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A GENERALIZATION OF DOWSON’S RESULT

Mariana ZAMFIR!, Cristina SERBANESCU?

In this paper we obtain S-spectral operators which appear as restrictions
and quotients of spectral operators. We generalize the result obtained by H.R. Dowson
about the fact that the restriction and quotient of a spectral operator at a closed subspace
of a complex Banach space are, in certain conditions, spectral operators. In this article
we found a condition in which the restriction and quotient are even S-spectral operators
thorough the separation and extraction of the restriction and quotient operators’ spectral
part. Finally, the results are extended from one operator to an operator system.
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1. Introduction

Throughout the paper, it is investigated the behavior of restriction and quotient of
a spectral operator (respectively, spectral operator systems) with respect to an invariant
closed subspace. These spectral decompositions are related to differential equations and to
differential equation systems ([18]) and can have various applications in quantum mechanics,
in bifurcation and fractal theories ([1]).

Let us consider X a complex Banach space, let B(X) be the algebra of all linear
bounded operators on X and let Px be the set of all projectors on X. If T’ € B(X) and YV’
is a closed subspace of X invariant to T, then T'|Y is the restriction operator of T to Y and
T is the quotient operator induced by T’ on the quotient space X = X /Y for an operator
system a = (a1,az,...,a,) C B(X), alY = (a1|Y, az2Y, ..., a,|Y) C B(Y) is the restriction
operator system of a to Y and @ = (a1, s, ..., a,) C B(X) is the quotient operator system
induced by @ on the quotient space X. For T € B(X), we denote by p(T) the resolvent set
of T (in X) and by o(T) the spectrum of T (in X); for a = (ay,as,...,a,) C B(X), we
denote by o(a, X) the spectrum of a (in X)[2, 3].

A closed subspace Y C X is called spectral mazimal space of T € B(X) if YV is
invariant to T and for any other closed subspace Z C X, also invariant to 7', such that
o(T|Z) C o(T|Y) we have Z C Y ([7], [8]).

We recall that T' € B(X) has the single-valued extension property if for any analytic
function f: D — X (D C C open set) with (Al —T)f(A) =0, we have f(A) =0 ([11, 12]).

If T € B(X) has the single-valued extension property and = € X, we consider the set
pr(x) of all elements Ao € C such that there is an X-valued analytic function A — xr(X)
defined in a neighborhood V of Ag which verifies (Al — T)zr()\) = z on V. We take
or(z) = Cpr(x) = C\ pr(z) and X7 (F) = {z € X;0r(z) C F}, where F C C is closed.
pr(z) is the local resolvent set of x with respect to T and op(x) is the local spectrum of x
with respect to T ([11, 15]).
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In [9] and [10], H.R. Dowson has shown that if 7' € B(X) is a spectral operator and
Y is a closed subspace of X invariant to 7', then the restriction operator T|Y is spectral if
and only if the quotient operator 7" is spectral if and only if Y is invariant to the spectral
measure E of T. Furthermore, if T is spectral and its spectrum o (T") is totally disconnected
(respectively, if T' is spectral and the spectrum o(7T'|Y") of T'|Y is totally disconnected), then
the restriction T|Y and the quotient 7' are spectral (respectively, the restriction T|Y is
spectral).

In this paper, we prove that these assertions occur if the intersection of the spectra

o(T|Y) and o(T) is totally disconnected, i.e. dimS = 0, where S = o(T|Y) No(T). We
will observe that dim S = 0, where S = o(T|Y) N o(T), instead of dim(a(T|Y)) = 0. We
consider that the important part of the paper is obtaining the following result: if T is
a spectral operator and Y an invariant subspace to T, then the restriction T|Y and the
quotient T are S-spectral operators, where S is a compact subset of ¢(7). In this way, we

obtain S-spectral operators, which are spectral operators only on a subset of the spectrum
o(T|Y) ([17, 23]).

