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ROBUSTNESS ANALYSIS AND OPTIMIZATION OF 

COUPLED POWER AND COMMUNICATION NETWORKS 

BASED ON NETWORK MOTIFS PARTITIONING 

MECHANISM 

Yonggang LI1*, Yaotong SU2, Lei XIA3, Jianlin CHEN4, Longjiang LI5 

The smart grid, composed of the power grid and communication networks, is 

formed through a complex interplay between intelligent power grid technology's high-

reliability operation and monitoring and control. This interaction necessitates that 

both systems provide electrical energy to one another. Constructing a power grid 

model, we apply the Louvain algorithm to detect and divide its network motif 

structure. Subsequently, dividing the communication network into access, backbone, 

and core layers is done. The partitioning mechanism with motifs maps the physical 

topological layout into the virtual space to create a new coupling model integrating 

the power and information flow. We propose a new motif-based robust optimization 

algorithm — MROA. By using MROA, the network robustness is evaluated and 

optimized. Simulation analysis was employed to validate the efficacy and practicality 

of this proposed strategy for analyzing and optimizing the coupled network based on 

its motif composition. 

Keywords: power grid, communication network, simulated annealing, network 

motifs, coupling network, robust optimization 

1. Introduction 

As the study of complex systems theory and models advances, independent 

systems often need to integrate with and depend on other relevant systems to fulfill 

complex engineering requirements. Network motifs [1] are recurring identical 

subgraphs in networks, defined by specific interaction patterns among vertices, 

each reflecting a framework for a specific function. Motifs are significant because 

they reflect the nature of the network function. These motif structures form complex 

integrated entities like Cyber-Physical Systems (CPS), including protein networks, 

orbital networks [2], and public transportation facilities [3], and more. However, 
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this closely coupled manner increases the possibility of faults. In recent years, 

numerous serious power incidents have occurred due to the occurrence of cascading 

failures in a specific region or equipment, affecting entire power lines or even larger 

power systems, resulting in significant consequences [4]. Current research focuses 

on constructing heterogeneous device-interconnected complexes in the power 

sector, simulating emergencies, and assessing dynamic and static stability and 

reliability [5]. Finally, a robustness evaluation is conducted on the power and 

communication composite model. 

The dual-layer coupled network model, introduced by Buldyrev et al. in 

2010 [6], explores interactions between power and communication systems, where 

each node has a counterpart. Simulations show that the largest connected subnet in 

the dual-layer coupled network experiences a first-order phase transition during 

cascading failures, unlike the second-order transition in non-coupled networks. This 

indicates reduced robustness due to interdependence. Further studies have 

highlighted dynamic differences between single-layer and double-layer networks 

[7]. In 2013, research on cascading failures in power systems suggested protective 

measures [8]. Neural networks have been used to assess power system stability 

during maintenance [9,10]. Studies also compared random and targeted attacks in 

complex networks [11] and investigated node safety during failures [12]. A self-

coupling node model in power-communication networks allows nodes to operate 

independently, such as a substation with both power and communication nodes. The 

ratio of power to communication resources significantly impacts the network's 

dynamic performance [13]. While optimizing network robustness is a current 

research focus, the robustness of coupled characteristic networks remains 

understudied. Enhancing robustness is mainly achieved by adjusting topological 

structures [14], without fully considering system-wide robustness. A failure in one 

part of a coupled network can lead to the paralysis of the entire system [15]. In 

power and communication systems, placing vulnerable key points at critical 

junctions poses significant threats. Most robustness research focuses on single-

point networking, not on network partitions. The motif structure reveals subnetwork 

relationships, and different robust optimization methods affect the motif 

architecture, causing partial failures in coupled systems [16]. Deep learning has 

been used to develop a communication network fault diagnosis model based on 

deep belief networks [17,18]. Research has also created a hybrid AC/DC microgrid 

model to analyze various fault types [19,20]. The amount of information adversaries 

acquire influences their attack efficiency on Cyber-Physical Systems (CPS). 

