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ROBUSTNESS ANALYSIS AND OPTIMIZATION OF
COUPLED POWER AND COMMUNICATION NETWORKS
BASED ON NETWORK MOTIFS PARTITIONING
MECHANISM

Yonggang LI**, Yaotong SU?, Lei XIA3, Jianlin CHEN*, Longjiang LI°

The smart grid, composed of the power grid and communication networks, is
formed through a complex interplay between intelligent power grid technology’s high-
reliability operation and monitoring and control. This interaction necessitates that
both systems provide electrical energy to one another. Constructing a power grid
model, we apply the Louvain algorithm to detect and divide its network motif
structure. Subsequently, dividing the communication network into access, backbone,
and core layers is done. The partitioning mechanism with motifs maps the physical
topological layout into the virtual space to create a new coupling model integrating
the power and information flow. We propose a new motif-based robust optimization
algorithm — MROA. By using MROA, the network robustness is evaluated and
optimized. Simulation analysis was employed to validate the efficacy and practicality
of this proposed strategy for analyzing and optimizing the coupled network based on
its motif composition.

Keywords: power grid, communication network, simulated annealing, network
motifs, coupling network, robust optimization

1. Introduction

As the study of complex systems theory and models advances, independent
systems often need to integrate with and depend on other relevant systems to fulfill
complex engineering requirements. Network motifs [1] are recurring identical
subgraphs in networks, defined by specific interaction patterns among vertices,
each reflecting a framework for a specific function. Motifs are significant because
they reflect the nature of the network function. These motif structures form complex
integrated entities like Cyber-Physical Systems (CPS), including protein networks,
orbital networks [2], and public transportation facilities [3], and more. However,
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this closely coupled manner increases the possibility of faults. In recent years,
numerous serious power incidents have occurred due to the occurrence of cascading
failures in a specific region or equipment, affecting entire power lines or even larger
power systems, resulting in significant consequences [4]. Current research focuses
on constructing heterogeneous device-interconnected complexes in the power
sector, simulating emergencies, and assessing dynamic and static stability and
reliability [5]. Finally, a robustness evaluation is conducted on the power and
communication composite model.

The dual-layer coupled network model, introduced by Buldyrev et al. in
2010 [6], explores interactions between power and communication systems, where
each node has a counterpart. Simulations show that the largest connected subnet in
the dual-layer coupled network experiences a first-order phase transition during
cascading failures, unlike the second-order transition in non-coupled networks. This
indicates reduced robustness due to interdependence. Further studies have
highlighted dynamic differences between single-layer and double-layer networks
[7]. In 2013, research on cascading failures in power systems suggested protective
measures [8]. Neural networks have been used to assess power system stability
during maintenance [9,10]. Studies also compared random and targeted attacks in
complex networks [11] and investigated node safety during failures [12]. A self-
coupling node model in power-communication networks allows nodes to operate
independently, such as a substation with both power and communication nodes. The
ratio of power to communication resources significantly impacts the network's
dynamic performance [13]. While optimizing network robustness is a current
research focus, the robustness of coupled characteristic networks remains
understudied. Enhancing robustness is mainly achieved by adjusting topological
structures [14], without fully considering system-wide robustness. A failure in one
part of a coupled network can lead to the paralysis of the entire system [15]. In
power and communication systems, placing vulnerable key points at critical
junctions poses significant threats. Most robustness research focuses on single-
point networking, not on network partitions. The motif structure reveals subnetwork
relationships, and different robust optimization methods affect the motif
architecture, causing partial failures in coupled systems [16]. Deep learning has
been used to develop a communication network fault diagnosis model based on
deep belief networks [17,18]. Research has also created a hybrid AC/DC microgrid
model to analyze various fault types [19,20]. The amount of information adversaries
acquire influences their attack efficiency on Cyber-Physical Systems (CPS).
Accurate fault identification and decoupling are crucial for enhancing the
robustness of power-communication networks under the motif structure. This paper
proposes a robustness optimization method based on motif granularity for such
networks.

The paper uses the Louvain technique to identify the motif architecture of
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the coupled power and communication system, modeling the interaction between
power and information flow to predict the dynamic evolution of coupling
relationships. Conventional intelligent algorithms protect nodes and ensure stable
node degrees within internal motifs, while an intelligent path replanning
mechanism adjusts the coupling degree between multiple motifs. Simulation results
show that the proposed algorithm significantly enhances the robustness of the
power-communication network under complex interactions.

