṪ (ẋ) ⊂ σT (x) ([5], Proposition 2.1)).

For an operator system a ⊂ B(X), J. Eschmeier proved in [13] that σ(a, x) = sp(a, x),
for any x ∈ X.

Let x ∈ X[a](σ(a, Y ) \ σ(ȧ, Ẋ)), hence sp(a, x) = σ(a, x) ⊂ σ(a, Y ) \ σ(ȧ, Ẋ). We
make the notation ζ = (ζ1, ζ2, . . . , ζn) ∈ Cn and from the equality

x ≡ (ζ1 − a1)f1(ζ) + (ζ2 − a2)f2(ζ) + ...+ (ζn − an)fn(ζ)

with ζ ∈ ω ⊂ Cn, fj analytic functions (j = 1, 2, . . . , n), it follows that

ẋ ≡ (ζ1 − ȧ1)ḟ1(ζ) + (ζ2 − ȧ2)ḟ2(ζ) + ...+ (ζn − ȧn)ḟn(ζ)
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hence σ(ȧ, ẋ) ⊂ σ(a, x) ⊂ σ(a, Y ) \ σ(ȧ, Ẋ). Then

σ(ȧ, ẋ) ⊂ (σ(a, Y ) \ σ(ȧ, Ẋ)) ∩ σ(ȧ, Ẋ) = ∅
hence ẋ = 0̇, therefore X[a](σ(a, Y ) \ σ(ȧ, Ẋ)) ⊂ Y . �

Lemma 2.3. Let T ∈ B(X) be a spectral operator and let A ⊂ C be a Borelian set. Then
the restriction T1 = T |E(A)X is a spectral operator, with the spectral measure EA given by
the relation EA(B) = E(A ∩ B), for any B ⊂ C Borelian, where E is the spectral measure
of T .

Proof. One can easily verify that EA is a spectral measure for T1; this fact follows by the
equality

T1EA(B) = T1E(A ∩B) = E(A ∩B)T1 = EA(B)T1

and from the inclusion

σ(T1|EA(B)E(A)X) ⊂ σ(T1|E(A ∩B)X) ⊂ B.
�

Proposition 2.1. Let T ∈ B(X) be a spectral (scalar) operator having the spectral measure

E and let Y be a linear closed subspace invariant to T . If Ṫ is the operator induced by T on
Ẋ = X/Y, ϕ : X → Ẋ is the canonical map, then Ṫ = Ṫ1 ⊕ Ṫ2, where Ṫ1 = Ṫ |ϕ(E(σ′)X)

is spectral (scalar), Ṫ2 = Ṫ |ϕ(E(σ)X), σ = σ(T |Y ), σ′ = σ(Ṫ ) \ σ(T |Y ) and σ(Ṫ2) ⊂ S =

σ(T |Y ) ∩ σ(Ṫ ).

Proof. The operator T |E(σ′)X is spectral (scalar) (Lemma 2.3) and since Y ⊂ XT (σ) =
E(σ)X, we have Y ∩E(σ′)X =

{
0
}

. E(σ′)X+Y being closed (Lemma 2.1), then E(σ′)X+

Y = E(σ′)X ⊕ Y , hence ϕ(E(σ′)X) can be identified with E(σ′)X and Ṫ1 with T |E(σ′)X

(Remark 2.2), meaning Ṫ1 is spectral (scalar). One easily verify that ϕ(XT (σ)) = ẊṪ (σ) =

ẊṪ (S) is a spectral maximal space of Ṫ (Theorem 2.13, [5]), consequently

σ(Ṫ2) = σ(Ṫ |ϕ(XT (σ))) = σ(Ṫ |ẊṪ (S)) ⊂ S.
�

Proposition 2.2. Let T ∈ B(X) be spectral (scalar) operator and let Y be a closed subspace

invariant to T with XT (σ) ⊂ Y, where σ = σ(T |Y ) \ σ(Ṫ ). Let also S = σ(T |Y ) ∩ σ(Ṫ )

and TY = T |Y . Then TY |E(σ)Y and TY |XT (σ) are spectral (scalar), TY = (TY |E(σ)Y ) ⊕
(TY |E(S)Y ) and σ(TY |E(S)Y ) ⊂ S̃ ∩ σ(T |Y ).