Accurate fault identification and decoupling are crucial for enhancing the 

robustness of power-communication networks under the motif structure. This paper 

proposes a robustness optimization method based on motif granularity for such 

networks. 

The paper uses the Louvain technique to identify the motif architecture of 
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the coupled power and communication system, modeling the interaction between 

power and information flow to predict the dynamic evolution of coupling 

relationships. Conventional intelligent algorithms protect nodes and ensure stable 

node degrees within internal motifs, while an intelligent path replanning 

mechanism adjusts the coupling degree between multiple motifs. Simulation results 

show that the proposed algorithm significantly enhances the robustness of the 

power-communication network under complex interactions. 

2. Coupled Modeling of Power Grid and Communication Network 

The integrated power grid-communication network system combines the 

power grid and communication network, highlighting their interdependence. 

Electrical energy from the power grid is used by the communication network for 

data transmission. The communication network has three layers: access, backbone, 

and core. The access layer includes terminal substations and nearby backbone 

nodes, often near power generation sites. The backbone layer consists of fiber optic 

lines connecting 220kV substations, while the core layer includes primary and 

backup dispatch centers and 500kV substations. 

2.1 Division of Power Grid Model Network Motifs 

From the perspective of complex networks, we construct a power grid 

model by considering each electrical equipment in the power grid structure as a set 

of nodes  = 1,2PV N, , , and the transmission lines are regarded as the set of edges 

PE , ultimately forming the power grid ( , )P P PG V E . The adjacency matrix PA  is 

used to describe the connection relationships among nodes in ( , )P P PG V E , where 

( , ) 1P i j =A  if two nodes are connected, and ( , ) 0P i j =A  otherwise. 

2.2 Division of Communication Network Model Motifs 

First, we construct and partition motifs for the power grid structure, and 

then, based on these network motifs, we progressively build the model for the 

power-communication network layer by layer. 

Modularity measures the quality of community structure in a network, commonly 

used in graph theory and network science to detect and evaluate communities. We 

use the Louvain algorithm [22] to extract motifs from the power system, which 

involves two steps: optimizing modularity and achieving network motif cohesion. 

The decision to continue iterative and integration operations depends on the degree 

of modularity improvement. We adopt the definition of modularity from reference 

[23]: 
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Where m  represents the number of network connecting edges; ,i jA  is the weight of 
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the connecting edge in the network; iK  is the sum of the weights of connecting 

edges associated with node i ; jK  is the sum of the weights of connecting edges 

associated with node j . If nodes i and j are part of the same motif, then 

( , ) 1i jC C = ; otherwise, ( , ) 0i jC C = .  

When a node leaves its initial motif and migrates to another, it changes the 

network architecture and affects modularity, with the gain from the motif change 

denoted as Q . By moving node i  from its initial motif to the motif near node j , 

the gain is calculated using the following formula Q : 
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Here, in  is the sum of connection weights within the motif; tot  is the sum 

of connection weights outside the motif; the degree of node i  is ik ; the degree from 

i  to the internal motif is ,i ink ; and m  is the sum of all link weights. If 0Q  , no 

action is taken; otherwise, motif ownership and numbering are adjusted. This 

continues until the network structure is stable and modularity no longer increases. 

If Q  differs from max Q  by no more than 1/2m, the adjusted nodes overlap. The 

motif partitioning follows these steps: 

Step 1: Designate each node as a single motif, with the total number of nodes 

equaling the total number of motifs. 

Step 2: Node migration between motifs: Transfer each node one by one to nearby 

motifs, calculating the change in Q  before and after migration. If the migration 

results in the greatest change, the migration is successful; otherwise, the state 

remains unchanged. 

Step 3: Execute Step 2. For each node in the network, move it according to the 

method in Step 2 until there is no further change in the motif. 

Step 4: Reconstruct motifs. Consider the weights of nodes within motifs as the 

weights of the new node rings, and also consider the weights of inter-motif 

connecting edges as the weights of the new node edges. 

