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USING DEEP LEARNING FOR AUTOMATIC DEFECT 

DETECTION ON A SMALL WELD X-RAY IMAGE DATASET 

Qingchun ZHENG1,2, Xiaoyang LI1,2, Peihao ZHU1,2,*, Wenpeng MA1,2 

Jingna LIU1,2, Qipei LIU1,2 

The quality of welding is directly related to the performance and life of 

welded products. This paper proposes an automatic defect detection method using 

deep learning on a small weld X-ray image dataset. Combined with Generative 

Adversarial Network (GAN) and Deep Convolutional Neural Network (DCNN), this 

method can successfully deal with the problem of data imbalance in small image 

dataset and achieves a good detection effect for low-contrast defect images. 

Extensive experiments have proved that this approach could accurately and quickly 

complete the location and detection task of internal defects of welds, and it achieves 

the Mean Average Precision (mAP) result as 91.64%.  
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1 Introduction 

As a primary method of connecting workpieces, welding has been widely 

used in many fields such as equipment manufacturing, aerospace, petrochemical 

industry. In addition to welding efficiency and accuracy, welding production is 

also affected by welding quality. Due to the influence of different environmental 

conditions and welding processes, various defects will inevitably appear inside the 

weld during the welding process, such as cracks, pores, lack of penetration, slag 

inclusion [1]. In order to ensure the quality of welded products, it is imperative to 

conduct Non-Destructive Testing (NDT) before putting it into use. 

NDT technology includes many methods. Radiographic Testing (RT) is 

one of the most commonly used NDT methods for welded defects, and it mainly 

consists of two methods: Manual visual detection and computer-aided detection 

[2]. At present, most industries use manual visual detection methods for testing. 

However, the manual visual detection method is greatly affected by personal 

subjective factors, and it is easy to cause misjudgment and omission. In recent 
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years, computer vision and object detection technology have developed rapidly, 

and the computer-aided detection method has received more attention [3]. 

At present, the computer-aided detection method faces three main 

challenges: First of all, due to external noise interference, it is difficult to 

distinguish whether it is a noise or a defect with a smaller size in the weld image. 

Secondly, the types and characteristics of welding defects are diverse. Some 

welding defects with low contrast and uneven brightness are difficult to detect 

accurately. Third, it is costly to collect a lot of welded defect images in the 

industry, which leads to severe data imbalance problems [4]. 

This paper proposes an automatic detection method for weld defects based 

on a small image dataset to solve the above problems. The main contributions of 

this article are as follows: (1) In order to ensure the effectiveness of the object 

detection model, a Generative Adversarial Network (GAN) algorithm based on 

small image dataset is proposed to quickly generate high-quality welded defect 

images to expand the training dataset. (2) An object detection model of DCNN is 

proposed to realize the defect detection of the entire X-ray weld image. 

Experimental results show that this method's mean average precision (mAP) for 

the two defects reached 91.64%. 

2 Related work 

At present, the traditional three-stage defect detection method and the 

defect intelligent recognition method without feature extraction are the research 

hotspots. 

Most of the traditional three-stage defect recognition methods belong to 

the category of machine learning, which requires manual design and extraction of 

features. The effect of classification mainly depends on the quality of feature 

extraction. Common image features include shape features, texture features, 

geometric features, and combined features [5].  

In recent years, CNN has repeatedly achieved good results in object 

detection. The emergence of AlexNet [6] has attracted much attention, and 

VGGNet, GoolLeNet [7-8] network structures were subsequently proposed. The 

depth and width of the network continue to expand, and the error rate of 

classification is also declining. However, the above-mentioned CNNs are only 

suitable for image classification tasks and cannot meet the object detection of the 

entire image in the actual application scene. 

With the continuous reduction of image classification error rate based on 

the ImageNet dataset, people have begun to consider improvements based on 

existing research to complete the object detection works. Du et al. [9] proposed an 

improved Faster R-CNN network structure, and it is the first time the FPN 

structure has been applied to defect detection and achieved an excellent detection 
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result. Lei Yang et al. [10] used the YOLO-V3 network to develop a welded joint 

detection system that updates the data in real-time. 

