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USING DEEP LEARNING FOR AUTOMATIC DEFECT
DETECTION ON A SMALL WELD X-RAY IMAGE DATASET

Qingchun ZHENG!?, Xiaoyang LI*?, Peihao ZHU>?>", Wenpeng MA?2
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The quality of welding is directly related to the performance and life of
welded products. This paper proposes an automatic defect detection method using
deep learning on a small weld X-ray image dataset. Combined with Generative
Adversarial Network (GAN) and Deep Convolutional Neural Network (DCNN), this
method can successfully deal with the problem of data imbalance in small image
dataset and achieves a good detection effect for low-contrast defect images.
Extensive experiments have proved that this approach could accurately and quickly
complete the location and detection task of internal defects of welds, and it achieves
the Mean Average Precision (mAP) result as 91.64%.
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detection

1 Introduction

As a primary method of connecting workpieces, welding has been widely
used in many fields such as equipment manufacturing, aerospace, petrochemical
industry. In addition to welding efficiency and accuracy, welding production is
also affected by welding quality. Due to the influence of different environmental
conditions and welding processes, various defects will inevitably appear inside the
weld during the welding process, such as cracks, pores, lack of penetration, slag
inclusion [1]. In order to ensure the quality of welded products, it is imperative to
conduct Non-Destructive Testing (NDT) before putting it into use.

NDT technology includes many methods. Radiographic Testing (RT) is
one of the most commonly used NDT methods for welded defects, and it mainly
consists of two methods: Manual visual detection and computer-aided detection
[2]. At present, most industries use manual visual detection methods for testing.
However, the manual visual detection method is greatly affected by personal
subjective factors, and it is easy to cause misjudgment and omission. In recent
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years, computer vision and object detection technology have developed rapidly,
and the computer-aided detection method has received more attention [3].

At present, the computer-aided detection method faces three main
challenges: First of all, due to external noise interference, it is difficult to
distinguish whether it is a noise or a defect with a smaller size in the weld image.
Secondly, the types and characteristics of welding defects are diverse. Some
welding defects with low contrast and uneven brightness are difficult to detect
accurately. Third, it is costly to collect a lot of welded defect images in the
industry, which leads to severe data imbalance problems [4].

This paper proposes an automatic detection method for weld defects based
on a small image dataset to solve the above problems. The main contributions of
this article are as follows: (1) In order to ensure the effectiveness of the object
detection model, a Generative Adversarial Network (GAN) algorithm based on
small image dataset is proposed to quickly generate high-quality welded defect
images to expand the training dataset. (2) An object detection model of DCNN is
proposed to realize the defect detection of the entire X-ray weld image.
Experimental results show that this method's mean average precision (mAP) for
the two defects reached 91.64%.

2 Related work

At present, the traditional three-stage defect detection method and the
defect intelligent recognition method without feature extraction are the research
hotspots.

Most of the traditional three-stage defect recognition methods belong to
the category of machine learning, which requires manual design and extraction of
features. The effect of classification mainly depends on the quality of feature
extraction. Common image features include shape features, texture features,
geometric features, and combined features [5].

In recent years, CNN has repeatedly achieved good results in object
detection. The emergence of AlexNet [6] has attracted much attention, and
VGGNet, GoolLeNet [7-8] network structures were subsequently proposed. The
depth and width of the network continue to expand, and the error rate of
classification is also declining. However, the above-mentioned CNNs are only
suitable for image classification tasks and cannot meet the object detection of the
entire image in the actual application scene.

With the continuous reduction of image classification error rate based on
the ImageNet dataset, people have begun to consider improvements based on
existing research to complete the object detection works. Du et al. [9] proposed an
improved Faster R-CNN network structure, and it is the first time the FPN
structure has been applied to defect detection and achieved an excellent detection
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result. Lei Yang et al. [10] used the YOLO-V3 network to develop a welded joint
detection system that updates the data in real-time.