Step 5: Treat the reconstructed motifs as nodes and repeat the process in Step 2, 

integrating motifs until their modularity gain does not change further. 

2.3 Communication Network Access Layer Model 

The communication access layer is within the substations, and its layout 

mirrors the power grid's pattern. There is a significant similarity between the 

hierarchical structure of the electrical network in the substations and the 

communication network. The topological structures of the communication network 
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and the power grid are denoted as 1 1 1( , )c c cG V E  and ( , )p p pG V E , respectively. The 

number of nodes and the network structure closely resemble or are identical to those 

of the distribution substations: 

1 1 1( , )= ( , )c c c p p pG V E G V E                                       (3) 

1c p=A A                                                   (4) 

Where 1cA represents the communication adjacency matrix, and this adjacency 

matrix is directly coupled on a one-to-one basis with the power grid. 

2.4 Communication Network Backbone Layer Model 

Data transmission and control systems are integral to the data 

communication network, showing clear motif aggregation. Thus, when modeling 

the communication backbone layer, node motifs must be allocated first, followed 

by establishing motif topology [24-25].  

The core node motifs are the primary consideration, with the weighted modularity 

function value Q  as the objective. Core nodes serve as motif centers, and the 

relationships between backbone points and motif ownership are optimization 

variables. This leads to the following model: 
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Here, n  is the number of motifs, ,a i  represents whether a node i  is assigned to a 

motif a , in which case , =1a i ; otherwise, , =0a i ; m is the sum of weights; wA  is the 

adjacency weight matrix. We express it by combining the degree of coupling 

between power and communication and the length of connections between nodes. 

Each element of wA  is defined as follows: 
1

( . )( , ) ( ( , ) )w p i ji j i j l −= A E                                  (6) 

2) Constraints 

Constraint on Single Ownership of Motif for Backbone Layer Nodes: 
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Where minn  and maxn  are the upper and lower limits, respectively, on the number of 

internal nodes within a motif. 

For constructing motifs in the communication layer, 2 2 2( , )c c cG V E  is 

considered the topology graph of the backbone layer, with its adjacency matrix 

defined as 2cA . Inter-layer connections, such as those between the backbone and 

access layers, follow a one-to-many pattern. 

2.5 Communication Network Core Layer Model 

The communication system's core layer typically uses high-end routers, 

with some main nodes directly connected to backup points. Core nodes intersect 

with backbone nodes, forming a many-to-many connection. The constructed 

topology for the core is denoted as 
3 3 3
( , )C C CG V E , with 3CA  as the adjacency matrix, 

showing the connections between core and backbone nodes. 

2.6 Coupled Network Model of Power Grid and Communication 

Network 

We define the strong-weak coupling network model ( , )pc pc pcG V E  for the 

power grid and communication network, with pcA  serving as the adjacency matrix 

defined as follows: 
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In Equation (9), 1p c−A , 1c p−A , 1 2c c−A , 2 1c c−A , 2 3c c−A , 3 2c c−A  represent different 

types of coupling matrices, such as 1p c−A  being the coupling matrix between the 

power layer and the communication access layer. Through the above calculations, 

the coupled model of the power-communication network, as shown in Fig. 1, can 

be established.  

Using the Louvain algorithm, motifs are extracted from the power grid and 

communication network, and the network is hierarchically divided based on these 

motifs, ensuring the accuracy of the layered model. This model aids in 

understanding the dynamic coupling between power and information flow and is 

crucial for optimizing motif robustness. It allows consideration of each layer's 

characteristics during optimization, enhancing overall network robustness. 
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Fig.1. Coupling the power grid with the communication network based on motif structure 

3. Power-Communication Coupled Network Robustness 

3.1 Objective Function 

Penetration probability is a crucial metric for evaluating system stability 

[26]. Once the system is saturated with damage, the entire system collapses. 