Proof. σ being open in σ(T ), there is a growing sequence of closed sets (σn)n∈N with σ =⋃
n∈N

σn; from the continuity of the measure E(·)x, it results that E(σ) = lim
n→∞

E(σn), hence

E(σn)X = XT (σn) ⊂ XT (σ) implies E(σ)X ⊂ XT (σ) ⊂ Y . The closed subspaces E(σ)X

and XT (σ) are invariant to T and to spectral measure E, hence TY |E(σ)Y and TY |XT (σ)
are spectral (scalar) ([9], [10]). From Y ⊂ XT (σ(T |Y )) = E(σ(T |Y ))X, it follows that Y =
E(σ(T |Y ))Y = E(σ)Y +E(S)Y , hence Y is invariant to both E(σ) and E(S). Consequently,
E(σ)|Y and E(S)|Y are projectors in Y , E(σ)Y and E(S)Y are closed subspaces and Y =
E(σ)Y ⊕ E(S)Y . Then TY = (TY |E(σ)Y )⊕ (TY |E(S)Y ). We also obtain that

σ(TY |E(S)Y ) ⊂ ˜σ(T |E(S)X) ∩ σ(T |Y ) ⊂ S̃ ∩ σ(T |Y ),

S̃ = C \D∞, where D∞ is the unbounded component of C \ S. �

Theorem 2.1. Let T ∈ B(X) be a spectral operator having the spectral measure E, let Y be

a closed subspace invariant to T such that XT (σ) ⊂ Y, where σ = σ(T |Y )\σ(Ṫ ) and S = S̃,

with S = σ(T |Y )∩σ(Ṫ ). Then T |Y and Ṫ are S-spectral operators.
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Proof. These assertions follow by Proposition 2.1, Proposition 2.2 and Remark 2.1. Accord-
ing to Proposition 2.2 it follows that

T |Y = TY = TY |E(σ)Y ⊕ TY |E(S)Y

where TY |E(σ)Y is spectral and σ(TY |E(S)Y ) ⊂ S̃ = S.
On the other hand, from Proposition 2.1, it result that

Ṫ = Ṫ |ϕ(E(σ)X)⊕ Ṫ |ϕ(E(σ(T |Y ))X)

where Ṫ |ϕ(E(σ)X) is spectral, σ(Ṫ |ϕ(E(σ(T |Y ))X)) ⊂ S and ϕ : X → Ẋ is the canonical
map.

Consequently, the operators T |Y and Ṫ are S-spectral (Remark 2.1). �

Corollary 2.1. Let T ∈ B(X) be spectral (scalar) operator and let Y be a closed subspace

invariant to T such that dim(σ(T |Y )∩σ(Ṫ )) = 0. Then T |Y and Ṫ are spectral (scalar)
operators.

Proof. From dim(σ(T |Y ) ∩ σ(Ṫ )) = 0, it follows that SṪ = ∅ (Proposition 2.7, [21]),

XT (σ(T |Y )\σ(Ṫ )) ⊂ Y (Lemma 2.2) and according to Proposition 2.2, we have Y = Y1⊕Y2,

where Y1 = E(σ)X = E(σ)Y and Y2 = E(S)Y (σ = σ(T |Y ) \ σ(Ṫ ), S = σ(T |Y ) ∩ σ(Ṫ ), E
is the spectral measure of T ).

Obviously, Y1 is invariant to T and to spectral measure E.