However, the intelligent detection method of welded defects based on
deep learning requires many images as training samples. With the increasing
demand for the dataset in the industry, people have begun to use Generative
adversarial network (GAN) [11] to generate weld images. Since GAN training is
very unstable and prone to problems such as mode collapse, Martin Arjovsky [12]
proposed an improved GAN called WGAN-GP in 2017.

3. A small weld x-ray image dataset
3.1 Image source

The public datasets and online collection are used to get X-ray images as
training samples. Many X-ray images come from the public dataset GDXray. The
GDXray dataset [13] was released by Domingo Mery et al. in 2015 and is the only
publicly available X-ray weld image dataset. It contains 88 X-ray weld images,
and there are problems in the dataset's number, quality, and data balance. At the
same time, some samples were collected from online search engines.

Different types of weld defects have various features on X-ray images.
Defects of “pores” type on the X-ray image are round defects or strip defects with
deep black center and shallow black edge. The defects of “crack” type on the X-
ray image are characterized by a black straight line with wide middle and sharp
ends. In this paper, data augmentation and object detection are performed on the
above two kinds of defects. Some real images of these two kinds of weld defects
are shown in Fig. 1.

Fig. 1 Various kinds of defects

3.2 Image augmentation

Due to the quality problem of collected images, the two methods
mentioned above still cannot obtain enough samples to meet the needs of the
model. Therefore, this paper uses some image-processing-based algorithms for
image augmentation, such as image flip, brightness enhancement and image noise.

(1) Image flip: Due to the different X-ray projection angles in industrial
production, the angles of the X-ray images produced are also different. Therefore,
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the image flip method is used to simulate the actual application of different angles
of defect pose.

(2) Brightness enhancement: In the actual welding process, the light
source changes will affect the imaging effect of the x-ray image. Here, the
brightness enhancement is adopted to simulate the change of lighting conditions.

(3) Image noise: Due to the imperfections of the imaging system, digital
images often have noise during the process of their formation. Here, the dataset is
expanded by adding noise to the original image.

3.3 WGAN-GP network

The framework of WGAN-GP is shown in Fig. 2. The generator could
learn feature information in real images to generate fake images to deceive
Discriminator. It produces images that can replace real samples during the

constant confrontation.
II Samples \
; -

—) Generated
' ke
Samples

Fig. 2 Framework of WGAN-GP in this paper

WGAN-GP network uses Gradient Penalty (GP) instead of weight
clipping. At the same time, in order to prevent the gradient value from being
changed with the batch processing information, the Batch Normalization
operation in the Discriminator is deleted. The gradient penalty is defined as

Equation 1.
v.D()], —1)2} 1)

Where X is Linear interpolation between the real image and the generated fake
image. V,D(X) is the gradient of Discriminator output relative to the

interpolation. A is the ratio of the gradient penalty to the Original critic loss.

WGAN-GP network solves three critical problems of WGAN network:
insufficient network capacity usage, gradient vanishing and gradient exploding.
Compared with other networks, the WGAN-GP network does not require any
prior knowledge to generate defect samples.

Gradient penalty = ﬂEX[(‘
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3.4 Network structure optimization

To get better performance of the WGAN-GP network, this paper proposes
to add the ResNet structure to the WGAN-GP network structure.

(1) Generator

The plain Generator structure is repeatedly stacked by Deconv_Block
composed of Deconvolution layer, Batch Normalization layer and LeakyRelL U
activation function. The Deconv_Block structure is shown in Fig. 3 (a). The
Deconvolution layer uses image interpolation to enlarge the original image. The
batch normalization layer is used to stabilize training, speed up convergence and
regularize the model.

In this paper, the shortcut connection is added based on the above-
mentioned plain structure. At the same time, two Deconv_Block are used to
enhance the upsampling ability of the model to obtain a clearer image. The
optimized structure is called ResBlock_G, and the detailed structure is shown in
Fig. 3 (a).