However, percolation models often overlook cases where the system sustains minor 

damage without a complete breakdown. For instance, the disconnection of a node 

or edge can change the system's structure, dividing it into isolated motifs that still 

maintain integrity and function [27]. A novel evaluation metric, denoted as R , has 

been proposed to assess network resilience against attacks [28]. Robustness R  is 

defined as: 

1

1 ( )
=

N

q

S q
R

N N=

                                              (10) 

Where ( )qS  is defined as the maximum dimension of the largest connected 

subgraph after removing q nodes, and the original number of nodes is N ,

 1/ ,0.5R N . A smaller R  indicates poorer robustness. 

3.2 MROA Algorithm Description 

The motif structure illustrates the layout and connectivity of micro-

networks. Malicious damage can compromise the motif structure, and optimizing 

network robustness may alter it, causing the disappearance of functional 

components. Thus, an appropriate optimization strategy is crucial. We propose 

using the motif structure to optimize the robustness of coupled power and 

communication systems. To preserve the original motif structure, we use 

normalized mutual information (NMI) [29] to assess motif modeling accuracy. The 

NMI standard evaluates how well the optimization scheme maintains the initial 

motifs. Assuming the current network with motifs is denoted as   and the 

optimized network as  , NMI is calculated as follows [30]: 
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In Equation (11), C  and C  are the numbers of motifs before and after 

optimization, respectively, F  is the confusion matrix. If motifs i  and j  are present 

in networks   and  , the confusion matrix is defined as ijF . When ( , ) 1NMIN   =

for networks   and  , it indicates that the motif structures before and after 

optimization are the same; otherwise, they are different. When the NMI value 

decreases, it implies a weaker preservation of the original motif structure. 

Conversely, an increase in the NMI value indicates a better preservation of the 

original motif structure. 

To optimize the robustness metric R , we propose the Path Relinking 

Algorithm, which reconnects failed edges while maintaining the node degrees to 

enhance the resilience within motifs. Unlike the existing random rewiring (Fig. 2.a), 

our Path Relinking Algorithm makes slight adjustments to some edges without 

changing the node degrees and the network structure, as illustrated in Fig. 2.b. In 

this example, edges ijl  and mnl  are replaced by edges inl  and mjl . After this edge 

exchange, the motif robustness becomes 'R . If the adjusted robustness 'R  is greater 

than the original robustness, i.e., 'R R , we keep this adjustment algorithm until 

the robustness R  no longer improves. 
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i m
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j n

 
(a) Random Edge Rewiring 
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j n

 

 
(b) Degree-Preserving Edge Rewiring 

Fig.2. Two methods for reconnecting edges 

 

As a heuristic edge rewiring algorithm, the Path Relinking Algorithm has 

shown good performance in optimizing network robustness. However, this method 

cannot completely prevent falling into local optima because it is essentially a 

solution based on greedy algorithms, which may overlook contradictory but 

superior solutions. To mitigate this, random factors should be introduced. The 

Simulated Annealing algorithm [31] can avoid local optima, so we propose using 

it. 
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Fig.3. Motif-based degree preserving edge reconnection method based on simulated annealing 

 

Using various disruption mechanisms A  to attack a specific motif iG , 

( )iR A  represents the robustness post-attack. If the Path Relinking Algorithm yields 

motif 
*
iG  with robustness 

*( )iR A , and 
*( ) ( )i iR A R A , 

*
i iG G=  is accepted with a 

certain probability. If *( ) ( )i iR A R A , the new motif *
iG  is fully accepted. The 

acceptance probability is influenced by *| |i iR R R = −  and the initial temperature 

of the Simulated Annealing algorithm. A smaller R  increases rewiring success 

probability, while a higher initial temperature T  helps avoid local optima. As 

iterations increase, T  decreases, affecting the algorithm's performance. The change 

in T  follows 0( ) 0.8iT i T=  , where I  is the iteration index. Steps for optimizing 

robustness within motifs using Simulated Annealing are shown in Fig. 3. 