However, the intelligent detection method of welded defects based on 

deep learning requires many images as training samples. With the increasing 

demand for the dataset in the industry, people have begun to use Generative 

adversarial network (GAN) [11] to generate weld images. Since GAN training is 

very unstable and prone to problems such as mode collapse, Martin Arjovsky [12] 

proposed an improved GAN called WGAN-GP in 2017.  

3. A small weld x-ray image dataset  

3.1 Image source 

The public datasets and online collection are used to get X-ray images as 

training samples. Many X-ray images come from the public dataset GDXray. The 

GDXray dataset [13] was released by Domingo Mery et al. in 2015 and is the only 

publicly available X-ray weld image dataset. It contains 88 X-ray weld images, 

and there are problems in the dataset's number, quality, and data balance. At the 

same time, some samples were collected from online search engines. 

Different types of weld defects have various features on X-ray images. 

Defects of “pores” type on the X-ray image are round defects or strip defects with 

deep black center and shallow black edge. The defects of “crack” type on the X-

ray image are characterized by a black straight line with wide middle and sharp 

ends. In this paper, data augmentation and object detection are performed on the 

above two kinds of defects. Some real images of these two kinds of weld defects 

are shown in Fig. 1. 

 
Fig. 1 Various kinds of defects 

3.2 Image augmentation 

Due to the quality problem of collected images, the two methods 

mentioned above still cannot obtain enough samples to meet the needs of the 

model. Therefore, this paper uses some image-processing-based algorithms for 

image augmentation, such as image flip, brightness enhancement and image noise. 

(1) Image flip: Due to the different X-ray projection angles in industrial 

production, the angles of the X-ray images produced are also different. Therefore, 
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the image flip method is used to simulate the actual application of different angles 

of defect pose. 

(2) Brightness enhancement: In the actual welding process, the light 

source changes will affect the imaging effect of the x-ray image. Here, the 

brightness enhancement is adopted to simulate the change of lighting conditions. 

(3) Image noise: Due to the imperfections of the imaging system, digital 

images often have noise during the process of their formation. Here, the dataset is 

expanded by adding noise to the original image. 

3.3 WGAN-GP network 

The framework of WGAN-GP is shown in Fig. 2. The generator could 

learn feature information in real images to generate fake images to deceive 

Discriminator. It produces images that can replace real samples during the 

constant confrontation. 

 
Fig. 2 Framework of WGAN-GP in this paper 

 

WGAN-GP network uses Gradient Penalty (GP) instead of weight 

clipping. At the same time, in order to prevent the gradient value from being 

changed with the batch processing information, the Batch Normalization 

operation in the Discriminator is deleted. The gradient penalty is defined as 

Equation 1. 

( )( )
2

ˆ 2
ˆ ˆ = E 1xGradient penalty x D x   −
  

                               (1) 

Where x̂  is Linear interpolation between the real image and the generated fake 

image. ( )ˆ
ˆ

xD x  is the gradient of Discriminator output relative to the 

interpolation.   is the ratio of the gradient penalty to the Original critic loss. 

WGAN-GP network solves three critical problems of WGAN network: 

insufficient network capacity usage, gradient vanishing and gradient exploding. 

Compared with other networks, the WGAN-GP network does not require any 

prior knowledge to generate defect samples. 
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3.4 Network structure optimization 

To get better performance of the WGAN-GP network, this paper proposes 

to add the ResNet structure to the WGAN-GP network structure. 

(1) Generator 

The plain Generator structure is repeatedly stacked by Deconv_Block 

composed of Deconvolution layer, Batch Normalization layer and LeakyReLU 

activation function. The Deconv_Block structure is shown in Fig. 3 (a). The 

Deconvolution layer uses image interpolation to enlarge the original image. The 

batch normalization layer is used to stabilize training, speed up convergence and 

regularize the model.  

In this paper, the shortcut connection is added based on the above-

mentioned plain structure. At the same time, two Deconv_Block are used to 

enhance the upsampling ability of the model to obtain a clearer image. The 

optimized structure is called ResBlock_G, and the detailed structure is shown in 

Fig. 3 (a). 