2. Coupled Modeling of Power Grid and Communication Network

The integrated power grid-communication network system combines the
power grid and communication network, highlighting their interdependence.
Electrical energy from the power grid is used by the communication network for
data transmission. The communication network has three layers: access, backbone,
and core. The access layer includes terminal substations and nearby backbone
nodes, often near power generation sites. The backbone layer consists of fiber optic
lines connecting 220kV substations, while the core layer includes primary and
backup dispatch centers and 500kV substations.

2.1 Division of Power Grid Model Network Motifs

From the perspective of complex networks, we construct a power grid
model by considering each electrical equipment in the power grid structure as a set
ofnodes Vp= {l, 2,--,N } , and the transmission lines are regarded as the set of edges

E., ultimately forming the power grid Gy (Vs,Ep). The adjacency matrix Ap is
used to describe the connection relationships among nodes in Gy (Vp, Ep), where
A (i, J) =1 if two nodes are connected, and As (i, j) =0 otherwise.

2.2 Division of Communication Network Model Motifs

First, we construct and partition motifs for the power grid structure, and
then, based on these network motifs, we progressively build the model for the
power-communication network layer by layer.
Modularity measures the quality of community structure in a network, commonly
used in graph theory and network science to detect and evaluate communities. We
use the Louvain algorithm [22] to extract motifs from the power system, which
involves two steps: optimizing modularity and achieving network motif cohesion.
The decision to continue iterative and integration operations depends on the degree
of modularity improvement. We adopt the definition of modularity from reference
[23]:
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Where m represents the number of network connecting edges; A ; is the weight of
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the connecting edge in the network; K; is the sum of the weights of connecting
edges associated with node i; K; is the sum of the weights of connecting edges
associated with node ). If nodesiand Jare part of the same motif, then
0(Ci,C;) =1, otherwise, 6(C;,C;) =0.

When a node leaves its initial motif and migrates to another, it changes the

network architecture and affects modularity, with the gain from the motif change
denoted as AQ . By moving node i from its initial motif to the motif near node j,

the gain is calculated using the following formula AQ:

AQ:|:Zin +kivi”_(Ztot +ki)2i|_

2m 2m

P

@
2 Kiyo|_ 1 _
Sy o0 }m (ks

k.
Ztot ! )

2m 2m 2m

Here, 2., is the sum of connection weights within the motif; 2., is the sum
of connection weights outside the motif; the degree of node i is K ; the degree from
I to the internal motif'is K. ; and m is the sum of all link weights. If AQ <0, no

i,in»
action is taken; otherwise, motif ownership and numbering are adjusted. This
continues until the network structure is stable and modularity no longer increases.
If AQ differs from max AQ by no more than 1/2m, the adjusted nodes overlap. The

motif partitioning follows these steps:

Step 1: Designate each node as a single motif, with the total number of nodes
equaling the total number of motifs.

Step 2: Node migration between motifs: Transfer each node one by one to nearby
motifs, calculating the change in AQ before and after migration. If the migration

results in the greatest change, the migration is successful; otherwise, the state
remains unchanged.

Step 3: Execute Step 2. For each node in the network, move it according to the
method in Step 2 until there is no further change in the motif.

Step 4: Reconstruct motifs. Consider the weights of nodes within motifs as the
weights of the new node rings, and also consider the weights of inter-motif
connecting edges as the weights of the new node edges.

Step 5: Treat the reconstructed motifs as nodes and repeat the process in Step 2,
integrating motifs until their modularity gain does not change further.

2.3 Communication Network Access Layer Model

The communication access layer is within the substations, and its layout
mirrors the power grid's pattern. There is a significant similarity between the
hierarchical structure of the electrical network in the substations and the
communication network. The topological structures of the communication network
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and the power grid are denoted as Gy (Vy, Ey) andG,(V,,E,), respectively. The

number of nodes and the network structure closely resemble or are identical to those
of the distribution substations:

Gcl cl? Ecl):Gp(Vp' Ep) (3)

A=A, @)

Where A represents the communication adjacency matrix, and this adjacency
matrix is directly coupled on a one-to-one basis with the power grid.