2. Extension of Dowson’s result

Definition 2.1. ([4]) Let X be a Banach space and let Bg be the family of all Borelian
sets B of the complex plane C with the property that BNS = () or B O S, where S is a
compact fixed set of C.
A map Eg :Bg — Px is said to be S-spectral measure if
1. Es(w) =0, Es(C)=1
2. Es(B1 N By) = Eg(B1)Es(B2), B1, B2 € Bs

(o) o0
3. Eg UBm x:ZES(Bm)x,Bme%S,BpﬂBmsz,p;ém,xeX.
=1

m=1 m=
4. sup ||Es(B)| < occ.
BeBs
An operator T' € B(X) is said to be S-spectral if there is an S-spectral measure Eg
such that

5. TEs(B) = Es(B)T, B € Bs
6. U(T|E5(B)X) C B, B € Bg.

For S = (), we obtain a spectral measure and a spectral operator ([11, 20]).

Remark 2.1. An operator T is S-spectral if and only if it is written as a direct sum
T =T, @ Ty, where T} is spectral and o(T3) C S.

Proof. Indeed, if T is S-spectral and Eg is its S-spectral measure, then it is a simple exercise
to show that the map E : B — Px (where B = By), defined by E(B) = E5(BNCS), B € B,
is a spectral measure for T} = T|Es(CS) X, hence T = T} @ Ty, where Ty = T|Eg(S5)X and
o(Ty) =o(T|Es(S)X) C S.

Conversely, if Ty € B(X;) is spectral and 75 € B(X3) is nonspectral, with (%) 2
o(Ty1), by putting S = o(T3), X = X; ® X5 and T = T} @ T5, we obtain that the map Eg :
Bs — Px defined by the equalities Eg(B) = E(B)®0, if BNS = and Eg(B) = E(B)® I,
if BD S, Be€ Bg, is an S-spectral measure of T, where E is the spectral measure of T;
and I is the identity operator in Xs. O

Definition 2.2. ([16]) A subset of complex plane is said to have dimension 0 or to be totally
disconnected if the connected component of each point is the set consisting of the point itself;
in other words, if any subset of it is both open and closed in its relative topology (the trace
of the topology of S)
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Lemma 2.1. Let X be a Banach space and let X1, Xo be two linear closed subspaces of X
such that X1 N Xy = {0} and X1 + Xa are closed. If Y; C X; (i = 1,2) are two linear closed
subspaces, then Y1 + Y5 is also closed.

Moreover, if a = (a1, as,...,a,) C B(X) is a decomposable (spectral) system and Zy, Zy
are two closed subspaces of X invariant to a such that o(a, Z1) No(a, Ze) =0, then Z1 + Z
1s closed.

1
Since X7 + X3 is closed, by the closed graph theorem it follows that y!, — vy; € V; (i = 1
hence y = y1 + y2 € Y1 + Yo, i.e. Y] + Y5 is closed.
We have Z; C X,(o(a,Z1)), Zo C Xq(o(a,Z2)), Xa(o(a,Z1)) N Xa(o(a, Z2)) C
Xa(o(a, Zy) No(a, Zs)) = Xo(0) = {0} and from Proposition 2.2.8, [14], it results that

Xolo(a, Z1)) @ Xa(o(a, Z2)) = Xo(o(a, Z1) Uo(a, Z2))
is closed; consequently, according to the previous result, we have that Z; + Z5 is closed. [

Remark 2.2. a) Let T € B(X) be decomposable and let Y7,Y2 C X be two closed invariant
subspaces to T such that o(T|Y1) No(T|Yz) = 0. If we denote by X = X/Y; the quotient
space and by ¢ : X — X the canonical map, then Y; + Ys is closed, Y5 can be identified
with o(Ys) = Ya, since Y5 and Y3 are (topologically) isomorphic, hence T'|Y; and T'|Y; are
similar and o (T'|Yz) = o(T|Y5).

b) In a similar way, let a = (a1, as,...,a,) C B(X) be decomposable and let Zy,Zs C X
be two closed invariant subspaces to a such that o(a, Z1) No(a,Z2) = 0. If we make the
notations X = X/Zy and p : X — X the canonical map, it follows that Z; 4+ Z5 is closed,
Z5 can be identified with ¢(Z3) = Zs, since Zy and Zs are (topologically) isomorphic, again
a|Zy and a|Zy are similar, with o(a, Zo) = o(a, Z2).