(2) Discriminator

The discriminator of the original WGAN-GP network deleted the Batch
Normalization layer and only retained the convolutional layer and the LeakyRel. U
activation function. The structure of the original discriminator is shown as
Conv_Block in Fig. 3 (b). The convolutional layer is used to subsampled the
image to achieve the extraction of feature information.

The shortcut connection is also added to the original discriminator. It
realizes the fusion of high-dimensional feature information and low-dimensional
feature information and enhances the ability of the discriminator. The optimized
structure is called ResBlock D, and the detailed structure is shown in Fig. 3 (b).

Table 1
The final amount of generated data
Index Image transformation Number
1 Original image 270
2 Image flip 540
3 Brightness enhancement 270
4 Image noise 270
5 GAN network 203
6 Total images 1553

The improved WGAN-GP network can generate welded defects with
different sizes, shapes and numbers. Combined with the improved WGAN-GP
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network and image-processing-based algorithms, the final amount of generated
data is shown in Table 1.

Deconv_Block Conv_Block

3x3 Deconv

Deconv_Block Conv_Block

(a) (b)
Fig. 3 Network structure. (a) Resblock_G; (b) Resblock_D

4 \Weld defect detection

YOLO-V4 [14] model is currently the most widely used algorithm in the
field of object detection. It is optimized from the YOLO-V3 model [15] and
achieves a good balance between accuracy and speed. In order to obtain better
object detection precision, the idea of feature pyramid networks (FPN) [16] is
used to achieve the fusion of low-dim feature information and high-dim feature
information. Fig. 4 shows the structure of YOLO-V4 model.

In terms of the loss function, the YOLO-V4 model uses CIOU directly as a
regression to optimize loss function, taking into account the parameters between
the object and the anchor, such as distance, overlap rate and penalty items. The
CIOU is defined as shown in Equation 3.

2 gt
CIOU = 10U —%—au ©)

Where P (b,b%) denotes the Euclidean distance between the center point of the
predict bounding box and the ground-truth bounding box. C denotes the diagonal
distance of the smallest closure area that can contain both the predict bunding box
and the ground-truth bounding box. The parameters a and U are shown in
Equation 4 and Equation 5 respectively.

L

- 4
“Z1210U0 10 @



Using deep learning for automatic defect detection on a small weld X-ray image dataset 273

4 wé W,
v = — (arctan — —arctan — 5
Finally, the loss function of YOLO-V4 model is shown as Equation 6.
p’(b,b%)
LOSS oy =1-10U + ————+av (6)
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Fig. 4 The structure of YOLO-V4 model

5 Experiment and discussion

5.1 Evaluation indicators

In order to shorten the training time, the experiments are done on NVIDIA
Quadro RTX 5000 to accelerate these two networks training. At the same time,
some evaluating indexes are needed to prove the validity of the object detection
model.

(1) Precision-Recall (P-R) Curve: The parameters precision (P) and recall
(R) are defined as Equation 7 and Equation 8. In two-dimensional coordinates, the
combination of P and R can generate a P-R curve.

.. TP
Precision = ———— (7
TP+FP
Racall = L 8

P+FN
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Where TP denotes the number of positive samples that are correctly classified. FP
represents the number of negative samples that are misclassified. FN denotes the
number of positive samples incorrectly classified.

(2) F1 Score: F1 Score is the harmonic mean of precision and recall. Its
value range is 0-1. 1 represents the best output result of the model, and 0
represents the worst output result of the model.

(3) Mean Average Precision (MAP): The Average Precision (AP) is the
area enclosed by the P-R curve, the X-axis and the Y-axis. In this paper, there are
two objects to be detected, and mAP is the mean value of the AP of pores and
cracks.

5.2 Dataset augmentation

Before the WGAN-GP network training, some parameters need to be set in
advance to ensure that the model achieves the expected results. The initialization
parameters are shown in Table 2. Part of the generated results of the optimized
WGAN-GP model and the original WGAN-GP model are shown in Fig. 5.