2.4 Communication Network Backbone Layer Model

Data transmission and control systems are integral to the data
communication network, showing clear motif aggregation. Thus, when modeling
the communication backbone layer, node motifs must be allocated first, followed
by establishing motif topology [24-25].
The core node motifs are the primary consideration, with the weighted modularity
function value Q as the objective. Core nodes serve as motif centers, and the

relationships between backbone points and motif ownership are optimization
variables. This leads to the following model:
1) Objective Function

n

max Q = Z% > [AN(L j)_ﬁ}fa,ifa,j
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Here, n is the number of motifs, 7,; represents whether a node 1 is assigned to a
motif a, in which case 7,;=1; otherwise, 7,;=0;m is the sum of weights; A, is the
adjacency weight matrix. We express it by combining the degree of coupling
between power and communication and the length of connections between nodes.
Each element of A, is defined as follows:

'A\N(i’J-):(Ep(hJ-)Xl(i.j)y1 (6)
2) Constraints
Constraint on Single Ownership of Motif for Backbone Layer Nodes:
Dz, =1va=12--n (7)
i=1
Constraint on the Number of Backbone Nodes within a Motif:

Noin < D Tai <Npee V2=1,2,--,1 ®)
i=1
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Where N, and Ny, are the upper and lower limits, respectively, on the number of
internal nodes within a motif.

For constructing motifs in the communication layer, Gg,(Vc2,Ec,) is
considered the topology graph of the backbone layer, with its adjacency matrix
defined as A.;. Inter-layer connections, such as those between the backbone and
access layers, follow a one-to-many pattern.

2.5 Communication Network Core Layer Model

The communication system's core layer typically uses high-end routers,
with some main nodes directly connected to backup points. Core nodes intersect
with backbone nodes, forming a many-to-many connection. The constructed
topology for the core is denoted as G, (Ve,, Ec,), with Acs as the adjacency matrix,

showing the connections between core and backbone nodes.
2.6 Coupled Network Model of Power Grid and Communication

Network
We define the strong-weak coupling network model G (Vpe, Epe) for the

power grid and communication network, with A, serving as the adjacency matrix
defined as follows:

A, Ag 0 0

Apc — Al:l—p ACl—Cl Acl—cZ 0 (9)
0 Ac2—cl Ac2—c2 AcZ—cS

_0 0 Ac3—02 AcS—c3 a

In Equation (9), Ap-c1, Ac-p, Actc2 Acoc1, Acoc3, Aca_c2 Tepresent different

types of coupling matrices, such as A,_c; being the coupling matrix between the

power layer and the communication access layer. Through the above calculations,
the coupled model of the power-communication network, as shown in Fig. 1, can
be established.

Using the Louvain algorithm, motifs are extracted from the power grid and
communication network, and the network is hierarchically divided based on these
motifs, ensuring the accuracy of the layered model. This model aids in
understanding the dynamic coupling between power and information flow and is
crucial for optimizing motif robustness. It allows consideration of each layer's
characteristics during optimization, enhancing overall network robustness.
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Fig.1. Coupling the power grid with the communication network based on motif structure

3. Power-Communication Coupled Network Robustness

3.1 Objective Function
Penetration probability is a crucial metric for evaluating system stability
[26]. Once the system is saturated with damage, the entire system collapses.
However, percolation models often overlook cases where the system sustains minor
damage without a complete breakdown. For instance, the disconnection of a node
or edge can change the system's structure, dividing it into isolated motifs that still
maintain integrity and function [27]. A novel evaluation metric, denoted as R, has
been proposed to assess network resilience against attacks [28]. Robustness R is
defined as: * 5(0)
_1 q
R N ; \ (10)
Where S(Q) is defined as the maximum dimension of the largest connected
subgraph after removing(nodes, and the original number of nodes is N,
Re[1/N,0.5]. A smaller R indicates poorer robustness.

3.2 MROA Algorithm Description

The motif structure illustrates the layout and connectivity of micro-
networks. Malicious damage can compromise the motif structure, and optimizing
network robustness may alter it, causing the disappearance of functional
components. Thus, an appropriate optimization strategy is crucial. We propose
using the motif structure to optimize the robustness of coupled power and
communication systems. To preserve the original motif structure, we use
normalized mutual information (NMI) [29] to assess motif modeling accuracy. The
NMI standard evaluates how well the optimization scheme maintains the initial
motifs. Assuming the current network with motifs is denoted as « and the
optimized network as £, NMI is calculated as follows [30]:
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In Equation (11), C, and C; are the numbers of motifs before and after

Ny (@, ﬂ)_ (11)

optimization, respectively, F is the confusion matrix. If motifs i and ] are present
in networks « and A, the confusion matrix is defined as F;. When Ny, (o, ) =1

for networks o« and /), it indicates that the motif structures before and after
optimization are the same; otherwise, they are different. When the NMI value
decreases, it implies a weaker preservation of the original motif structure.
Conversely, an increase in the NMI value indicates a better preservation of the
original motif structure.