(2) Discriminator 

The discriminator of the original WGAN-GP network deleted the Batch 

Normalization layer and only retained the convolutional layer and the LeakyReLU 

activation function. The structure of the original discriminator is shown as 

Conv_Block in Fig. 3 (b). The convolutional layer is used to subsampled the 

image to achieve the extraction of feature information. 

The shortcut connection is also added to the original discriminator. It 

realizes the fusion of high-dimensional feature information and low-dimensional 

feature information and enhances the ability of the discriminator. The optimized 

structure is called ResBlock_D, and the detailed structure is shown in Fig. 3 (b). 
 

Table 1 

The final amount of generated data 

Index Image transformation Number 

1 Original image 270 

2 Image flip 540 

3 Brightness enhancement 270 

4 Image noise 270 

5 GAN network 203 

6 Total images 1553 

 

The improved WGAN-GP network can generate welded defects with 

different sizes, shapes and numbers. Combined with the improved WGAN-GP 
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network and image-processing-based algorithms, the final amount of generated 

data is shown in Table 1. 

 
Fig. 3 Network structure. (a) Resblock_G; (b) Resblock_D 

4 Weld defect detection 

YOLO-V4 [14] model is currently the most widely used algorithm in the 

field of object detection. It is optimized from the YOLO-V3 model [15] and 

achieves a good balance between accuracy and speed. In order to obtain better 

object detection precision, the idea of feature pyramid networks (FPN) [16] is 

used to achieve the fusion of low-dim feature information and high-dim feature 

information. Fig. 4 shows the structure of YOLO-V4 model. 

In terms of the loss function, the YOLO-V4 model uses CIOU directly as a 

regression to optimize loss function, taking into account the parameters between 

the object and the anchor, such as distance, overlap rate and penalty items. The 

CIOU is defined as shown in Equation 3. 

     

2

2

( , )gtb b
CIOU IOU

c


= − −                                      (3) 

Where 
2 ( , )gtb b  denotes the Euclidean distance between the center point of the 

predict bounding box and the ground-truth bounding box. C denotes the diagonal 

distance of the smallest closure area that can contain both the predict bunding box 

and the ground-truth bounding box. The parameters α and   are shown in 

Equation 4 and Equation 5 respectively. 

1 IOU





=

− +
                                                          (4) 
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Finally, the loss function of YOLO-V4 model is shown as Equation 6. 
2
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Fig. 4 The structure of YOLO-V4 model 

5 Experiment and discussion 

5.1 Evaluation indicators 

In order to shorten the training time, the experiments are done on NVIDIA 

Quadro RTX 5000 to accelerate these two networks training. At the same time, 

some evaluating indexes are needed to prove the validity of the object detection 

model. 

(1) Precision-Recall (P-R) Curve: The parameters precision (P) and recall 

(R) are defined as Equation 7 and Equation 8. In two-dimensional coordinates, the 

combination of P and R can generate a P-R curve.  

 Pr
TP

ecision
TP FP

=
+

                                                    (7) 

TP
Racall

TP FN
=

+
                                                       (8) 
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Where TP denotes the number of positive samples that are correctly classified. FP 

represents the number of negative samples that are misclassified. FN denotes the 

number of positive samples incorrectly classified.  

(2) F1 Score: F1 Score is the harmonic mean of precision and recall. Its 

value range is 0-1. 1 represents the best output result of the model, and 0 

represents the worst output result of the model. 

(3) Mean Average Precision (mAP): The Average Precision (AP) is the 

area enclosed by the P-R curve, the X-axis and the Y-axis. In this paper, there are 

two objects to be detected, and mAP is the mean value of the AP of pores and 

cracks. 

5.2 Dataset augmentation 

Before the WGAN-GP network training, some parameters need to be set in 

advance to ensure that the model achieves the expected results. The initialization 

parameters are shown in Table 2. Part of the generated results of the optimized 

WGAN-GP model and the original WGAN-GP model are shown in Fig. 5. 
 