We utilize simulated annealing techniques for path relinking within motifs, 

optimizing robustness and observing performance differences before and after. To 

illustrate the algorithm's effect on the power-communication coupling network, Fig. 

4 presents a simplified example with the original and optimized network structures. 

A specific motif from a network G C−  is selected to avoid affecting node degrees 

and robustness R . Links of two edges are cut and optimized at each level. After 

such operations, we obtain the new network optG  and optC . It is noteworthy to note 

that the optimization process does not change any dependencies. Because the 
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optimized network has better stability than the original network nodes, it shows that 

the whole network system has higher stability and robustness. 
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Fig.4. Schematic diagram of coupling network optimization before and after 
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Fig.5. Intelligent rewiring algorithm 

 

The Intelligent Rewiring Algorithm is an intelligent and efficient robustness 

optimization strategy [32], an improvement upon the random rewiring algorithm. 

As shown in Fig. 5, for a node i  connected to a set of nodes, there are nodes j with 

an upper degree limit and nodes k  with a lower degree limit. m  represents the 

adjacent nodes of j , and n  represents the adjacent nodes of k . The algorithm 

involves removing edges jml  and knl  while adding edges jkl  and mnl . If the 

robustness improves, the edges  jkl  and mnl  are retained; otherwise, the algorithm 

is re-executed with a different node i .  

To enhance robustness between motifs, the intelligent rewiring algorithm is 

adjusted. The first step involves selecting a suitable node i  with a degree k  

greater than the network's average degree. This node should be connected to at least 

one node outside the motif and internally connected to a node with a degree greater 

than 2. The second step of the algorithm, as illustrated in Fig. 6, focuses on a node 

j  that is adjacent to node i  but not in the same motif. Nodes i , m , and k  are in 

the same motif and mutually connected. After removing edges ijl  and kml , the 

algorithm switches to ikl  and jml . By iteratively executing multiple rounds of this 
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algorithm, the optimization gains in robustness between motifs can be achieved. 
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Fig.6 Method of reconnecting edges between communities 
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Y
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Fig.7. MROA’s motif reconnection edge method based on improved intelligent rewiring policy 

 

( )R A  defines the internal robustness of motifs. After the optimization, the network 

motif is upgraded from G  to *G , and the optimized robustness indicator is denoted 

as *( )R A . If *( ) ( )R A R A R + , the current motif G  is retained, achieving a 

single optimization. Simultaneously, a stopping threshold condition maxN  is set to 

ensure the convergence of the optimization process. Fig. 7 illustrates the process 

flowchart of the inter-motif edge reconnection method, which is achieved by 
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refining the intelligent rewiring mechanism. 

4. Simulation Results and Analysis 

The simulation test object is IEEE-39 system. After modeling and analyzing 

the power communication coupling network, the power communication coupling 

network model is established by using MATLAB and MATPOWER.  
Table 1 

IEEE-39 Node Motif Division Results 

Motif Motif member Overlapping nodes 

Motif 1 1,2,4,5,6,7,8,9,11,30,31,39 4,6,11 

Motif 2 4,6,10,11,12,13,14,15,32 4,6,11,15 

Motif 3 3,15,16,17,18,19,20,21,24,27,33,34 15,16,17,21,24,27 

Motif 4 16,21,22,23,24,35,36 16,21,24 

Motif 5 17,25,26,27,28,29,37,38 17,27 

Firstly, we applied the Louvain algorithm to partition the IEEE-39 system's 

power grid topology into motifs. Table 1 presents the predictive performance 

relationship over time, indicating five motifs. Fig. 8 provides a topological map 

with motif structures highlighted in different colors. 
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Fig.8. Schematic diagram of IEEE-39 node motif division results 

 

The power system and its communication counterpart are partitioned into 

five motifs. Communication devices are organized into access, backbone, and core 

functional points, forming a coupled system with 39 power nodes and 50 

communication nodes. The layered model architecture is shown in Fig. 9.  