Table 2
The initialization parameters of WGAN-GP
Index Parameters Value
1 Image size 256*256
2 Batch size 8
3 Learning rate 2e-4
4 IS 10

— s M
(d)

Fig. 5 Image augmentation based on WGAN-GP network

Fig. 5 (a-b) shows images of cracks and pores generated by the original
WGAN-GP model. Fig. 5 (c-d) shows images of cracks and pores generated by
the optimized WGAN-GP model. As shown in Fig. 5, the texture features of the
defect images generated by the original WGAN-GP model are blurred, and the
checkerboard pattern has appeared. However, the weld defect images generated
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by the optimized WGAN-GP network have clearer texture feature information. It
is evident that this method solves the problem of lacking samples of x-ray images,
and the dataset of defects could be expanded to train the DCNN models.

5.3 Network training

Similar to the WGAN-GP network, we also set some initialization
parameters for the YOLO-V4 model to obtain the desired results, as shown in
Table 3.

Table 3
The initialization parameters of YOLO-V4 model
Index Parameters Value
1 Image size 416*416
2 Batch size 2
3 Learning rate le-4
4 Freeze epoch 50
5 Epoch 100

In the process of network training, this paper uses the freeze technique to
speed up the convergence of the model while also preventing the weight from
being destroyed. After many experiments, the training time of the model stabilizes
at about 2 hours. Fig. 6 shows the Precision-Recall curve of the YOLO-V4
network.
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Fig 6 (a) The P-R curve of pores; (b) The P-R curve of cracks.

It can be seen from Fig. 8 that the average Precision of cracks and pores
are 89.73% and 93.55%, respectively. The mean Average Precision (mAP) is
91.64%.
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5.4 Detection of weld defects

The welded defect images generated by the improved WGAN-GP network
are used as the test dataset. After the prediction of the YOLO-V4 target detection
model, the detection and recognition effects of defects are shown in Fig. 7.

ltl

(e)
Fig. 7 The detection and recognition effects of defects. (a-d) The orlglnal welded defects; (e-g)
WGAN-GP network.

Fig. 7 (a-d) shows the detection effects of the original welded defect
samples. Fig. 7 (e-g) shows the detection effects of the samples generated by the
improved WGAN-GP model. From the detection results, it is not difficult to see
that the method proposed in this paper combining the WGAN-GP network and
YOLO-V4 model could detect the defect of cracks and pores in various x-ray
images. Meanwhile, this method avoids the problem of manually designing
features in traditional machine learning algorithms. In the process of detection,
prior knowledge of any particular specialty is not necessary.

5.5 Performance verification

In order to further verify the algorithm proposed in this paper, the Faster
RCNN [17] is used as a controlled experiment to evaluate the advantages of our
defect detection method. At present, the RCNN model and the YOLO model are
the two most representative networks in the object detection field. Table 4 shows
the performance comparison of the Faster RCNN model and the YOLO-V4
model.
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Table 4
The performance comparison of various model
Parameters Faster RCNN The proposed model
F1 score (CR) 0.81 0.87
F1 score (PO) 0.79 0.85
mAP 83.50% 91.64%

It could be seen from Table 3 that the mAP of the Faster RCNN network
and the YOLO-V4 network are 83.5% and 91.64%, So it is evident that the
proposed method is more superior to the Faster RCNN network and is more in
line with the needs of actual application scenarios.

6 Conclusion and future work

Face with weld defect detection on x-ray images, this paper proposes an
automatic defect detection method using deep learning on a small weld X-ray
image dataset. This method proposes two DCNN network models, which are used
for data enhancement and defect detection, respectively. The main conclusions of
this paper are as follows:

(1) In order to solve the problem of insufficient images of weld defects,
the improved WGAN-GP is used to augment the dataset of real images, which
meets the needs of the object detection model.

(2) To detect and locate the welded defects, the YOLO-V4 model is
proposed that does not require handcrafted feature design and it achieves mAP
result as 91.64%.

In the future, we will conduct research on more defect types and further
improve the quality of images generated by the WGAN-GP model, strive to meet
the needs of practical applications.
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