Lemma 2.2. Let T € B(X), let Y be a closed subspace invariant to T and let T be the
operator induced by T in the quotient space X = X/Y. If T and T have the single-valued
extension property, then

X (o(TIY)\ (1)) C .
In a similar way, if a = (a1,a2,...,a,) C B(X), Y is a closed subspace invariant to a and
a=(a1,ag,...,a,) C B(X) is the system induced by a on X = XY with S, = S; = 0 (S,,
Se, are the analytic spectral residuums of a, respectively of a, [22]) then

X()(0(a,Y) \ o(a, X)) C Y.

Proof. If z € Xp(o(T|Y) \ o(T)), we have op(z) C o(T|Y) \ o(T) and
(i) C or(z) No(T) C (o(T1Y) \ (1)) No(T) =0,

hence # = 0 and consequently € Y (because Sy = S;. = () implies that yr(z) = or (),
(&) = op (&) and 04.(2) C or(z) ([5], Proposition 2.1)).

For an operator system a C B(X), J. Eschmeier proved in [13] that o(a, x) = sp(a, x),
for any x € X. ) )

Let € Xg(o(a,Y) \ o(a, X)), hence sp(a,z) = o(a,z) C o(a,Y)\ o(a, X). We
make the notation ¢ = ((1,(s,-..,(,) € C™ and from the equality

z = (G —a)fi(Q) + (G —a2) f2(Q) + . + (o — an) [ (Q)
with { € w C C", f; analytic functions (j =1,2,...,n), it follows that

i = (G —a)fi(Q) + (G — a2) f2() + oo + (G — @n) fn(€)
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hence o(a,%) C o(a,x) C o(a,Y) \ o(a, X). Then
o(a, &) C (o(a,Y) \ o(a, X)) No(a, X) =0
hence & = 0, therefore X4 (c(a,Y) \ o(a, X)cy. O

Lemma 2.3. Let T € B(X) be a spectral operator and let A C C be a Borelian set. Then
the restriction Ty = T|E(A)X is a spectral operator, with the spectral measure E4 given by
the relation Eo(B) = E(AN B), for any B C C Borelian, where E is the spectral measure
of T.

Proof. One can easily verify that F, is a spectral measure for 77; this fact follows by the
equality
T\EA(B)=TVE(ANB)=E(ANB)Ty = E4(B)T}
and from the inclusion
o(Ty|EA(B)E(A)X) C o(T1|E(AN B)X) C B.
O

Proposition 2.1. Let T € B(X) be a spectral (scalar) operator having the spectral measure
FE and letY be a linear closed subspace invariant to T . IfT 1s the operator induced by T on
X =X/Y, ¢ : X — X is the canonical map, then T = Ty & Ty, where Ty = T|o(E(c")X)
is spectral (scalar), Ty = T|p(E(0)X), 0 = o(T|Y), o’ = o(T)\ o(T|Y) and o(Tp) C S =
o(T|Y)No(T).

Proof. The operator T|E(c’)X is spectral (scalar) (Lemma 2.3) and since ¥ C Xrp(o) =
E(0)X, we have Y NE(0')X = {0}. E(¢’)X +Y being closed (Lemma 2.1), then E(o')X +
Y = E(¢')X @Y, hence p(E(c')X) can be identified with E(¢’)X and T} with T|E(c")X
(Remark 2.2), meaning T} is spectral (scalar). One easily verify that p(Xr(0)) = X;(0) =
X;(8) is a spectral maximal space of 7' (Theorem 2.13, [5]), consequently

o(Ty) = o(Tlp(X1(0))) = o(T1X4(S)) C 5.
O
Proposition 2.2. Let T € B(X) be spectral (scalar) operator and let Y be a closed subspace

invariant to T with Xp(o) C Y, where 0 = o(T|Y) \ o(T). Let also S = o(T|Y) N o(T)

and Ty =T|Y. Then Ty|E(0)Y and Ty |Xr(0) are spectral (scalar), Ty = (Ty|E(0)Y) &
(Ty |E(S)Y) and o(Ty|E(S)Y) C SNo(T|Y).