But σ(T |Y2) ⊂ σ(T |E(S)X)⊂ S (since {S is connected and S = S̃), hence Y2 is also

invariant to E. Then Y is invariant to E and from [9], [10], we have that T |Y and Ṫ are
spectral (scalar) operators. �

3. Generalization of Dowson’s result to operator systems

Definition 3.1. ([6]) Let X be a Banach space and let Bn
S be the family of all Borelian

sets B of Cn that have the property B ∩ S = ∅ or S ⊂ B, where S ⊂ Cn is a compact fixed
set.

A map ES : Bn
S → PX is called a (Cn, X) type S-spectral measure if

(1) ES(∅) = 0, ES(Cn) = I
(2) ES(B1 ∩B2) = ES(B1)ES(B2), B1, B2 ∈ Bn

S

(3) ES

( ∞⋃
m=1

Bm

)
x =

∞∑
m=1

ES(Bm)x, Bm ∈ Bn
S , Bp ∩Bm = ∅ if p 6= m, x ∈ X.

A commuting system a = (a1, a2, . . . , an) ⊂ B(X) is called S-spectral system if there
is a (Cn, X) type S-spectral measure ES such that

(4) ajES(B) = ES(B)aj , B ∈ Bn
S , 1 ≤ j ≤ n

(5) σ(a,ES(B)X) ⊂ B, B ∈ Bn
S .

For S = ∅, we have Bn
∅ = B(Cn), ∅-spectral measure is spectral measure and ∅-

spectral system is spectral system ([14]).

Remark 3.1. ([26]) A commuting system a = (a1, a2, . . . , an) ⊂ B(X) is S-spectral if and
only if it is a direct sum a = b⊕ c, where b ⊂ B(X) is spectral system and σ(c,X) ⊂ S.

Proof. Indeed, if a is an S-spectral system with its S-spectral measure ES , then one easily
verify that the map E : B(Cn) → PX defined by E(B) = ES(B ∩ {S), B ∈ B(Cn), is a
spectral measure for b = a|ES({S)X, while c = a|ES(S)X, σ(c,X) = σ(a,ES(S)X) ⊂ S.

Conversely, if b = (b1, b2, . . . , bn)⊂ B(X1) is spectral and c = (c1, c2, . . . , cn) ⊂ B(X2)
is nonspectral, with σ(c,X2) + σ(b,X1), by putting S = σ(c,X2), X = X1 ⊕ X2 and
a = b⊕c, it results that the map ES : Bn

S → PX defined by the equalities ES(B) = E(B)⊕0,
if B ∩ S = ∅ and ES(B) = E(B) ⊕ I2, if B ⊃ S, B ∈ Bn

S , is an S-spectral measure of a,
where E is the spectral measure of b and I2 is the identity operator in X2. �
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Lemma 3.1. ([26]) If a = (a1, a2, . . . , an) ⊂ B(X) is a commuting operator system, Y is a

linear closed subspace invariant to a and ȧ = (ȧ1, ȧ2, . . . , ȧn) ⊂ B(Ẋ) is the system induced

by a in Ẋ = X/Y , then, using the notations σ(a,X) = σ1, σ(a, Y ) = σ2, σ(ȧ, Ẋ) = σ3, we
have:

1◦. σ1 ⊂ σ2 ∪ σ3, σ2 ⊂ σ1 ∪ σ3, σ3 ⊂ σ1 ∪ σ2

2◦. σ1 \ σ2 = σ3 \ σ2, σ1 \ σ3 = σ2 \ σ3, σ3 \ σ1 = σ2 \ σ1

3◦. σ1 ∪ σ2 = σ2 ∪ σ3 = σ3 ∪ σ1 = σ1 ∪ σ2 ∪ σ3.