Table 2 

The initialization parameters of WGAN-GP 

Index Parameters Value 

1 Image size 256*256 

2 Batch size 8 

3 Learning rate 2e-4 

4 λ 10 

 

Fig. 5 Image augmentation based on WGAN-GP network 

Fig. 5 (a-b) shows images of cracks and pores generated by the original 

WGAN-GP model. Fig. 5 (c-d) shows images of cracks and pores generated by 

the optimized WGAN-GP model. As shown in Fig. 5, the texture features of the 

defect images generated by the original WGAN-GP model are blurred, and the 

checkerboard pattern has appeared. However, the weld defect images generated 
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by the optimized WGAN-GP network have clearer texture feature information. It 

is evident that this method solves the problem of lacking samples of x-ray images, 

and the dataset of defects could be expanded to train the DCNN models. 

5.3 Network training 

Similar to the WGAN-GP network, we also set some initialization 

parameters for the YOLO-V4 model to obtain the desired results, as shown in 

Table 3. 
Table 3 

The initialization parameters of YOLO-V4 model 

Index Parameters Value 

1 Image size 416*416 

2 Batch size 2 

3 Learning rate 1e-4 

4 Freeze epoch 50 

5 Epoch 100 

In the process of network training, this paper uses the freeze technique to 

speed up the convergence of the model while also preventing the weight from 

being destroyed. After many experiments, the training time of the model stabilizes 

at about 2 hours. Fig. 6 shows the Precision-Recall curve of the YOLO-V4 

network. 

 

Fig 6 (a) The P-R curve of pores; (b) The P-R curve of cracks. 

It can be seen from Fig. 8 that the average Precision of cracks and pores 

are 89.73% and 93.55%, respectively. The mean Average Precision (mAP) is 

91.64%. 
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5.4 Detection of weld defects 

The welded defect images generated by the improved WGAN-GP network 

are used as the test dataset. After the prediction of the YOLO-V4 target detection 

model, the detection and recognition effects of defects are shown in Fig. 7. 

 
Fig. 7 The detection and recognition effects of defects. (a-d) The original welded defects; (e-g) 

WGAN-GP network. 

Fig. 7 (a-d) shows the detection effects of the original welded defect 

samples. Fig. 7 (e-g) shows the detection effects of the samples generated by the 

improved WGAN-GP model. From the detection results, it is not difficult to see 

that the method proposed in this paper combining the WGAN-GP network and 

YOLO-V4 model could detect the defect of cracks and pores in various x-ray 

images. Meanwhile, this method avoids the problem of manually designing 

features in traditional machine learning algorithms. In the process of detection, 

prior knowledge of any particular specialty is not necessary. 

5.5 Performance verification 

In order to further verify the algorithm proposed in this paper, the Faster 

RCNN [17] is used as a controlled experiment to evaluate the advantages of our 

defect detection method. At present, the RCNN model and the YOLO model are 

the two most representative networks in the object detection field. Table 4 shows 

the performance comparison of the Faster RCNN model and the YOLO-V4 

model. 
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Table 4 

The performance comparison of various model 

Parameters Faster RCNN The proposed model 

F1 score (CR) 0.81 0.87 

F1 score (PO) 0.79 0.85 

mAP 83.50% 91.64% 

It could be seen from Table 3 that the mAP of the Faster RCNN network 

and the YOLO-V4 network are 83.5% and 91.64%, So it is evident that the 

proposed method is more superior to the Faster RCNN network and is more in 

line with the needs of actual application scenarios. 

6 Conclusion and future work 

Face with weld defect detection on x-ray images, this paper proposes an 

automatic defect detection method using deep learning on a small weld X-ray 

image dataset. This method proposes two DCNN network models, which are used 

for data enhancement and defect detection, respectively. The main conclusions of 

this paper are as follows: 

(1) In order to solve the problem of insufficient images of weld defects, 

the improved WGAN-GP is used to augment the dataset of real images, which 

meets the needs of the object detection model. 

(2) To detect and locate the welded defects, the YOLO-V4 model is 

proposed that does not require handcrafted feature design and it achieves mAP 

result as 91.64%. 

In the future, we will conduct research on more defect types and further 

improve the quality of images generated by the WGAN-GP model, strive to meet 

the needs of practical applications. 
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