Proof. o being open in o(T), there is a growing sequence of closed sets (0, )nen With o =
U opn; from the continuity of the measure E(-)z, it results that E(o) = nILH;OE(U")’ hence
neN

E(op)X = Xr(oy) C Xp(o) implies E(0)X C Xr(o) C Y. The closed subspaces E(0)X
and Xr (o) are invariant to T and to spectral measure E, hence Ty |E(0)Y and Ty | X7 (o)
are spectral (scalar) ([9], [10]). From Y C X7 (o(T|Y)) = E(c(T|Y))X, it follows that Y =
E(o(T|Y))Y = E(o)Y+E(S)Y, hence Y is invariant to both E(c) and E(S). Consequently,
E(0)|Y and E(S)|Y are projectors in Y, E(0)Y and E(S)Y are closed subspaces and ¥ =
E(0)Y @ E(S)Y. Then Ty = (Ty|E(0)Y) & (Ty|E(S)Y'). We also obtain that

o(Ty|E(S)Y) C o(T|E(S)X) N o(T|Y) € SN o(T|Y),
S =C\ D>, where D is the unbounded component of C \ S. O

Theorem 2.1. Let T € B(X) be a spectral operator having the spectral measure E| let Y be
a closed subspace invariant to T such that Xr(o) C Y, where o = o(T|Y)\o(T) and S =S,
with S = o(T|Y)No(T). Then T|Y and T are S-spectral operators.
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Proof. These assertions follow by Proposition 2.1, Proposition 2.2 and Remark 2.1. Accord-
ing to Proposition 2.2 it follows that

T)Y =Ty =Ty |E(0)Y ® Ty |E(S)Y

where Ty |E(0)Y is spectral and o(Ty |E(S)Y) C S = S.
On the other hand, from Proposition 2.1, it result that

T =T|p(E(0)X) ® Tlp(E(o(T]Y))X)

where T|p(E(0)X) is spectral, o(T|p(E(o(T|Y))X)) € S and ¢ : X — X is the canonical
map. .
Consequently, the operators T|Y and T are S-spectral (Remark 2.1). a

Corollary 2.1. Let T € B(X) be spectral (scalar) operator and let Y be a closed subspace
invariant to T such that dim(o(T|Y)No(T)) = 0. Then T|Y and T are spectral (scalar)
operators.

Proof. From dim(o(T|Y) N o(T)) = 0, it follows that S; = @ (Proposition 2.7, [21]),
Xr(o(T|Y)\o(T)) C Y (Lemma 2.2) and according to Proposition 2.2, we have Y = Y; Y5,
where Y; = E(0)X = E(0)Y and Yz = E(S)Y (0 = o(T|Y) \ o(T), S = o(T|Y)No(T), E
is the spectral measure of T').

Obviously, Y7 is invariant to 7" and to spectral measure F.

But o(T|Y2) C o(T|E(S)X)C S (since LS is connected and S = S), hence Y5 is also
invariant to F. Then Y is invariant to £ and from [9], [10], we have that T|Y and T are
spectral (scalar) operators. O

3. Generalization of Dowson’s result to operator systems

Definition 3.1. ([6]) Let X be a Banach space and let B% be the family of all Borelian
sets B of C™ that have the property BNS = or S C B, where S C C" is a compact fixed
set.
A map Eg : B% — Px is called a (C™, X) type S-spectral measure if
(1) Es(0) =0, Es(C") =1
(2) Es(Bl n Bg) = Es(Bl)Es(BQ), B, Bs € %g

oo (oo}
(3) Es ( U Bm> 2= Es(Bm)t, By € BY, ByN By =0ifp#m,zeX.
m=1 m=1

A commuting system a = (a1, as,...,a,) C B(X) is called S-spectral system if there
is a (C™, X) type S-spectral measure Eg such that
(4) a,jEs(B) = Es(B)aj, B e %g, 1<757<n
(5) o(a, Es(B)X) C B, B € B%.

For S = (), we have By = B(C"), (-spectral measure is spectral measure and (-
spectral system is spectral system ([14]).