To optimize the robustness metric R, we propose the Path Relinking
Algorithm, which reconnects failed edges while maintaining the node degrees to
enhance the resilience within motifs. Unlike the existing random rewiring (Fig. 2.a),
our Path Relinking Algorithm makes slight adjustments to some edges without
changing the node degrees and the network structure, as illustrated in Fig. 2.b. In
this example, edges lj and |, are replaced by edges I, and ;. After this edge

exchange, the motif robustness becomes R'. If the adjusted robustness R’ is greater
than the original robustness, i.e., R >R, we keep this adjustment algorithm until
the robustness R no longer improves.

® @
@@ @@ olic

a) Random Edge Rewiring (b) Degree-Preserving Edge Rewiring
Fig.2. Two methods for reconnecting edges

As a heuristic edge rewiring algorithm, the Path Relinking Algorithm has
shown good performance in optimizing network robustness. However, this method
cannot completely prevent falling into local optima because it is essentially a
solution based on greedy algorithms, which may overlook contradictory but
superior solutions. To mitigate this, random factors should be introduced. The
Simulated Annealing algorithm [31] can avoid local optima, so we propose using
it.
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Fig.3. Motif-based degree preserving edge reconnection method based on simulated annealing

Using various disruption mechanisms A to attack a specific motif G;,
Ri(A) represents the robustness post-attack. If the Path Relinking Algorithm yields
motif G with robustness R/ (A), and R/ (A)<Ri(A), G, =G; is accepted with a
certain probability. If R/(A)> R;(A), the new motif G; is fully accepted. The
acceptance probability is influenced by AR =| R —R;| and the initial temperature

of the Simulated Annealing algorithm. A smaller AR increases rewiring success
probability, while a higher initial temperature T helps avoid local optima. As
iterations increase, T decreases, affecting the algorithm's performance. The change
in T follows T(i)=0.8'xT?, where | is the iteration index. Steps for optimizing

robustness within motifs using Simulated Annealing are shown in Fig. 3.

We utilize simulated annealing techniques for path relinking within motifs,
optimizing robustness and observing performance differences before and after. To
illustrate the algorithm's effect on the power-communication coupling network, Fig.
4 presents a simplified example with the original and optimized network structures.
A specific motif from a network G —C is selected to avoid affecting node degrees
and robustness R. Links of two edges are cut and optimized at each level. After
such operations, we obtain the new network Gopt and Copt . It is noteworthy to note

that the optimization process does not change any dependencies. Because the
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optimized network has better stability than the original network nodes, it shows that
the whole network system has higher stability and robustness.

| |
o) |
|
|
@%dé

Fig.4. Schematic diagram of coupling network optimization before and after

Fig.5. Intelligent rewiring algorithm

The Intelligent Rewiring Algorithm is an intelligent and efficient robustness
optimization strategy [32], an improvement upon the random rewiring algorithm.
As shown in Fig. 5, for anode i connected to a set of nodes, there are nodes | with
an upper degree limit and nodes k with a lower degree limit. m represents the
adjacent nodes of J, and n represents the adjacent nodes of k. The algorithm
involves removing edges |jn and I, while adding edges lx and I,. If the

robustness improves, the edges lj and |, are retained; otherwise, the algorithm

is re-executed with a different node 1.
To enhance robustness between motifs, the intelligent rewiring algorithm is
adjusted. The first step involves selecting a suitable node i with a degree (k)

greater than the network's average degree. This node should be connected to at least
one node outside the motif and internally connected to a node with a degree greater
than 2. The second step of the algorithm, as illustrated in Fig. 6, focuses on a node
J that is adjacent to node i but not in the same motif. Nodes i, m, and k are in

the same motif and mutually connected. After removing edges lj and lim, the
algorithm switches to li and ljm. By iteratively executing multiple rounds of this
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algorithm, the optimization gains in robustness between motifs can be achieved.

Fig.6 Method of reconnecting edges between communities

Start

h
Randomly select anode i with a degree greater than <k) . Node
Input the target network G for intra- i should have at least one neighbor in a different module and one
module robustness optimization, neighbor in the same module with a degree greater than 2.
attack strategy A, robustness l
optimization parameter AR, and - -
termination parameter Nas. Select the neighbor node m in the same

module as node i with the minimum degree.