To improve robustness optimization efficiency, we test our models using 

effective attack patterns. Whether to use node-based or edge-based attacks depends 

on the topology. Based on relevant literature, we consider attack patterns based on 
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degree and betweenness centrality. Nodes are sorted by degree and betweenness 

centrality, and highly connected and central nodes are selected for attack and 

removal. These attack patterns are used to optimize motif structure robustness 

internally and externally. Simulation results for these attack patterns are shown in 

Fig. 10, with attack cycles corresponding to the number of faulty nodes. 

Motif4

Motif5

Motif3

Motif2

Motif1

1 2

Core Layer

Backbone 

Layer

Access 

Layer

Core Layer 

Nodes

Backbone 

Layer Nodes

Power Grid and 

Access Layer 

Coupling Nodes

Coupling Zones

Inter-layer Lines

Intra-layer Lines

5

7

8

9

6

4

2

1 3

27 17

24
21

16

15
4

6

11

 
Fig.9. IEEE-39 node system coupling and layered network model 
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Fig.10. Robust comparison of IEEE-39 system under different attack strategies 
 

Historically, power and communication networks have been fused one-to-

one, based on node connectivity and betweenness centrality rankings. This study 

used the classical one-to-one coupling model and introduced a novel fusion model 

considering motif structures to compare robustness. The node failure ratio measures 

network robustness. The IEEE-39 node system is simulated by MATLAB using two 

methods, and the degree-based attack results are shown in Fig. 11. 
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Fig.11. Comparison of Survivability of Coupled networks under different coupling modes  
 

As shown in Fig. 11, traditional single-equation coupling of power and 

communication networks is prone to triggering a first-order phase transition. 

Attacking about 5% of nodes can cause 54.8% node failures. However, using the 

fusion approach based on network motif structures, a similar attack results in only 

8.7% node failures. In traditional 1:1 coupling, sparse interconnections can lead to 

complete network breakdown, forming multiple subnets and causing significant 

disruption. During subsequent attacks, the isolation between subnets prevents fault 

spread, resulting in slower node loss growth. 
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(a) Degree Attack                                      (b) Betweenness Attack 

Fig.12. Changes in s(q) of coupled networks under different optimization strategies 

 

The simulation results of ( )s q  for the optimized algorithm considering the 

motif structure of the coupled networks are shown in Fig. 12. We improved the 

original network motif structure while maintaining its stability, applied the 

proposed model to the IEEE-39 node system, and compared it with intelligent 

rewiring [32] and the Memetic Algorithm (MA) [33]. The MA algorithm combines 

genetic algorithms' global search capability with local search's fine optimization 

ability, effectively solving complex problems. We simulated betweenness and 

degree attacks on the IEEE-39 system, observed the decrease in ( )s q  with 

increasing node failure rate q , and evaluated the robustness of the optimized power 
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and communication network coupling system.  

In Fig. 12, as the parameter q  increases, both attack modes show a similar 

trend in ( )s q  with a conservative optimization strategy due to the IEEE-39 node 

coupling system's scale-free nature with a power-law degree distribution. Both 

attack modes accurately identify critical points, leading to similar effects. However, 

with intelligent rewiring and MA algorithms, the decrease in ( )s q  is slower, and 

( ) 0.1s q   when 0.6q = . The MROA algorithm's ( )s q  lies between the two. This 

study applied three optimization methods to the coupled power and communication 

network system over 10 rounds, with results in Table 2. orgR  represents 

unoptimized robustness, avgR  is robustness after 10 optimizations, and R  is the 

improvement percentage. As shown in Table 2, under degree attacks, MROA 

improves network robustness by up to 61.02%. Under betweenness attacks, it 

achieves up to 79.31% improvement. It outperforms the intelligent rewiring scheme 

and is comparable to the MA algorithm's performance. 
Table 2  

Results of Robustness Optimization under Different Attack Strategies 

 Optimization algorithm 
orgR  

avgR  R  

 MROA Algorithm 0.254 0.409 0.155 

Degree Attack Intelligent Rewiring Algorithm 0.254 0.406 0.152 

 MA Algorithm 0.254 0.428 0.174 

 MROA Algorithm 0.232 0.416 0.184 

Betweenness Attack Intelligent Rewiring Algorithm 0.232 0.403 0.171 

 MA Algorithm 0.232 0.432 0.200 
 

This study used the Louvain algorithm to examine the stability of the initial 

modular structure in coupled power and communication networks before and after 

applying three robustness optimization schemes. It explored changes in Normalized 