Remark 3.1. ([26]) A commuting system a = (a1, az,...,a,) C B(X) is S-spectral if and
only if it is a direct sum a = b @ ¢, where b C B(X) is spectral system and (¢, X) C S.

Proof. Indeed, if a is an S-spectral system with its S-spectral measure Eg, then one easily
verify that the map E : B(C") — Px defined by E(B) = Es(BNC(S), B € B(C"), is a
spectral measure for b = a|Eg(CS) X, while ¢ = a|Eg(S9)X, o(c, X) = o(a, Es(S)X) C S.
Conversely, if b = (b1, ba, ..., b,)C B(X1) is spectral and ¢ = (¢1,¢2,...,¢p) C B(X3)
is nonspectral, with o(c, X3) 2 o(b,X1), by putting S = o(c,X3), X = X7 & X» and
a = b®c, it results that the map Eg : B% — Px defined by the equalities Eg(B) = E(B)&0,
if BNS =0 and Es(B) = E(B)® I, if B D S, B € BY, is an S-spectral measure of «,
where F is the spectral measure of b and I, is the identity operator in Xs. O
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Lemma 3.1. ([26]) If a = (a1, a2,...,a,) C B(X) is a commuting operator system, Y is a
linear closed subspace invariant to a and & = (a1, ag, ..., a,) C B(X) is the system induced
by a in X = X/Y, then, using the notations o(a, X) = o1, 0(a,Y) = 09, 0(a, X) = o3, we
have:

1°. 01 CoaUos, 09 CoyUos, o3 C oy Uos

2°. 0’1\0‘2 20'3\0'2, 0'1\0'3:0'2\0'37 0‘3\0’1 20'2\0'1

3°. g1 UO'Q :O'QUO'3 :0'3U0'1 :0'1U0'2UO'3.

Proof. The inclusions 1° follow from [19], Lemma 1.2, and the equalities 2° and 3° are
directly consequences of the inclusions 1°. The assertions and the primary verifications
for the case of a single operator have been proved in [5] for the first time, independent of
[19]. |

Remark 3.2. According to 1°, one may easily notice that if a point z € C™ belongs to one
of the spectrum then it also belongs to at least one more or to all the three ones, so it can
not belong to only one spectrum.

In unidimensional case, n = 1, a = T € B(X), the result is significant for both operators T
and T’ (if it is properly formulated, we believe it is also true for systems n > 1; see Corollary
3.1).

Lemma 3.2. Let a = (ay,a2,...,a,) C B(X) be a spectral system having the spectral
measure E and let A C C™ be a Borelian set. Then the restriction b = a|E(A)X is a
spectral system with the spectral measure E4 given by the relation E4(B) = E(AN B), for
any B C C™ Borelian.

Proof. One easily verify that E 4 is a spectral measure for b; this fact follows by the equality
b;Es(B)=b;E(ANB)=E(ANB)b; =Es(B)bj, 1<j<n
(where b; = a,;|Y, Y = E(A)X) and from the relations
o(b,EA(B)Y)=0(b,E(ANB)X) =o0(a, E(ANB)X) C B.
O

Proposition 3.1. Let a = (a1,as,...,a,) C B(X) be a spectral system having the spectral
measure E, let Y be a linear closed subspace invariant to a, let & = (ay,a9,...,a,) be
the system induced by a on X = X/Y and let ¢ : X — X be the canonical map. Then
a = ba ¢ where b = a|lp(E(0')X) is spectral system, ¢ = alp(E(0)X), ¢ = o(a,Y),
o' =0(a, X))\ o(a,Y) and o(é, p(E(0)X)) C S =o(a,Y)No(a, X).