)

Select aneighbor node k of node m, and select a
neighbor node j of node i in a different module.

| Delete the edges land Iy, |

|

| Add the edges li.and lj, |

Calculate R*(A)

Calculate R(A)

If R"(A)>R(A)+ AR

Nstep:Nstep+l

Fig.7. MROA’s motif reconnection edge method based on improved intelligent rewiring policy

R(A) defines the internal robustness of motifs. After the optimization, the network
motif is upgraded from G to G”, and the optimized robustness indicator is denoted
as R'(A). If R"(A)>R(A)+AR, the current motif G is retained, achieving a
single optimization. Simultaneously, a stopping threshold condition N, is set to

ensure the convergence of the optimization process. Fig. 7 illustrates the process
flowchart of the inter-motif edge reconnection method, which is achieved by
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refining the intelligent rewiring mechanism.
4. Simulation Results and Analysis

The simulation test object is IEEE-39 system. After modeling and analyzing
the power communication coupling network, the power communication coupling
network model is established by using MATLAB and MATPOWER.

Table 1
IEEE-39 Node Motif Division Results

Motif Motif member Overlapping nodes
Motif 1 1,2,4,5,6,7,8,9,11,30,31,39 4,6,11
Motif 2 4,6,10,11,12,13,14,15,32 4,6,11,15
Motif3  3,15,16,17,18,19,20,21,24,27,33,34  15,16,17,21,24,27
Motif 4 16,21,22,23,24,35,36 16,21,24
Motif 5 17,25,26,27,28,29,37,38 17,27

Firstly, we applied the Louvain algorithm to partition the IEEE-39 system's
power grid topology into motifs. Table 1 presents the predictive performance
relationship over time, indicating five motifs. Fig. 8 provides a topological map
with motif structures highlighted in different colors.
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Fig.8. Schematic diagram of IEEE-39 node motif division results

The power system and its communication counterpart are partitioned into
five motifs. Communication devices are organized into access, backbone, and core
functional points, forming a coupled system with 39 power nodes and 50
communication nodes. The layered model architecture is shown in Fig. 9.

To improve robustness optimization efficiency, we test our models using
effective attack patterns. Whether to use node-based or edge-based attacks depends
on the topology. Based on relevant literature, we consider attack patterns based on
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degree and betweenness centrality. Nodes are sorted by degree and betweenness
centrality, and highly connected and central nodes are selected for attack and
removal. These attack patterns are used to optimize motif structure robustness
internally and externally. Simulation results for these attack patterns are shown in
Fig. 10, with attack cycles corresponding to the number of faulty nodes.
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Fig.10. Robust comparison of IEEE-39 system under different attack strategies

Historically, power and communication networks have been fused one-to-
one, based on node connectivity and betweenness centrality rankings. This study
used the classical one-to-one coupling model and introduced a novel fusion model
considering motif structures to compare robustness. The node failure ratio measures
network robustness. The IEEE-39 node system is simulated by MATLAB using two
methods, and the degree-based attack results are shown in Fig. 11.
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Fig.11. Comparison of Survivability of Coupled networks under different coupling modes

As shown in Fig. 11, traditional single-equation coupling of power and
communication networks is prone to triggering a first-order phase transition.
Attacking about 5% of nodes can cause 54.8% node failures. However, using the
fusion approach based on network motif structures, a similar attack results in only
8.7% node failures. In traditional 1:1 coupling, sparse interconnections can lead to
complete network breakdown, forming multiple subnets and causing significant
disruption. During subsequent attacks, the isolation between subnets prevents fault
spread, resulting in slower node loss growth.
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Fig.12. Changes in s(q) of coupled networks under different optimization strategies

The simulation results of s(q) for the optimized algorithm considering the

motif structure of the coupled networks are shown in Fig. 12. We improved the
original network motif structure while maintaining its stability, applied the
proposed model to the IEEE-39 node system, and compared it with intelligent
rewiring [32] and the Memetic Algorithm (MA) [33]. The MA algorithm combines
genetic algorithms' global search capability with local search's fine optimization
ability, effectively solving complex problems. We simulated betweenness and
degree attacks on the IEEE-39 system, observed the decrease in S(Q) with

increasing node failure rate (, and evaluated the robustness of the optimized power
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and communication network coupling system.
In Fig. 12, as the parameter ( increases, both attack modes show a similar

trend in S(() with a conservative optimization strategy due to the IEEE-39 node
coupling system's scale-free nature with a power-law degree distribution. Both
attack modes accurately identify critical points, leading to similar effects. However,
with intelligent rewiring and MA algorithms, the decrease in S(qQ) is slower, and
s(q) <0.1 when q=0.6. The MROA algorithm's s(q) lies between the two. This
study applied three optimization methods to the coupled power and communication
network system over 10 rounds, with results in Table 2. Rorg represents
unoptimized robustness, Ravy is robustness after 10 optimizations, and AR is the
improvement percentage. As shown in Table 2, under degree attacks, MROA
improves network robustness by up to 61.02%. Under betweenness attacks, it
achieves up to 79.31% improvement. It outperforms the intelligent rewiring scheme
and is comparable to the MA algorithm's performance.