Mutual Information (NMI) values during optimization, comparing the impact of 

these schemes on modular structure constancy.  
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Fig.13. NMI comparison of three algorithms 

Simulation results in Fig. 13 show that after 1000 iterations, the NMI index 

for intelligent rewiring is about 0.4, MA's NMI is around 0.3, while the proposed 
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modular structure algorithm achieves an NMI of about 0.6, outperforming both. We 

conducted 10 optimization iterations using three methods on the coupled power and 

communication network systems, with results presented in Table 3. N1 represents 

the mean constancy of the network modular structure after optimization, and N2 

indicates the improvement index of the modular constancy. 

From Table 3, our approach enhances the constancy of the modular structure more 

effectively than the traditional intelligent rewiring method. Compared to intelligent 

rewiring, the NMI  improvement is 51.9%. Compared to the MA algorithm, the 

NMI  improvement is 85.1%. Among the three algorithms, MROA maintains the 

best constancy of the initial modular structure. 
Table 3 

Effect of Motif Structure Preservation 

Optimization algorithm 
avgNMI  NMI  

MROA Algorithm 0.559 - 

Intelligent Rewiring Algorithm 0.368 0.191 

MA Algorithm 0.302 0.257 

After the experimental simulations and analysis, the MROA algorithm 

shows robustness similar to MA, both outperforming the intelligent rewiring 

algorithm. In terms of modular stability, MROA performs best in maintaining the 

initial network modular structure. The results indicate a differentiated downward 

trend in ( )S q , showing that each algorithm has unique characteristics in enhancing 

system robustness. The intelligent rewiring algorithm integrates adjacency 

information and reselection of edges via greedy algorithms. The MA algorithm uses 

a population-based global search and individual-based local heuristic search, 

reconnecting edges under optimal conditions without constraints. This study 

calculates the network modular structure, using different intelligent algorithms for 

internal (simulated annealing) and external (improved intelligent rewiring) 

modules. The MA algorithm is closer to MROA in the ( )S q  metric, showing greater 

stability. Maintaining the original modular structure's stability is crucial for 

improving the robustness of the coupled network. Simulation results show that the 

MROA algorithm excels in maintaining submodule stability while achieving 

robustness optimization similar to the MA algorithm. 

5. Conclusion 

This paper constructs a model of a coupled power grid and communication 

network to describe its complexity, aiming to achieve effective network motifs and 

maintain the stability of subnetwork motifs. The Louvain algorithm is used to 

discover motif structures in the coupled model. Based on this motif-based grid 

pattern, each level of the power grid and communication network is systematically 

constructed, forming a complex system model. The proposed Motif-based Robust 
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Optimization Algorithm (MROA) is introduced and compared through simulation 

with the Memetic Algorithm (MA) and the Intelligent Rewiring Algorithm. The 

results show that MROA achieves robustness optimization gains comparable to MA 

but superior to the Intelligent Rewiring Algorithm. Compared with MA, MROA 

enhances both the stability of subnetworks and the constancy of network motif 

structures without degrading network robustness. This algorithm proves its 

superiority in improving network robustness and stability. This motif-based 

analysis method provides a new perspective for the collaborative optimization of 

power and communication networks.  

Future research directions could involve further validating the effectiveness 

of the MROA algorithm on larger-scale systems and considering network 

optimization problems in more practical application scenarios. Additionally, in-

depth explorations of the application of motif structures in other complex systems 

can be undertaken to broaden the applicability of this method. 
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