Proof. The system a|E(0’)X is spectral (Lemma 3.2) and since Y C E(0)X
= X[q)(0) (Theorem 2.2.1 and Proposition 3.1.3, [14]), we have Y N E(0’) X = {0}. Because
E(0")X +Y is closed (Lemma 2.1), then E(¢")X +Y = E(¢/)X @Y and so that o(E(¢')X)

can be identified with E(o')X, respectively b with a|E(¢’')X (Remark 2.2), meaning b is

spectral system. It is easily to verify that (X, (o)) = X[a] (0) = X[4(S) is a spectral
maximal space of @, consequently o (¢, p(E(0)X)) = (¢, X[d] () cs. O

Proposition 3.2. Let a = (a1, as,...,a,) C B(X) be a spectral system having the spectral
measure E and let Y be a closed subspace invariant to a with X,(c) C Y, where 0 =
o(a,Y)\ o(a,X). Let also S = o(a,Y)No(a,X) and b= a|Y. Then b|E(c)Y and b|X,(0)
are spectral systems and b = (b|E(0)Y) @ (b|E(S)Y), with o(b, E(S)Y) C SNa(b,Y).

Proof. o being open in o(b,Y) (and also in o(a, X), because o(a, X) \ o(a, X) = o(a,Y) \
o(a, X); see Lemma 3.1), there is a growing sequence of closed sets (0, )neny With o = U On;
neN
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from the continuity of the measure E(-)z, it results that E(o) = lim F(o,), therefore
n—oo

E(on)X = Xa(0n) C Xa(o) (Proposition 3.1.3, [14]) implies E(0)X C X,(0) C Y. The
closed subspaces E(0)X and X, (o) are invariant to a and to spectral measure E, so a|E(0)Y
and a|X, (o) are spectral. E(0)|Y and E(S)|Y are projectors in Y, E(0)Y and E(S)Y are
closed subspaces and YV = E(0(a,Y))Y = E(0)Y @ E(S)Y. We also obtain that b =
(B|E(0)Y) & (b|E(S)Y), a(b, E(S)Y) C (b, E(S)X) No(a,Y) C SNo(a,Y) ([25]). O

Theorem 3.1. Let a = (ay,as,...,a,) C B(X) be a spectral system having the spectral
measure E, let Y be a closed subspace un subspace invariant to a such that X,(c) C Y,
where 0 = o0(a,Y)\ o(a,X), S=0(a,Y)No(a,X). Then a|Y sia are S-spectral systems.

Proof. The assertions follow from Proposition 3.1 and Proposition 3.2, and also from Remark
3.1. (Il

Corollary 3.1. Let a = (a1, az,...,a,) C B(X) be a spectral system and let Y be a closed
subspace of X invariant to a such that dim(c(a,Y) N o(a, X)) = 0. Then the restriction
system alY = (a1]Y, a2lY, ..., a,|Y) C B(Y) and the system a = (a1, a9, - . .,ay) induced by
a on X = X/Y are spectral.

Proof. The proof of this corollary is similar to the proof from the case of a single operator
(see Corollary 2.1). According to Lemma 2.2, Proposition 3.1, Proposition 3.2, Remark 3.1
and using similar arguments to those of Corollary 2.1, it results that a is a spectral system,
therefore a|Y is a spectral system. ]

Proposition 3.3. Let T € B(X), let Y be a linear closed subspace invariant to T and
let T' be the quotient operator induced by T on the quotient space X = X/Y. If D* is
the unbounded component of p(T) and D, (n € N) are the bounded components, then:
D*No(T) =0 and D, C o(T) if and only if D, C o(T|Y) (i.e. if and only if there is
Ao € Dy, such that R(Xo,T)Y € Y, where R(A\,T) is the resolvent of T).

Proof. LE. Scroggs proved in [24] that D*®° No(T]Y) = 0 and D,, C o(T|Y) if and only
if there is \g € D,, such that R(X\o,T)Y g Y. According to Lemma 3.1 and Remark 3.2,
D,, € o(T) if and only if D,, C o(T|Y) and A € D> implies A ¢ o(T) (if A € o(T), X ¢ o(T),
then A € o(T|Y), contradiction with D> No(T|Y) = 0). O

4. Conclusions

In this paper we achieve the extraction of the spectral part from the operator T|Y also
known as its "good part”. In the last section we extend Downson’s result from one operator
to a system of operators. The theorems obtained in this paper are verified for spectral
operators and spectral systems (and are extended to S-spectral operators and S-spectral
systems).
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