Proof. The inclusions 1◦ follow from [19], Lemma 1.2, and the equalities 2◦ and 3◦ are
directly consequences of the inclusions 1◦. The assertions and the primary verifications
for the case of a single operator have been proved in [5] for the first time, independent of
[19]. �

Remark 3.2. According to 1◦, one may easily notice that if a point z ∈ Cn belongs to one
of the spectrum then it also belongs to at least one more or to all the three ones, so it can
not belong to only one spectrum.
In unidimensional case, n = 1, a = T ∈ B(X), the result is significant for both operators T

and Ṫ (if it is properly formulated, we believe it is also true for systems n > 1; see Corollary
3.1).

Lemma 3.2. Let a = (a1, a2, . . . , an) ⊂ B(X) be a spectral system having the spectral
measure E and let A ⊂ Cn be a Borelian set. Then the restriction b = a|E(A)X is a
spectral system with the spectral measure EA given by the relation EA(B) = E(A ∩ B), for
any B ⊂ Cn Borelian.

Proof. One easily verify that EA is a spectral measure for b; this fact follows by the equality

bjEA(B) = bjE(A ∩B) = E(A ∩B)bj = EA(B)bj , 1 ≤ j ≤ n
(where bj = aj |Y , Y = E(A)X) and from the relations

σ(b, EA(B)Y ) = σ(b, E(A ∩B)X) = σ(a,E(A ∩B)X) ⊂ B.
�

Proposition 3.1. Let a = (a1, a2, . . . , an) ⊂ B(X) be a spectral system having the spectral
measure E, let Y be a linear closed subspace invariant to a, let ȧ = (ȧ1, ȧ2, . . . , ȧn) be

the system induced by a on Ẋ = X/Y and let ϕ : X → Ẋ be the canonical map. Then

ȧ = ḃ ⊕ ċ, where ḃ = ȧ|ϕ(E(σ′)X) is spectral system, ċ = ȧ|ϕ(E(σ)X), σ = σ(a, Y ),

σ′ = σ(ȧ, Ẋ) \ σ(a, Y ) and σ(ċ, ϕ(E(σ)X)) ⊂ S = σ(a, Y ) ∩ σ(ȧ, Ẋ).

Proof. The system a|E(σ′)X is spectral (Lemma 3.2) and since Y ⊂ E(σ)X
= X[a](σ) (Theorem 2.2.1 and Proposition 3.1.3, [14]), we have Y ∩E(σ′)X = {0}. Because
E(σ′)X+Y is closed (Lemma 2.1), then E(σ′)X+Y = E(σ′)X⊕Y and so that ϕ(E(σ′)X)

can be identified with E(σ′)X, respectively ḃ with a|E(σ′)X (Remark 2.2), meaning ḃ is

spectral system. It is easily to verify that ϕ(X[a](σ)) = Ẋ[ȧ](σ) = Ẋ[ȧ](S) is a spectral

maximal space of ȧ, consequently σ(ċ, ϕ(E(σ)X)) = σ(ċ, Ẋ[ȧ](S)) ⊂ S. �

Proposition 3.2. Let a = (a1, a2, . . . , an) ⊂ B(X) be a spectral system having the spectral
measure E and let Y be a closed subspace invariant to a with Xa(σ) ⊂ Y, where σ =

σ(a, Y ) \ σ(ȧ, Ẋ). Let also S = σ(a, Y ) ∩ σ(ȧ, Ẋ) and b = a|Y . Then b|E(σ)Y and b|Xa(σ)
are spectral systems and b = (b|E(σ)Y )⊕ (b|E(S)Y ), with σ(b, E(S)Y ) ⊂ S ∩ σ(b, Y ).