Table 2
Results of Robustness Optimization under Different Attack Strategies
Optimization algorithm Ry R AR
MROA Algorithm 0.254 0.409 0.155
Degree Attack Intelligent Rewiring Algorithm 0.254 0.406 0.152
MA Algorithm 0.254 0.428 0.174
MROA Algorithm 0232 0.416 0.184
Betweenness Attack Intelligent Rewiring Algorithm 0.232  0.403 0.171
MA Algorithm 0232 0.432  0.200

This study used the Louvain algorithm to examine the stability of the initial
modular structure in coupled power and communication networks before and after
applying three robustness optimization schemes. It explored changes in Normalized
Mutual Information (NMI) values during optimization, comparing the impact of

these schemes on modular structure constancy.
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Fig.13. NMI comparison of three algorithms
Simulation results in Fig. 13 show that after 1000 iterations, the NMI index

for intelligent rewiring is about 0.4, MA's NMI is around 0.3, while the proposed
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modular structure algorithm achieves an NMI of about 0.6, outperforming both. We
conducted 10 optimization iterations using three methods on the coupled power and
communication network systems, with results presented in Table 3. N1 represents
the mean constancy of the network modular structure after optimization, and N2
indicates the improvement index of the modular constancy.

From Table 3, our approach enhances the constancy of the modular structure more
effectively than the traditional intelligent rewiring method. Compared to intelligent
rewiring, the ANMI improvement is 51.9%. Compared to the MA algorithm, the
ANMI improvement is 85.1%. Among the three algorithms, MROA maintains the
best constancy of the initial modular structure.

Table 3
Effect of Motif Structure Preservation
Optimization algorithm NMIavg ANMI
MROA Algorithm 0.559 -
Intelligent Rewiring Algorithm  0.368 0.191
MA Algorithm 0.302 0.257

After the experimental simulations and analysis, the MROA algorithm
shows robustness similar to MA, both outperforming the intelligent rewiring
algorithm. In terms of modular stability, MROA performs best in maintaining the
initial network modular structure. The results indicate a differentiated downward
trend in S(Q), showing that each algorithm has unique characteristics in enhancing

system robustness. The intelligent rewiring algorithm integrates adjacency
information and reselection of edges via greedy algorithms. The MA algorithm uses
a population-based global search and individual-based local heuristic search,
reconnecting edges under optimal conditions without constraints. This study
calculates the network modular structure, using different intelligent algorithms for
internal (simulated annealing) and external (improved intelligent rewiring)
modules. The MA algorithm is closer to MROA in the S(q) metric, showing greater

stability. Maintaining the original modular structure's stability is crucial for
improving the robustness of the coupled network. Simulation results show that the
MROA algorithm excels in maintaining submodule stability while achieving
robustness optimization similar to the MA algorithm.

5. Conclusion

This paper constructs a model of a coupled power grid and communication
network to describe its complexity, aiming to achieve effective network motifs and
maintain the stability of subnetwork motifs. The Louvain algorithm is used to
discover motif structures in the coupled model. Based on this motif-based grid
pattern, each level of the power grid and communication network is systematically
constructed, forming a complex system model. The proposed Motif-based Robust
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Optimization Algorithm (MROA) is introduced and compared through simulation
with the Memetic Algorithm (MA) and the Intelligent Rewiring Algorithm. The
results show that MROA achieves robustness optimization gains comparable to MA
but superior to the Intelligent Rewiring Algorithm. Compared with MA, MROA
enhances both the stability of subnetworks and the constancy of network motif
structures without degrading network robustness. This algorithm proves its
superiority in improving network robustness and stability. This motif-based
analysis method provides a new perspective for the collaborative optimization of
power and communication networks.

Future research directions could involve further validating the effectiveness
of the MROA algorithm on larger-scale systems and considering network
optimization problems in more practical application scenarios. Additionally, in-
depth explorations of the application of motif structures in other complex systems
can be undertaken to broaden the applicability of this method.
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