Proof. σ being open in σ(b, Y ) (and also in σ(a,X), because σ(a,X) \ σ(ȧ, Ẋ) = σ(a, Y ) \
σ(ȧ, Ẋ); see Lemma 3.1), there is a growing sequence of closed sets (σn)n∈N with σ =

⋃
n∈N

σn;
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from the continuity of the measure E(·)x, it results that E(σ) = lim
n→∞

E(σn), therefore

E(σn)X = Xa(σn) ⊂ Xa(σ) (Proposition 3.1.3, [14]) implies E(σ)X ⊂ Xa(σ) ⊂ Y . The

closed subspaces E(σ)X and Xa(σ) are invariant to a and to spectral measure E, so a|E(σ)Y

and a|Xa(σ) are spectral. E(σ)|Y and E(S)|Y are projectors in Y , E(σ)Y and E(S)Y are
closed subspaces and Y = E(σ(a, Y ))Y = E(σ)Y ⊕ E(S)Y . We also obtain that b =

(b|E(σ)Y )⊕ (b|E(S)Y ), σ(b, E(S)Y ) ⊂ σ(b, E(S)X) ∩ σ(a, Y ) ⊂ S̃ ∩ σ(a, Y ) ([25]). �

Theorem 3.1. Let a = (a1, a2, . . . , an) ⊂ B(X) be a spectral system having the spectral
measure E, let Y be a closed subspace un subspace invariant to a such that Xa(σ) ⊂ Y,

where σ = σ(a, Y ) \ σ(ȧ, Ẋ), S = σ(a, Y ) ∩ σ(ȧ, Ẋ). Then a|Y şi ȧ are S-spectral systems.

Proof. The assertions follow from Proposition 3.1 and Proposition 3.2, and also from Remark
3.1. �

Corollary 3.1. Let a = (a1, a2, . . . , an) ⊂ B(X) be a spectral system and let Y be a closed

subspace of X invariant to a such that dim(σ(a, Y ) ∩ σ(ȧ, Ẋ)) = 0. Then the restriction
system a|Y = (a1|Y, a2|Y, . . . , an|Y ) ⊂ B(Y ) and the system ȧ = (ȧ1, ȧ2, . . . , ȧn) induced by

a on Ẋ = X/Y are spectral.

Proof. The proof of this corollary is similar to the proof from the case of a single operator
(see Corollary 2.1). According to Lemma 2.2, Proposition 3.1, Proposition 3.2, Remark 3.1
and using similar arguments to those of Corollary 2.1, it results that ȧ is a spectral system,
therefore a|Y is a spectral system. �

Proposition 3.3. Let T ∈ B(X), let Y be a linear closed subspace invariant to T and

let Ṫ be the quotient operator induced by T on the quotient space Ẋ = X/Y . If D∞ is
the unbounded component of ρ(T ) and Dn (n ∈ N) are the bounded components, then:

D∞ ∩ σ(Ṫ ) = ∅ and Dn ⊂ σ(Ṫ ) if and only if Dn ⊂ σ(T |Y ) (i.e. if and only if there is
λ0 ∈ Dn such that R(λ0, T )Y * Y, where R(λ, T ) is the resolvent of T ).

Proof. I.E. Scroggs proved in [24] that D∞ ∩ σ(T |Y ) = ∅ and Dn ⊂ σ(T |Y ) if and only
if there is λ0 ∈ Dn such that R(λ0, T )Y * Y . According to Lemma 3.1 and Remark 3.2,

Dn ⊂ σ(Ṫ ) if and only if Dn ⊂ σ(T |Y ) and λ ∈ D∞ implies λ /∈ σ(Ṫ ) (if λ ∈ σ(Ṫ ), λ /∈ σ(T ),
then λ ∈ σ(T |Y ), contradiction with D∞ ∩ σ(T |Y ) = ∅). �

4. Conclusions

In this paper we achieve the extraction of the spectral part from the operator T |Y also
known as its ”good part”. In the last section we extend Downson’s result from one operator
to a system of operators. The theorems obtained in this paper are verified for spectral
operators and spectral systems (and are extended to S-spectral operators and S-spectral
systems).
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509-522.

[21] F.H. Vasilescu, Operatori rezidual decompozabili ı̂n spaţii Fréchet, Stud. Cerc. Mat., 21 (1969), 1181-
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